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Abstract—This paper addresses the problem of constructing
multiuser multiple-input multiple-output (MU-MIMO) codes for
two users. The users are assumed to be equipped with transmit
antennas, and there are antennas available at the receiving end.
A general scheme is proposed and shown to achieve the optimal
diversity-multiplexing gain tradeoff (DMT). Moreover, an explicit
construction for the special case of � � and � � is given,
based on the optimization of the code shape and density. All the
proposed constructions are based on cyclic division algebras and
their orders and take advantage of the multi-block structure.
Computer simulations show that both the proposed schemes
yield codes with excellent performance improving upon the best
previously known codes. Finally, it is shown that the previously
proposed design criteria for DMT optimal MU-MIMO codes
are sufficient but in general too strict and impossible to fulfill.
Relaxed alternative design criteria are then proposed and shown
to be still sufficient for achieving the multiple-access channel
diversity-multiplexing tradeoff.

Index Terms—Cyclic division algebras (CDAs), diversity-mul-
tiplexing gain tradeoff (DMT), multiple access channel (MAC),
multiple-input multiple-output (MIMO) channel, space–time
block codes (STBCs).

I. INTRODUCTION

D URING the past five years, extensive research has been
carried out on single-user (SU) multiple-input multiple-

output (MIMO) space-time (ST) lattice codes based on cyclic
division algebras (CDAs) [1]–[5]. At its best, this research has
resulted in codes that get very close to the outage bound for
practical numbers of antennas. Motivated by the promising out-
come in the SU-MIMO scenario, the aim in this paper is to
adapt the machinery provided by CDAs to the multiuser (MU)
MIMO scenario as well, with the ultimate goal of producing di-
versity-multiplexing tradeoff (DMT) achieving codes in mind.
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We will concentrate on the multiple-access channel (MAC), i.e.,
on the uplink transmission from multiple users to a single ac-
cess point (AP). Both the transmitters users and the receiver

AP may be occupied with multiple antennas.
In general, multiuser MIMO coding is a very challenging

topic. When the 3GPP third generation partnership project
asked the participating companies (cell phone manufacturers,
chipset manufacturers, operators, etc.) to list research topics that
they find essential for the next release, MU-MIMO was men-
tioned in nearly all the lists. The area is made very challenging
by the diversity of potential applications all requiring slightly
different treatment and design goals.

The idea of extending the single-user ST codes to the mul-
tiuser case and the design criteria for such MU-MIMO codes
were given in [6]. An explicit two-user MIMO con-
struction exploiting independent Alamouti blocks was also in-
troduced in [6]. By swapping columns for one user they man-
aged to achieve a minimum rank of three. In [7], Tse et al. ex-
tended the DMT results from [8] to the MAC. The codes in [6]
do not achieve the optimal MAC DMT. Nam et al. [9] proposed
the first explicit DMT achieving transmission scheme based on
a class of structured multiple access lattice ST codes. However,
their scheme was not constructive and no explicit examples were
provided. Some explicit, algebraic code constructions for the
MAC with were introduced in [10]–[12]. The authors
of [12] state that their construction is DMT optimal, but do not
provide an explicit proof. In [11], a somewhat different approach
was taken as compared to [6]: the authors propose a design cri-
teria based on a truncated union-bound approximation. With the
aid of these criteria they manage to outperform in error perfor-
mance the other known two-user codes for the MAC [6],
[13]. Another group of multiuser ST codes was proposed in [13],
but these codes suffer from high peak-to-average power ratio
(PAPR) as the codeword matrices contain zero entries. In [14],
the authors propose design criteria for designing MAC-DMT
optimal codes, and further propose a code construction that is
claimed to fulfill their criteria. The criteria proposed in [14] are
indeed sufficient for achieving the optimal DMT, but it turns out
that it is not necessary to fulfill these criteria in order to do so. It
will be shown that more relaxed design criteria will still provide
us with MAC-DMT optimal codes. Especially, we will prove
that it is not possible to design DMT optimal multiuser codes
having the full NVD property when we have two users using
one antenna. The general proof for an arbitrary number of users
and antennas is presented in [15].

Our main goals in this paper are the following.
1) Construct explicit, sphere-decodable codes for the

situation where both of the two users are equipped with
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two transmitting antennas, and two antennas are available
at the receiving end. We will compare our codes with the
best known codes for this situation [11].

2) Design a general, DMT-achieving, sphere-decodable
MU-MIMO scheme for two users, that would

yield good performance also at the low signal-to-noise
ratio (SNR) end. We will compare our explicit
codes with the best known codes for this situation [12].

For the use of matrix representations of cyclic division alge-
bras and their orders as space-time codes, we refer the reader to
[1], [5], [16].

Remark I.1: Our aim is to preserve maximum-likelihood
(ML) performance, hence the requirement of sphere decod-
ability. Other than sphere decoding considered here, there
are still other ways to decode. For example, the MMSE-DFE
combined with lattice decoding was discussed by Belfiore et al.
in their paper [12]. Suboptimal decoders were indeed proposed
for any number of receivers in [17]. Albeit in some cases they
can get very close, they will always lose the ML performance
at least to some extent, especially when they are necessarily
needed (e.g., a sphere decoder would not work due to a lattice
dimension too high). This is due to the fact that when the
receiver is trying to decode a lattice that has higher dimension
than the receiver’s vector space, it means that there exist lattice
points that are arbitrarily close to each other and hence im-
possible to tell apart from each other. If, in such scenario, we
pursue on suboptimal tricks, some structure is then bound to be
lost and the performance can never be as good as ML decoding
promises, though we get close.

However, when the number of antennas increases, subop-
timal decoders are the only reasonable possibility even for our
(in principle) sphere decodable codes as sphere decoding will
get too complex when the dimension of the lattice grows big
enough.

The paper is organized as follows. In Section II, we provide
the reader with algebraic preliminaries, concentrating only on
the facts that will be needed in this paper. Section III is de-
voted to designing a 2 2 two-user code, whereas Section IV
gives us a general DMT optimal construction for two
users. In Appendix A we prove the claimed nonexistence result
of full-NVD multiuser codes in the case of two users equipped
with one antenna.

II. ALGEBRAIC PRELIMINARIES

In this section, we introduce some concepts and results from
the theory of central simple algebras for later use. For the proofs
of these results and for a proper introduction we refer the reader
to [18].

In the rest of the paper, we assume that all the fields are finite
extensions of the field of rational numbers .

Definition II.1: Let be an algebraic number field and as-
sume that is a cyclic Galois extension of degree with
Galois group . We can now define an associa-
tive -algebra

where is an auxiliary generating element subject to the
relations for all and . We call
this type of algebra a cyclic algebra and the field the center of
the algebra. The center is the set of elements of that commute
with all the elements of . Throughout the paper, denotes the
center, and denotes its subfield . The inclusion may
also be trivial, i.e., we allow .

Definition II.2: A cyclic algebra is a division algebra if and
only if all the nonzero elements of the algebra are invertible.

Proposition II.1 (Norm Condition): The cyclic algebra
of degree is a division algebra if and only if the

smallest factor of such that is the norm of some
element of is .

Due to the above proposition, the element is often referred
to as the non-norm element.

Definition II.3: Let be a -central division algebra. We
then call the index of the algebra.

Definition II.4: Suppose that is a cyclic extension of an
algebraic number field . Let be a cyclic
division algebra and let to be an algebraic integer. We
immediately see that the -module

where is the ring of integers of , is a subring in the cyclic
algebra . We refer to this ring as the natural order.
Note also that if is not an algebraic integer, then fails to be
closed under multiplication.

Let be a finite extension (could be also the trivial ex-
tension) of algebraic number fields and a -central division
algebra of degree .

Definition II.5: An -order in is a subring of ,
having the same identity element as , and such that is a
finitely generated module over and generates as a linear
space over .

Proposition II.2: Every -order is also an
-order.

Definition II.6: An -order is called maximal, if it is not
properly contained in any other -order.

Proposition II.3: Any -central division algebra has a
maximal -order and any order inside is contained in at
least one maximal order.

1) Example II.1: Suppose that is a cyclic extension
of algebraic number fields. Let be a cyclic
algebra.

We can consider as a right vector space over , and every
element has the following
representation as a matrix:

...
...

We call this representation the left regular representation and
denote .
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Definition II.7: The determinant (resp. trace) of the matrix
above is called the reduced norm (resp. reduced trace) of the

element and is denoted by (resp. ).
Proposition II.4: Let be a -central division algebra and
an element of . Then and .
Proposition II.5: The norm and trace maps do not depend on

the maximal representation, i.e., the left regular representation
is not the only representation we can use. However, we stick to

for simplicity.
Definition II.8: We then define the reduced trace and norm of
to by

where and are the usual relative norm and trace
maps of a number field extension (sometimes also denoted by

and ).
Proposition II.6: Let be an -order in a -central di-

vision algebra . Then for any element its reduced
norm and reduced trace are elements of
the ring of integers of the field . If is nonzero, then so is

.
Now we are ready to define one of the main algebraic objects

needed in this paper.
Definition II.9: Let be a -central division algebra and

. The -discriminant of the -order is the
ideal in generated by the set

Here, simply refers to the dimension of as an
-linear vector space. If is a free -module, then

where is any -basis of .
Proposition II.7: All the maximal orders of a -central divi-

sion algebra share the same discriminant.
Now we can define the following.
Definition II.10: Let be a -central division algebra

and let be some maximal order in . Then we refer to
as the discriminant of the algebra .

The following lemma connects the discriminants
and .

Lemma II.8: Let be a -central division algebra of index
and let be an -order. If is an -order in , then

III. SPHERE DECODABLE MU-MIMO CODE FOR TWO

USERS AND TWO RECEIVE ANTENNAS

In this section, we concentrate on designing a multiuser code
for two users, both equipped with two transmit antennas, and
for a receiver that has two antennas. This leads us to a situa-
tion where the single user must use a code that is sphere de-
codable with one receive antenna. Such MU-MIMO codes have

been considered by Gärtner and Bölcskei [6] and by Hong and
Viterbo in [11] and [11]. Our coding scheme is directly compa-
rable to their codes.

In what follows, we first concentrate on the optimization of
the single user code and then, in the very end of this section, we
put our single-user codes into use in the multiuser scenario. The
careful construction of the single-user code as a building block
of the multiuser code is crucial, as it will then guarantee good
performance also when only one user is present.

A. Coding Theoretic Preliminaries of Abstract Multi-Block
Codes

In this section, we consider abstract multi-block codes that
are matrix lattices in the space . Particularly, we are
going to define the normalized minimum determinant and nor-
malized coding gain of such lattices and study the relation be-
tween these concepts.

We can flatten the matrices of to real vectors
by first forming a vector of length out

of the entries (e.g., row by row) and then replacing a complex
number with the pair of its real and imaginary parts and

. This mapping is clearly -linear and maps -dimensional
lattices to -dimensional lattices. We also

have the equality , i.e., the Frobenius norm
of the matrix coincides with the euclidean norm of the corre-
sponding vector . Therefore, is also an isometry.

Definition III.1: We say that a lattice in is or-
thogonal or rectangular if the corresponding real lattice
has a basis that is orthogonal with respect to the normal inner
product of the space .

We denote the measure (or hypervolume) of the fundamental
parallelotope of the lattice by and we call it the
volume of the fundamental parallelotope of the lattice . If

is a basis of , we can form a matrix by using
the vectors as column blocks. Then the Gram matrix of
the lattice is

where indicates the complex conjugate transpose of . The
Gram matrix then has a positive determinant equal to

Any lattice can be scaled (i.e., multiplied
by a real constant ) to satisfy .

If is an element in the space it can be written as
where all the matrices are elements in .

We can then define the product determinant

of the matrix .
Definition III.2: The minimum determinant of a

multi-block code is defined to be the infimum
of the absolute values of all the nonzero elements of
the lattice .

The normalized minimum determinant of a lattice is
obtained by multiplying the lattice with a real constant such that
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the resulting lattice has fundamental parallelotope of volume
1 and then setting

Definition III.3: The coding gain CG of the lattice
, , is defined to be the infimum of the abso-

lute values of the determinants of matrices of all nonzero
matrices in the lattice.

The normalized coding gain NCG of a lattice
is obtained by multiplying the lattice by

a real constant such that the resulting lattice has a funda-
mental parallelotope of volume 1 and then set

NCG CG

Lemma III.1: Let us suppose that are com-
plex matrices. We consider the matrix

. We then have

Proof: First, the Minkwoski determinant inequality states
that . The AM-GM in-
equality on the arithmetic and geometric means then transforms
this result into

In the following corollary, we use the notation of the previous
lemma.

Corollary III.2: Let us suppose that is a multi-block code
in . Then

CG

and

NCG

Particularly, the following will be of great interest for us.
Corollary III.3: Let us suppose that is a lattice in

. Then NCG .
Remark III.1: The concept of the normalized minimum de-

terminant of a multi-block code is related to the performance of
the code when each block faces independent fading. On
the other hand, the normalized coding gain is a relevant code
design criterion when the channel stays stable during the trans-
mission of the whole block. It is not a great surprise that
these two concepts are so closely related.

B. Constructing the Single User Code

In this section, we study the achievable normalized minimum
determinant of eight-dimensional multi-block codes in the space

. Notice that as we want to receive with only two an-
tennas (equipped with sphere decoders), we cannot use full lat-

tices that would have dimension 16. In order to get well be-
having eight-dimensional lattices we use real quadratic field as
a center in the multi-block construction. We remark that while
we came up with the idea independently it was discovered al-
ready in [19].

We begin by considering maximal order codes from division
algebras. By discriminant analysis we are able to find the op-
timal algebras. In Section III-D, we concentrate on rectangular
codes and derive a bound for normalized minimum determinant
of such codes and give an example code achieving this bound.
The minimum determinant analysis we are using is similar to
that used in [20].

We will take advantage of multi-block constructions from di-
vision algebras. In Section IV, to follow the same trick will be
used. The exception is that now the base field is and the
center is some quadratic field, whereas in Section IV we need
full lattices; hence and the center is some suitable
extension of .

Let us consider the field that is a compositum of
two quadratic fields and . We suppose that
and that and . We can then
write that .

Let us now consider the cyclic division algebra
As usually, we have the left regular representation

of the algebra so that an element maps to a 2 2 matrix
, and the multi-block representation

(1)

Let us suppose that is a -order in . We call the an
order code. In the rest of this section, we suppose that the divi-
sion algebras under consideration are of the previous type.

Lemma III.4: Let be an element of . Then

where is the usual matrix trace.
Proof: These results follow directly from Definition II.8.

Proposition III.5: Let us suppose that is a -order of a
division algebra and that is a multi-block representation.
The order code is an eight-dimensional lattice in the space

and

Proof: The claim about the dimension of the lattice
is easily seen. The second claim follows directly from
Proposition II.6.

Remark III.2: For every nonzero element of
an order code the rows are linearly independent over . This
follows as and therefore the first two columns
are linearly independent and generally in a matrix the number
of linearly independent rows and columns is equal.

Corollary III.6: With the previous notation we have
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The previous proposition reveals that the minimum deter-
minant of an order code depends only on the volume of the
fundamental parallelotope. The following lemma connects the
volume of the fundamental parallelotope and the discriminant of
the algebra. Here, we identify the ideal discriminant and the el-
ement generating it. This allows us to discuss the absolute value
of the -discriminant.

In the following, we identify the order of the algebra and its
image in . If the regular representation of the al-
gebra fulfills the following conditions, then the discriminant and
the fundamental parallelotope of an order are tightly connected.

In the case of a real center, we must assume that the regular
representation gives us matrices of the following Alamouti-
like type:

(2)

where is the complex conjugation. In the case of a complex
center we must assume that the automorphism is the complex
conjugation. It is an easy task to check that, with these assump-
tions

when .
If the representation fulfills the conditions stated above,

then we have the following.
Lemma III.7: Let us suppose that is a division algebra and
is an order in . Then

and

Proof: Let us suppose that has a -basis
, where , .

We can now flatten the matrix into an 8-tuple
by first forming a vector of length 4 out of the

entries of (e.g., row by row) and then concatenating this
with the 4-tuple similarly made out of the entries of the matrix

. We can now easily see the identities

(3)
and

(4)
The Gram matrix of the lattice is

Due to the limitations we set above on the form of the matrices
, is already real and we can ignore

taking the real part from the traces. According to (3) we can
write

where the rows of the 8 8 matrix consist of vectors
. A simple permutation of the columns and ele-

mentary properties of determinants give us that

where is a matrix with the rows . Ac-
cording to (4) and Lemma III.4

Proposition III.8: Of all the orders in a -central division
algebra, the maximal orders have the smallest -discriminant.

Lemma III.9: Let us suppose that is an order in a division
algebra . Then

NCG

Proof: Let us consider the lattice without the nor-
malization. We then have CG .
On the other hand, and therefore
CG . The scaling does not destroy
this equality.

C. Minimizing the Discriminant

As previously stated, if we consider orders inside a fixed al-
gebra, the smallest discriminant belongs to the maximal orders
of the algebra and all the maximal orders share the same dis-
criminant. Among those algebras having a regular representa-
tion fulfilling the conditions stated before Lemma III.7, mini-
mizing the discriminant of the algebra is now seen to be equiv-
alent to maximizing the coding gain of a code from a maximal
order.

In the following, we forget the restrictions on the form of the
regular representation and simply concentrate on finding the di-
vision algebras with the smallest possible discriminants. Only
after this we shall discuss whether the algebras have such reg-
ular representations that Lemma III.7 would be at their disposal.
Still the solution to the problem of choosing an optimal division
algebra is not an obvious one. The first step is the following. In
our special case, Lemma II.8 transforms into

Here we see that for a fixed center the second term
is independent on the chosen algebra and we can

concentrate on the term . This leads us to
discuss the size of the ideals of . By this we mean that ideals
are ordered by the absolute values of their norms to , so, e.g.,
in the case we say that the prime ideal generated
by is smaller than the prime ideal generated by 3 as they
have norms 5 and 9, respectively.

We have divided this section into two parts depending on the
type of the center. Propositions III.10 and III.12 that consider
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discriminants of division algebras are straightforward corol-
laries of well known results and the proofs can be found for
example from [18]. The minimization problems that will have
rather simple solutions here become more complicated in the
case where the index of the algebra is greater than two. This
question is of major importance when we consider general
MIMO codes. We refer the interested reader to [5].

1) Complex Quadratic Center: In this section, we consider
the situation where the center is a complex quadratic field of
degree 2.

Proposition III.10: Let us suppose that is a -central di-
vision algebra of index 2 containing an -order . Then

where all the are distinct prime ideals of the center and
.

On the other hand, if we have an even numbered set of prime
ideals , then there exists a unique -central division
algebra of index 2 having an -order with the discrim-
inant

Corollary III.11: Suppose that and are a pair of
smallest primes in the complex quadratic field . Then the
smallest -discriminant of all the index 2 -central division
algebras is

2) Example III.1: Let us consider the center . It is
readily seen that and are a pair of the smallest
primes in this field. Proposition III.10 proves that there exists a

-central division algebra of index 2 having a maximal
order with the discriminant

If this algebra also has a suitable regular representation, then
Lemma III.7 infers that

3) Example III.2: Let us next consider the center
. The smallest prime ideals in this center

are 2 and . According to Proposition III.10 there exists
a -central division algebra of index 2 having a
maximal order with the discriminant

If this algebra also has a suitable regular representation, then
Lemma III.7 gives us that

The discriminant 972 is already the smallest possible value
we can achieve with a complex quadratic center . This can
be proved by simply trying different centers. It is easily done
because for a given discriminant there is only one complex

quadratic field. In the discriminant formula for the maximal
order of a division algebra the term is always a
factor and we already have . Therefore, it is enough
to check the remaining discriminants and that are still
possible. In the previous example we saw that the center corre-
sponding to discriminant is and that with this center
the discriminant cannot be smaller than 972. The discriminant
of the field is and there does not exist a field
with discriminant .

4) Real Quadratic Center: In this section, we fix the center
to be a real quadratic field of degree 2.
Proposition III.12: Let us suppose that is a -central di-

vision algebra of index 2 and that is a maximal -order in .
Then

where are separate prime ideals of and . Here we
use the notation that if then .

On the other hand, if we have a set of prime ideal
then there exists a -central division algebra of index 2
having a maximal order with discriminant

with the notation that if , .
Corollary III.13: Let us suppose that we have a real quadratic

field . Then the smallest discriminant of all the index 2 divi-
sion algebras with the center is

5) Example III.3: The smallest discriminant of all the real
quadratic fields belongs to the field . The following
algebra

is called the Icosian algebra. It is a known fact that
This reveals that this division algebra has the smallest -dis-
criminant of all the index two division algebras with a real
quadratic center. Lemma II.8 then gives us that .
We immediately see that the regular presentation attached to
the cyclic presentation of fulfills the expectations of (2).
According to Lemma III.7 we then have that , and
according to Lemma III.7

A comparison to complex centers proves that this algebra has
the smallest discriminant of all the index two algebras where
the center is a quadratic field.

Remark III.3: We remark that the order code promised to
exist by the previous example actually played part in the con-
struction of the Icosian code in [21].

The previous example gave us an idea of the achievable
coding gain with order theoretic methods. Yet a simple modu-
lation scheme can easily ruin the performance of such codes.
For instance, if we use a -module basis together with a PAM
scheme the promised minimum determinant advantage might
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never get realized. Therefore, the next section is devoted for
constructing a code with rectangular shaping.

D. Rectangular MISO Code With the Best Achievable
Minimum Determinant

In this section, we concentrate on the question of achievable
minimum determinant of rectangular multi-block codes in the
space .

Proposition III.14: Let us suppose that is a rectangular
multi-block code in the space . We then have that

Proof: We expect w.l.o.g. that has a fundamental paral-
lelotope of volume 1. Consider an orthogonal basis of . Due to
the orthogonal shape at least one of the basis vectors must have
length less than or equal to one. Let us suppose that

is a matrix corresponding to such vector. This means that
. Let us consider the matrix . Ac-

cording to Hadamard inequality we have that

In the following, we are going to build an orthogonal order
code that reaches the bound of the previous proposition. Let us
consider the following algebra:

and the natural order of this algebra. The field
can be seen as a -module with a basis

. Now the natural order can be written as

The operation of the automorphism is defined as
, and is just the usual complex conjugation. The

multi-block representation now gives us the equation shown
at the bottom of the page.

By simply checking we see that

forms a rectangular basis for the code. A particularly nice fea-
ture of this code is that we can apply QAM-modulation here,
although the general construction method did not promise this.

We could now just calculate the fundamental parallelotope of
this code and then determine the normalized minimum determi-

nant, but we take a more general approach that sheds more light
to the question of how we first came up with this code.

Lemma III.15 [5, Lemma 2.9]: Let us suppose that is such
an algebraic number field that is a principal ideal domain.
If is a -central division algebra of index
and is a natural order in , then

We now return to our example algebra above and to the
fixed natural order in it. The discriminant of the extension

has absolute value 256. Lemma III.15 now states
that

and because the left regular representation in this case is suitable
Lemma III.7 gives us that

Remark III.4: The code appeared in [23] as a 4 1
MISO code. It was noted that is unitarily equivalent to their

code.

E. A Multiuser Coding Scheme

In this section we propose a simple multiuser coding scheme
that is based on our previous work on MISO codes. The scheme
is based on the criteria presented in [6].

As an example we apply the code of Section III-D and com-
pare its performance to the corresponding codes in [6] and [11].

Let us assume that

where is some primitive root of unity, being suffi-
ciently large so that cannot possibly be a root for the deter-
minant polynomial, meaning that our two-user code matrix will
end up having rank 4. If only one user is transmitting the situa-
tion is equal to delay four 2 2 single-user MIMO transmission.

The infinite code lattice for the first user is where

where . The single user code lattice for the second user is
, where
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and .
If the users are independent yet synchronized the signal sent

by the two users is

If we suppose that neither or is zero, then the determinant
of the matrix is a polynomial of and the term attached to its
highest power is . By our assumption this term is
nonzero. If is now a suitable primitive root of unity, we
see that as long as and are nonzero elements, matrix has
rank 4. If only one user is transmitting, then by Remark III.2 the
matrix has rank 2.

Let us now consider a sample code based on our orthogonal
code of Section III-D.

The code for the first user is

and for the second user

where and are QAM-symbols.

F. Simulations

In this section, we compare our code construction to two pre-
viously proposed codes [11] (HV) and [6] (GB).

In [6] the coding scheme consist of two single-user codes

where in both cases the symbols are independently chosen
from some QAM-constellation. When both users are transmit-
ting the combined matrix has rank 3 (see [6]).

In [11] the HV code is based on the number field code used
in the construction of the 4 4 Perfect code [1]. The key parts
are the field extension , its cyclic
Galois group , and an ideal of the ring of
algebraic integers . Here the single user codes are

where and are elements of the ideal corresponding to a
given QAM constellation. When both users are transmitting the
combined 4 4 matrix has rank 4, and when only one user is
transmitting the rank is 2 (see [11]).

In Figs. 1 and 2, we compare our new code (NC) to the codes
in [11] (HV) and [6] (GB) in a slow fading situation where the

Fig. 1. Performance of the codes on 4-QAM received with two antennas.

Fig. 2. Performance of the codes on 16-QAM received with two antennas.

channel remains fixed for four channel uses. We see a consider-
able gain compared to the previous code constructions. When
compared to the GB code the performance advantage is ex-
plained by the fact that when both users are transmitting, the
combined matrix of the NC code has rank 4, whereas the GB
code has rank 3 only. Both codes are taking full advantage of
the delay four, but encoding of the GB code is perhaps sim-
pler. The decoding of both the GB code and the NC code can be
simply done using a sphere decoder. Both the GB code and the
NC code involve an Alamouti-like structure which can be taken
advantage of in the decoding process.

When comparing the HV code and the NC code we have tie
on ranks, but the optimality of our single user codes (see Propo-
sition III.14) expectedly gives us an edge in coding gain. In this
case, the encoding and decoding processes have similar com-
plexity.
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IV. DMT OPTIMAL CODE CONSTRUCTION FOR TWO USERS

In this section, we will focus on the construction of DMT
optimal multiuser codes when there are two users in the system,
communicating simultaneously to a common base station. We
assume that each user has transmit antennas and there are
receive antennas at the receiving end. Further, we will assume
a symmetric MAC channel [7], meaning the users transmit at
same multiplexing gain , or equivalently, both transmit at rate

SNR in bits per channel use.

A. DMT for MIMO-MAC Channels

Considering a MIMO Rayleigh block fading channel, Tse et
al. [7] showed that the codeword error probability of any such
multiuser codes is lower bounded by

SNR SNR SNR (5)

where by we mean the exponential inequality defined in [8],
i.e., SNR SNR if

SNR

SNR
SNR SNR

SNR
SNR

Notions of and are defined similarly.
The negative exponent is the point-to-point DMT

[8] for the case when there is only one user with transmit
antennas communicating at multiplexing gain to the base
station that has receive antennas. is a piecewise
linear function connecting the points
for . From this, in the two-user
symmetric MIMO-MAC scenario, the maximal multiplexing
gain can be achieved by the users is upper bounded by

since .
The terms SNR and SNR are, respec-

tively, the probabilities when one or both users are in outage, i.e.,
the probabilities that the channel is not good enough to support
the targeted rate. In particular, due to the behaviors of
and , Tse et al. showed that

SNR SNR

That is, when , each user can achieve
his/her best possible error performance as if the other user is
not present in the channel. This is called the single-user per-
formance regime. For ,
the lower bound (5) is dominated by the second term, corre-
sponding to the event of both users in outage. This is termed the
antenna pooling regime [7]. These show a fundamental differ-
ence between single-user (or equivalently point-to-point) DMT
and multiuser DMT.

By using independent Gaussian random codebooks for each
user, the converse of (5) was proved by Tse et al. [7]. They par-
titioned the error events into two kinds, the kind when one of the
two users is in error, denoted by , and the other kind when both
users are in error, denoted by . They showed that when only
one user is in error, the Gaussian random code is able to achieve
an error performance with SNR , and sim-
ilarly SNR for the case when both users
are in error. The above amounts to that given the multiplexing
gain , the maximal possible diversity gain can be achieved
by any multiuser codes is . This
is commonly referred to as the optimal MAC-DMT. Codes

achieving this optimality are thus termed MAC-DMT optimal
codes.

On the other hand, if deterministic codes were used; say code
for the first user and for the second. Both codes consist

of code matrices for some that corresponds to the
channel coherence time, meaning the MIMO channel remains
fixed during symbol time. Further, the code matrices in
and are required to satisfy the following power constraint:

SNR

and

SNR (6)

By we mean the Frobenius norm of matrix . Coronel et
al. studied the optimal DMT performance of a selective fading
MIMO multiple-access channel [14] and gave a sufficient crite-
rion for designing MAC-DMT optimal multiuser codes. Noting
that Rayleigh block fading channel can be regarded as a fre-
quency selective fading channel with only one multipath, to our
present interest, the criterion shown in [14] is equivalent to the
following.

Theorem IV.1 ([14]): Let and be defined as above with
and . Then codes and achieve the op-

timal MAC-DMT if the following inequalities are all satisfied:

SNR

SNR

SNR

where

and where by we mean the hermitian transpose of matrix .

We remark that the actual result of [14] was stated in a
form different from the above and we do require in
Theorem IV.1. When , showing the two results are
equivalent is not hard, yet the derivation steps can be somewhat
lengthy. For brevity, we do not elaborate on the details and we
refer the interested readers to [22, Sec. II], for details. Next we
set

and similarly with SNR , then the three
criteria in Theorem IV.1 are equivalent to

(7)

(8)

(9)

where . We remark that the constant is a
power scaling factor frequency used in [24]–[26] such that the
approximate universal cyclic division algebra space-time codes
given in [24]–[26] also satisfy the same power constraint as
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and . In other words, here the codes and are reminis-
cent of the cyclic division algebra space-time codes. Now with
such transformation, we immediately recognize these three con-
ditions (7)–(9) are the well-known non-vanishing determinant
(NVD) criteria [25]–[28] for constructing point-to-point DMT
optimal space-time codes except that a normal inequality was
actually used in these works, rather than the exponential in-
equality . Nevertheless, we remark that results in these works
hold the same under exponential inequality . With the above
observations, Theorem IV.1 is equivalent to the following. The
proof can be regarded as an alternative proof to Theorem IV.1
in the flat fading case.

Theorem IV.2: Let and be defined as above, and let the
code be obtained by vertically concatenating the code
matrices from and . If , , and all satisfy NVD
criterion, then the codes are MAC-DMT optimal.

Proof: Similar to [7], we partition the error event into
and that correspond respectively to the events when one or
both users are in error. Then we have

SNR

SNR

where it follows from the fact that , , and are all
DMT optimal in the point-to-point MIMO scenario. The readers
are referred to [26] for the details. denotes the code-
word error probability of .

Henceforth, we will refer to the criteria (7)–(9) as the full
NVD condition. We note that as stated earlier, the full NVD
condition is only sufficient for constructing MAC-DMT optimal
codes, not necessary. In fact, we report the following negative
result.1

Theorem IV.3: When , i.e., each user with only one
transmit antenna, there does not exist any multiuser codes that
are full NVD when normal inequality is used in (7)–(9).2

Proof: For ease of reading, the proof is relegated to the
Appendix A.

In a nutshell, the proof shows that while it is possible to con-
struct DMT optimal codes and for user 1 and 2, respec-
tively, as the existing cyclic-division algebra-based space-time
codes [26] would do, it is impossible for the product code
to be NVD, i.e., having minimum nonzero determinant .
Any such product code would be ill-conditioned and have de-
terminant extremely close to 0 at high SNR regime. Thus, The-
orem IV.3 shows the nonexistence of codes satisfying the de-
sign criteria provided by Coronel et al. in [14] if we require the
minimum determinant . A similar, but much stronger, result
is later given in [23, Theorem 5] and shows such codes do not
exist even when we replace the normal inequality by the expo-
nential inequality, i.e., when exactly (7)–(9) are required. There-
fore, we may conclude that the full NVD condition is in general
too strict to yield any MAC-DMT optimal codes. Another im-
plication can be made is the following. The full NVD condition
can be met only if the two users cooperate in their transmission.
Once without cooperation as it is in MIMO-MAC channel, the
full NVD condition can never be met and the determinant must
be vanishing.

1A more general result of the nonexistence of full NVD multiuser codes that
satisfy the criteria given by Coronel et al. [14] for arbitrary number of transmit
antennas and for arbitrary number of users has been proven by the authors, but
it will be treated in a separate paper [15].

2It turns out the same statement holds even when exponential inequality is
used. For this, we refer the readers to [23, Theorem 5], for a proof.

Fig. 3. Field extensions required by the proposed code constructions.

However, we may relax the full NVD condition without af-
fecting the DMT performance. To do so, we will use a different
partition of error events. Let denote again the event when one
of the two users is in error, but let (resp. denote the
error event when two users are in error and the error matrix is
of rank (resp. .) Clearly is a disjoint union of and

. Now the codes and are MAC-DMT optimal if the
following holds.

Theorem IV.4: Let and be defined as above. Then they
are MAC-DMT optimal if the error events have probabilities
upper bounded by

SNR

SNR

SNR

The rationale behind the above theorem is the observation
that in the single-user performance regime, the error probability
SNR is not dominant; hence, we could relax the con-
dition such that event has larger probability SNR
than the actual outage probability SNR . This will
not affect the overall DMT performance. Compared with the full
NVD condition required in Theorems IV.1 and IV.2, Theorem
IV.4 relaxes greatly the code design criterion. Specifically, the
full NVD condition requires that whenever and

, the matrix must be nonsingular and be
NVD, i.e., having determinant . This has
been shown to be impossible by Theorem IV.3. On the other
hand, Theorem IV.4 says that the difference matrix can be
singular, and the only condition is that should it happen, the re-
sulting error performance cannot be worse than SNR ,
in order to maintain the MAC-DMT optimality. In [14], event

was required to have probability absolutely zero, which is
too strict and forbids the existence of MAC-DMT optimal codes.

B. Construction of MAC-DMT Optimal Codes

In this section, we will provide a systematic construction of
multiuser codes for the two-user case. The proposed codes will
not meet the full NVD criterion as such codes do not exist. In
the next section, we will analyze the DMT performance of these
newly proposed codes and show that they actually achieve the
relaxed criteria given in Theorem IV.4.

Let be the base number field. The proposed con-
struction calls for two additional number fields and

that are cyclic Galois extension of with
and . We require further that . Let

and , and let
be the compositum of the fields and . The relation

between these field extensions is shown in Fig. 3.
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Clearly, is cyclic Galois; so is . Moreover, we have
. Hence, there exists some suitable non-norm

element such that

is a division algebra, where by we mean the ring of algebraic
integers in and is an indeterminate satisfying and

for every . Similarly as in Section II, let
again be the left-regular map that represents
every element , , as an
matrix given by

...
...

. . .
...

(10)

According to Definition II.7 and Proposition II.4
for every , and hence clearly

(11)

where is the algebraic norm of from to . Note
that when the element is taken from the natural order

, it can be further shown that

(12)

and . It in turn implies that the absolute
is bounded from below by 1 when-

ever . This property is termed generalized
non-vanishing determinant condition in [25] (also cf. Defini-
tion III.2) and is required in constructing the DMT optimal
multi-block space–time codes.

Having said the above, the proposed construction is the fol-
lowing. Given the multiplexing gain , let

SNR SNR SNR
(13)

and let be an integral basis of . Given
SNR we define the information set

SNR SNR (14)

It is clear that SNR .
If the first user wishes to transmit information SNR ,

the transmitter actually sends in channel uses the
code matrix

(15)

where is a constant given by

SNR (16)

and is set such that SNR.
On the other hand, if the second user wishes to transmit infor-

mation SNR , the resulting code matrix associated with
is

(17)

With regard to the channel model, given the transmitted code
matrices and from the first and the second users, respec-
tively, let and be, respectively, the channel ma-
trices associated with the first and the second users. The overall
received signal matrix is given by

(18)

(19)

where , , and where is the
noise matrix whose entries are independent and identically

distributed (i.i.d.) random variables. Therefore, our
proposed multiuser code may be described as follows:

SNR
(20)

For every code matrix , the upper half submatrix cor-
responds to the information sent by the first user and the lower
half comes from the second user. Clearly, the two submatrices
are coded independently, and there is no cooperation between
these two users.

As is a normalizing constant for power constraint, below
we will pay our attention only to the set of unnormalized code
matrices, i.e.,

SNR
(21)

First, we show that every code matrix has determinant
in .

Lemma IV.5: Let be defined as above; then for every
, .

Proof: Clearly, the entries of lie in , the ring of al-
gebraic integers in ; hence, . It suffices to show
that the determinant is fixed by the automorphisms and . To
this end, given any , we simply check

and

where and where we have used the fact that
as . Overall, these show .
While the above lemma shows that the determinant of the

matrix lies in , it does not necessarily mean that the code
satisfies the NVD property. For example, if , then
setting SNR makes the resulting code matrix
singular as the lower half can be obtained by multiplying from
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the left the upper half by matrix . In particular, whether the
code matrix is singular or not, is completely characterized by
the following lemma.

Lemma IV.6: Given

with and , SNR , if , then

if
otherwise.

(22)

Moreover, if , then if and only if

(23)

Proof: To find out the rank of matrix , we follow the con-
ventional Gaussian eliminant procedure with elementary row
operations. In particular, we remark that such operations would
be easier to carry out if we change our focus to the matrix

This is because elementary row operations in corre-
spond exactly to block elementary row operations in . Specif-
ically, we mean the following:

Thus, if by assumption we see that as
is a division algebra, and second that there must exist

such that since . Then, we can rewrite as

Multiplying from the left the first row of by and adding
to the second row yields

It is clear that is left- and right-invertible in if and
only if . In other words, is singular if and only
if .

To prove the second claim, we first note that
is a basis of and similarly

a basis for . can be uniquely represented
as

for some . Hence

Now we see if and only if for all and .
This proves the claim.

Remark IV.1: The above lemma shows that the proposed con-
struction does not satisfy the full NVD criterion. This is not
surprising as already pointed out in Theorem IV.3 that codes
satisfying full NVD criterion do not exist. Yet, as suggested by
the reviewers, it is sometimes interesting to see how often the
code violates the full NVD criterion. That is, we are interested
in knowing . Although such probability de-
pends closely upon the underlying set of base alphabet SNR ,
we can argue heuristically to show such probability is extremely
small. Furthermore, our estimate of will be
asymptotically tight at high SNR regime, i.e., when the trans-
mission rate (in bits per channel use) gets larger and larger.
To see the above, let us fix , the symbol sent by the first user
and consider all possible choices of sent by the second user.
Clearly, as we have

with . Define

SNR

Note that from (23) we have

SNR

SNR SNR

The inequality is because of the following. Given any
with , the element

might not be in SNR , since:
1) the element might not be a Gaussian integer;
2) might not be in SNR , especially when SNR is

of small size.
Thus, the above estimate of is generally loose for small

SNR . However, when SNR becomes larger, is likely
to be in SNR and the proposed estimate becomes more ac-
curate. Overall, as SNR SNR we see

SNR

SNR
SNR (24)

When , we numerically simulated the probability
at different rates.

• At and SNR being QPSK, the probability
, while (24) gives

.
• At and SNR being 8QAM, we get

, while (24) gives
.

• At and SNR being 16QAM, we report
, while (24) gives

.
Thus, we see in general for high transmission rate,

is extremely close to 0, and the difference matrix
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is of full rank with probability close to 1. Furthermore, from
the simulations above we see that at small size of SNR , the
probability behaves more like

SNR
SNR

SNR

since not all belong to SNR for a fixed and a
random with .

Armed with the two above lemmas, we are now ready to show
that the proposed code is MAC-DMT optimal. The proof will
be given in the next subsection.

Theorem IV.7: Given the multiplexing gain , the proposed
code achieves over quasi-static Rayleigh fading channel with
coherence time the DMT

if
if

(25)
meaning that is MAC-DMT optimal.

Proof of Theorem IV.7

For any with

define and . Hence,

(26)

Following Theorem IV.3, we will be considering the fol-
lowing error events.

1) Event corresponds to the case when either user one or
user two is in error, but not both. This means that the dif-
ference matrix of (26) has either or .

2) Error event concerns the case when both users are in
error, but the overall error matrix is not of full rank

. That is, we have both and being nonzero, but
the error matrix is only of rank and

.
3) Error event is the case when both users are in error and

the error matrix is of full rank .
Clearly, whenever a decoding error occurs, the error event is
a union of the above three error events, namely, we have

and the corresponding error probability achieved by is

SNR

Thus, in the remainder of this section we will show

SNR

SNR

SNR

Error Event : We first focus on analyzing the error event
that corresponds to the case when either user one or user two

is in error, but not both. Given the channel matrices and
we define the squared Euclidean distance between and as

(27)

where . Due to the structure of , we can without
loss of generality assume that but . The other
case of , can be analyzed in a similar fashion.
Thus, in this case we have

(28)

To obtain a lower bound on , let

be the set of ordered nonzero eigenvalues of , where
and let and

be the ordered nonzero eigenvalues of and
, respectively. Using the mismatch eigen-

value bound [25], [26], [29] we see is lower bounded
by

(29)

Note that

(30)

Repeatedly using the arithmetic mean-geometric mean in-
equality and (30) along the same lines as in [25] and [26], given

, , as can be shown in the equation at the
bottom of the page. Setting SNR gives

SNR (31)

SNR SNR
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where and

(32)

Following the sphere bound argument as in [26], the proba-
bility of event given the channel matrices and can be
upper bounded by

As SNR for all , we see from the above
that if there exists such that

. Since , it follows that

where the extra factor of 2 shown above is due to the inclusion
of the other case when user two is in error which has the same
probability as the present case. Clearly, in terms of diversity
analysis one can safely neglect this factor of 2.

Arguing similarly as [24], [25] it can be shown that

where . Now we see

SNR SNR

SNR

where the last exponential equality follows from [8].
Error Event : For simplicity, we will first analyze the

event , and leave the most tedious event to the last.
Recall that is the event when both users are in error, and
the error matrix is of full rank . In other words, we have
in (26) that and .
Lemmas IV.5 and IV.6 then imply the matrix

(33)

must have full rank and . Let
be the ordered eigenvalues of , and

let be the ordered nonzero eigenvalues of
with and .

Following arguments similar to , the squared Euclidean dis-
tance for the pair falling in the category of
is lower bounded by

SNR SNR

SNR

for , where SNR and

(34)

Again, along the same lines as in the previous case we can show
that

SNR SNR

SNR

proving that the code satisfies the third condition required in
Theorem IV.4.

Error Event : Finally, we are left with the last type of
error event, the event occurring when both users are in error,
but the error matrix does not have full rank. In other words, it is
the case when , and in
(26). From the proof of Lemma IV.6, these conditions mean

and

where is nonsingular in and where we have
used the fact that . Thus, the squared Euclidean
distance for the pair in this category can be
rewritten as

(35)

where . We keep the in the subscript of
to indicate that is a function of the ratio for different

pairs of with the required properties. For any , the
matrix is of full rank with probability one, and we can let

be the ordered nonzero eigenvalues of

with . Note that (35) is the same
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as(28) except that the channel matrix is replaced by in
(35). Thus, for , the squared distance is
lower bounded by

SNR

and

where and SNR .
Remark IV.2: In case the reader ponders over why we have

in (34) (or see below)

and why in (36) we have for , given both error
events and concern with the case of both users in error,
it is simply because of the looseness of mismatch eigenvalue
lower bound [25], [26], [29] on we have used in both
cases. The bound is loose in general since almost all of the dif-
ference matrices in have determinant

, and almost all
with in . Yet, the algebraic mismatch eigen-
value lower bound captures only the worst case, which actu-
ally has probability 0. Furthermore, the difference is also due
to the rank of the difference matrix . To elaborate on this,
as the use of mismatch eigenvalue lower bound [26], [29] is
closely related to the proof of point-to-point cyclic division al-
gebra based space-time codes being approximately universal
[26] for any number of transmit antennas and for any number
of receive antennas , below we give a brief insight into that
proof, and it will in turn explain why such difference between

and would occur. Recall in [26], to con-
struct a point-to-point DMT optimal space-time code with mul-
tiplexing gain and with transmit antennas using cyclic divi-
sion algebra, one of the keys is to set the base-alphabet SNR
as

SNR SNR SNR

Note that it is the same as SNR of the present construc-
tion. Setting SNR (and the same for SNR ) to have size
SNR and working on a code matrix of rank give a mis-
match eigenvalue lower bound on with form

as shown in [26]. Error events and are in this category,
and hence there is no surprising and are of
a form similar to . Note also that in these cases we have

, and .
The only surprising case is actually for , not the

others. In , the difference matrix has rank . Thus,
according to the proof in [26], if we want to have a DMT optimal
code with rank and multiplexing gain , we should set the
base-alphabet as

SNR SNR SNR

Note the exponent shown above. but we did not set the
base-alphabet as the above in the present construction. Instead,
the same base-alphabet SNR is used in the case of rank being

. Note that SNR can be obtained by SNR by re-
placing the of SNR by , i.e., . Thus,
along the same lines as in [26] we expect the same change from

to in , i.e.,

and it should be noted that here we have with
, another difference between and

. This is exactly what happened when analyzing the error
event .

Finally, we remark that unlike the MAC-DMT proof of
Gaussian random codes in [7] where Tse et al. used the union
bound of pairwise error probabilities for random
multiuser codes with SNR -fold for the event of one user in
error and with SNR -fold for the event of both users in error,
here we did not use such argument, i.e., we did not argue using
the union bound of pairwise error probabilities. Instead, we
argue from the sphere bound of correct decisions, hence the
number of nearest neighbors does not come into the scene. The
different ’s occurred in events , , and are only due
to the “mis-setting” of base-alphabet in .

It can again be shown similarly that

and that

SNR SNR

To fulfill the second condition required in Theorem IV.4, we
need to show

SNR SNR

SNR

meaning that at high SNR regime the probability is independent
of the choices of . Be warned that the above is false at low SNR
regime, and the probability would depend strongly on .

To this end, recall that and and
also that for quasi-static Rayleigh fading channel, the entries of

and are i.i.d. random variables. Let be
the th row of , ; then the covariance matrix
of is

and and are independent for . is positive
definite since is invertible in , and hence has
the following eigen-decomposition
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for some unitary matrix ; is a diagonal matrix whose main
diagonal consists of the eigenvalues of . Thus, we see

The eigenvalues of are lower bounded by 1, since
. Furthermore, by Karhunen–Loève expansion we see that

is statistically equivalent to the matrix

where is an random matrix having i.i.d.
entries, since both and have the same joint probability
density functions. As a short summary, the above shows

SNR SNR

SNR SNR

It should be noted that setting does
not mean the matrix is known to the receiver
at all. We are only saying that the probability

SNR SNR can
be measured in a different manner.

Now using Minkowski determinant inequality [30] for posi-
tive definite matrices which states

(36)

if and are positive definite matrices, and for some
very small , setting

SNR and SNR

where it should be noted that is positive definite with proba-
bility one (W.P.1), we can show that

SNR

SNR

where the last exponential equality follows from
SNR when . Hence,

SNR SNR

with probability one. Finally, we conclude

SNR SNR

SNR SNR

SNR

This completes the proof.

C. Explicit Two-User Code for and and
Simulation Results

The proposed code is based on the algebra
where

and . This
algebra has been considered before in, e.g., [2], [5], and [27].

The code for a single user is (similarly for )

where

and

Note that we do not need the minus sign in the right lower corner,
as .

The code

is DMT optimal. However, as DMT optimality only promises
asymptotically good performance, we can add the matrix

in order to get full rank and hence expectedly good performance
also at low and moderate SNRs. That is, at low and moderate
SNRs we may use the code

The coefficients take complex values and the code is or-
thogonal. By using a maximal order code we could get even
better performance, but within this time limit we could not im-
plement the required sphere encoding algorithm (simple PAM
or QAM modulation cannot be used with non-orthogonal codes
if one wishes to get the advantage provided by the density, see
[31] and [4]).

In Fig. 4, we have plotted the performance of the proposed
code (New code), and compare it with the best previously known
code by Badr and Belfiore [12].

At the SNR-range of our simulation, it appeared to be ir-
relevant whether the twist matrix was present or not until
quite big SNRs, where totally expectedly the DMT optimal code
without clearly starts to win over the full-rank version with

. In spite of the fact that adding gives us no gain at low-
moderate SNRs, adding (resp. removing) such twist matrix at
low-moderate SNRs (resp. high SNRs) to guarantee full rank
(resp. DMT optimality) may in some other case (different al-
gebra/order/twist matrix) be a useful trick worth checking out.

The proposed code actually has lower density as the code by
Badr and Belfiore. Their code has a normalized minimum de-
terminant that gets very close to the upper bound
of orthogonal multi-block codes. We have maximal order codes
that are denser than that, but as stated above, we did not have a
suitable implementation of the sphere decoder in order to sim-
ulate them. We also tried the Badr–Belfiore code without the
twist matrix they propose, and the performance turned out to
be only slightly worse.
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Fig. 4. Performance of the codes on 4-QAM received with four antennas.

Remark IV.3: In case the reader ponders over why we cannot
use the above DMT optimal code also for the earlier situation
where we have , the reason is simply in the decoding: if
we wish to use a simple (ML performance preserving) decoding
method such as sphere decoding, then receiving the above code
calls for at least four receive antennas and hence cannot be effi-
ciently decoded with two receivers only.

Of course we can overcome this by using suboptimal de-
coders [12, Sec. V.A], [17] but then we lose the ML performance
at least to some extent (cf. Remark I.1.).

V. CONCLUSION

In this paper, we have provided coding schemes based on the
multi-block structure. All the codes are sphere decodable, the
latter scheme being also MAC-DMT achieving. By computer
simulations we have shown that the newly proposed codes out-
perform the best previously known codes. These satisfactory re-
sults were achieved by exploiting cyclic division algebras and
their orders to meet the new, relaxed design criteria that were
shown to be sufficient for achieving the optimal MAC-DMT.

APPENDIX

NONEXISTENCE OF FULL NVD MULTIUSER CODES:
PROOF OF THEOREM IV.3

Below, we will prove the nonexistence of full NVD multiuser
codes when each user is equipped with single transmit antenna.
Thus, as there are two users in the present case, the overall code
matrix is of size , one row for each user. In the following
we show if the code matrix has nonzero determinant then
it cannot have NVD. We first invoke the following well-known
result in lattice theory.

Lemma A.1: A subgroup in is a lattice if and only if it
is discrete.

To prove Theorem IV.3, let us suppose that user one uses a
code that is a full lattice, i.e., it has four generators as an
abelian group in . The reason for having four generators is
that the transmission of code takes two channel uses, and in
each channel use it is a complex baseband symbol that has two

components, the in-phase and quadrature. Let us now suppose
that is some nonzero codeword sent by the second user
and a nonzero codeword sent by the first user. The two-
user matrix is now

We have . Fixing for the second
user gives us an idea of a natural homomorphism from to

, where . The assumption of having
nonzero determinant for all nonzero suggests that

is zero if and only if is zero; hence, we
see that is a group isomorphism from to . Now

is a subgroup in and it must have four generators as an
abelian group because it is isomorphic to . As any lattice in
can have at maximum two generators, we see that cannot
be a lattice. Therefore, it must have an accumulation point. Be-
cause is a group we can suppose that it has an accumula-
tion point at 0. This means that there exists an element
in so that we can get arbitrarily small, yielding
a vanishing determinant. Hence, this proves there does not exist
any multiuser codes that are full NVD.
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