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Abstract
This paper develops a flexible position-based vis-
ual servo framework to enable a humanoid robot to
perform a variety of visually controlled manipula-
tion tasks. The system overcomes classical draw-
backs of position-based visual servoing, including
hand-eye calibration and handling large pose er-
rors, while catering for complex motion planning
techniques. Active vision is used to track the grip-
per during servoing, which reduces the need for ac-
curate camera calibration and allows the system to
handle very large pose errors without losing vital
visual information. Robust, continuous hand-eye
calibration is achieved using a Kalman filter to es-
timate the pose of the gripper. Experimental work
demonstrates the robustness and flexibility of the
system in performing a complex task requiring
grasping and assembling objects.

1 Introduction

In recent years, visual servoing has attracted a strong in-
terest for a variety of applications [Corke and Hutchinson,
2000]. However, proposed systems usually focus on a
single task, particularly reach-to-grasp control of robot
manipulators [Chaumette and Malis, 2000; Wilson et al,
1996; Shen et al, 2000]. The motivation for this work was
to develop a flexible visual servo framework for a human-
oid robot, capable of performing a wide variety of tasks.
The experimental upper-torso humanoid platform is
shown in Figure 1.

Humanoid robots face a number of challenges when
performing general manipulations in an unstructured envi-
ronment. The possibility of large pose errors must be ac-
commodated for ad hoc task specifications. Calculation of
the optimal arm and gripper pose must take into account
arm joint limits and mechanical constraints, such as those
imposed when twisting a screw. Furthermore, motion
planning in a cluttered human environment may involve
obstacle avoidance in addition to reaching a target pose.
This paper addresses the problem of large pose errors, but
the other issues must also be considered when

Figure 1. An anthropomorphic platform for visual servoing experiments.

developing a visual servoing framework so that high level
grasp planning techniques [Cho et al, 1997] can be em-
ployed if necessary.

Visual servoing systems are commonly classed as us-
ing image-based [Hosoda and Asada, 1994; Kim et al,
2000; Rives, 2000], position-based [Wilson et al, 1996] or
hybrid [Chaumette and Malis, 2000] techniques. In image-
based visual servoing, control errors are measured on the
image plane without any transformation to real space. The
main attraction arises from avoiding complex 3D scene
reconstruction, but this also introduces the possibility that
resulting robot trajectories in Cartesian space are unpre-
dictable. As the latter effect increases with pose error,
obstacle avoidance planning is hindered. Steps towards
addressing this issue are reported in recent work [Kim et
al, 2000; Rives, 2000], including hybrid schemes [Chau-
mette and Malis, 2000]. However, observing mechanical
constraints and obstacle avoidance are tasks most easily
addressed in Cartesian space, making 3D reconstruction
desirable. Furthermore, recent studies in applying biologi-
cal reach-to-grasp to robotic systems suggest that humans
use 3D structural cues rather than projected image features
[Hu et al, 1999], and that human motions are planned in
Cartesian space rather than joint space [Hauck et al,



1999]. Both properties are characteristic of position-based
visual servoing, in which control errors are formed in a
visually reconstructed Cartesian space. In this work, posi-
tion-based servoing is adopted as a more flexible frame-
work for addressing various planning and control issues
encountered in humanoid manipulation tasks.

Position-based visual servoing is attributed with the
following shortcomings: the accuracy of 3D scene recon-
struction relies on camera calibration, servoing accuracy
depends on calibration of the hand-eye transform between
camera and robot frames, and objects may leave the field
of view during servoing since motions are not planned on
the image plane. In this work, the first two issues are ad-
dressed using active vision to track objects while servoing.
Keeping image features near the centre of the image plane
where non-linear effects (such as radial distortion) and
sensitivity to projected depth are lowest reduces the reli-
ance on camera calibration. Also, very large pose errors
are accommodated without losing vital image features,
using a robust strategy of tracking the gripper as it moves
and measuring other objects when visible.

Various approaches to hand-eye calibration have been
proposed, including the use of custom 3D calibration tar-
gets and on-line estimation. A calibration procedure using
a custom target [Tsai and Lenz, 1989] is clearly not feasi-
ble in a humanoid system, which must provide continuous
operation and therefore self-calibration. However, re-
ported on-line calibration techniques based on optimiza-
tion [Shen et al, 2000; Heikkela et al, 2000] require an
initial estimate of the hand-eye transform. This paper de-
scribes model-based on-line calibration using a Kalman
filter to estimate the pose of the gripper, which acts as a
permanent calibration target. The technique is shown to
provides continuous, robust calibration, without requiring
an initial estimate. Other work [Wilson et al, 1996] has
applied Kalman filtering to pose estimation in position-
based visual servoing, but not in the context of hand-eye
calibration.

Section 2 describes the overall architecture of the pro-
posed position-based visual servoing system, and the vari-
ous components in detail. In Section 3, image processing
implementation issues are discussed, followed in Section
4 by a description of the real experiments performed using
the platform shown in Figure 1. Section 5 draws conclu-
sions and indicates future work.

2 System Overview

The system described in this work has been implemented
experimentally on the upper-torso humanoid robot shown
in Figure 1. Hardware consists of two Puma 260 arms
with 1-DOF Otto Bock prosthetic hands, and off-the-shelf
PAL cameras on a Biclops robotic head. Components are
mounted anthropomorphically and are approximately to
human scale. All processing is performed on a 450 MHz
Pentium II desktop PC, running Linux.

Figure 2 illustrates the basic arrangement of coordinate
frames relevant to visual servoing. Image features are
measured on the stereo image planes IL and IR for recon-
structing the Cartesian position of point targets p in the

Figure 2. Coordinate frames.

camera frame C. Active vision allows C to pan and tilt by
angles α and β with respect to a base frame B, so targets
can be tracked and constrained within image boundaries.
The gripper is described by frame G, and the basic task of
visual servoing is to control the manipulator so G has
some relative pose (position and orientation) to p.

Let ρρR = [d R,σσ R]T represent the pose of the gripper
with respect to the robot base frame R, where position dR

= [X, Y, Z]T describes translations along respective axes,
and orientation σσR = [φ, θ, ψ]T describes roll, pitch and
yaw Euler angles, and let ϕϕ be the manipulator joint an-
gles. For velocity control, the Jacobian matrix J(ϕϕ) relates
joint and pose velocities:

ϕϕϕϕρρ && )(J=R   (1)

In classical position-based visual servoing, control signals
      are calculated in the camera frame and the resulting
joint velocities are found using:

ϕϕϕϕρρ && )(JH C
R
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where       is the homogeneous transform from R to C,
determined by hand-eye calibration. However, by cal-
culating control signals    in the gripper frame, man-
ipulator joint velocities can be obtained using:
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where             is the forward kinematic matrix for the ma-
nipulator. The right hand side of (3) is now completely
specified by joint angles and known kinematics. Hand-eye
calibration reduces to measuring      , equivalent to the
pose of the gripper in the camera frame. In essence, the
gripper acts as a calibration target. Later sections develop
a model-based framework for continuous estimation of the
gripper pose and calculation of control errors.

2.1 Active Vision

Active vision allows the cameras to scan the workspace
for a particular target and then track its motion. Thus, an
initial estimate of the target location is not required, and
losing sight of features during servoing is less likely to
occur. Furthermore, active tracking allows features to be
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driven to the centre of the image plane where calibration
errors have least effect. This allows us to use a simple,
linear camera model for stereo localization. Large pose
errors are also accommodated; if the gripper and target are
not simultaneously observable, a look-then-move strategy
is adopted. In this case, the target is first measured, and
the stored location is used to generate control errors while
tracking and measuring only the gripper. Target measure-
ments are dynamically resumed when the target again
becomes visible.

The pan/tilt axes are driven using proportional ve-
locity control. Consider tracking p in Figure 2; let
                and                be the coordinates of p in the right
and left image planes. Noting that the x and y axis of IL, IR

and C are parallel, pan and tilt angular velocities, α&  and
   , are set proportional to the average position of p:
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where kα and kβ are appropriately selected constants. This
drives the average position of p to the centre of the image.

2.2 Feature Localization

In this system, stereo reconstruction is used to recover the
3D position of point targets. As shown in Figure 2, the
cameras are separated by baseline b, with parallel optical
axes. Let                              be the position of a point tar-
get in the camera frame, and let              ,             be the
measured image coordinates of pC, as before. From the
pin-hole camera model with focal length f, we have:
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Measurement of       and       are likely to produce different
values due to camera misalignment. To yield a unique
solution, we calculate the average coordinate       as:
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It is straightforward to show that the location of pC can be
recovered from (5) and (7) as:
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If we could ensure that the target and the gripper are
always simultaneously observable, (8) provides sufficient
information for position-based servoing. For large pose
errors, however, the look-then-move strategy described
earlier must be employed. Unfortunately, positions meas-
ured with disparate camera poses cannot be directly com-
pared in the camera frame. The solution used here is to
transform measurements from pC in camera frame to pB in
a stationary base frame B. The homogeneous transform
       is parameterized by α and β, the pan and tilt angles of
the active vision head:
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where Sx = sin(x), Cx = cos(x).

2.3 Model-based Gripper Pose Estimation using
an Extended Kalman Filter

The pose of the gripper with respect to the base frame is
described by the homogeneous transform matrix
      , parameterized by the six spatial degree of freedom:
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The gripper pose is estimated by matching a model of
the gripper to observed images. The model is specified by
a set of ng point features    , i=1,2,…ng, in the gripper
frame. Importantly, the matching process must handle the
possibility that one or more model features are unobserv-
able due to occlusion (by the hand or otherwise). Figure 3
shows the model currently used, with ng=7. The model
includes the grasp width ε as a single degree of freedom,
which can be read from the gripper encoder.

Kalman filtering provides an optimal framework for
matching the gripper model to observed features in the
presence of occlusions. The Kalman filter is a well estab-
lished technique for estimating the state of a known linear
system from noisy measurements. If the noise is normally
distributed (a reasonable assumption in this case), the state
estimate is optimal with respect to error variance. The
extended Kalman filter applies when measurements are
non-linearly related to the system state, which is the case
here. A detailed development of Kalman filter theory, and
relevant equations, may be found in [Shalom and Li,
1993].

Assuming the motion of the gripper to be smooth, a
constant velocity dynamic model is used to describe sys-
tem dynamics. Thus, the state vector xk at time tk is com-
posed of each degree of freedom and its first derivative:

T
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and the state dynamic equations are of the form:
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were ∆tk = (tk - tk-1) is the inter-sample period. The state
error covariance matrix Q, which compensates for un-
modeled dynamics, is a diagonal matrix (assuming inde-
pendent pose parameters), with elements fixed to a con-
stant estimate of the variance of random system dynamics.
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Figure 3. Articulated hand model.

The measurement vector mk contains the measured po-
sition       of each model point      in B, using (8) and (9):

g
B
i,kk ni K,2,1   ,]ˆ[ T == gm (13)

The measurement error covariance matrix Rk is a diagonal
matrix with elements set to an estimate of the position
measurement error variance. If the position of any model
point is not measurable due to occlusion, the correspond-
ing measurement error in Rk is set to a high value, which
effectively removes that point from the state estimate.

The final element of the extended Kalman filter is the
measurement function M(xk) which relates the state vector
to the measurement vector. In this case, M(xk) transforms
the model points     from the gripper frame to the base
frame according to the estimated pose at tk and (10):
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During servoing, the state vector x0 is first initialized
by setting translation parameters to the measured location
of any gripper point, with remaining elements set to zero.
For the kth captured frame, visible gripper features are
measured in the base frame and passed to the filter as a
new measurement vector mk and error covariance matrix
Rk. The Kalman filter equations are used to update the
state vector xk and a new pose estimate ρρk is recovered.

2.4 Visual Servo Control Law

The desired pose of the gripper for a particular manipula-
tion is task-specific; to grasp an object using a precision
grip, the object must be positioned between the tips of the
thumb and forefinger, while mating a grasped object to
another object requires positioning the gripper so the ob-
jects meet. Once the desired pose of the gripper has been
determined, the position and orientation are controlled
independently. Considering position first, let pG and rG be
the current and desired target position of some point in the
gripper frame. Using (9) and (10), the gripper position
error ∆d is:
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Now, let σσB and δδB represent Euler angles describing the
current and desired gripper orientation in the base frame.
Note that the desired orientation may be specified in any
frame (such as a frame attached to an object); B is used
here for convenience. The orientation error in the gripper
frame is calculated by determining the angle of rotation γ
about an axis uG that rotates the gripper to the desired
pose. Rotations represented in this way are most

efficiently manipulated using quaternions, as described in
[Taylor, 1982]. The relationship between quaternion q and
(γ, u) is:

( )22 sin,cos),( γγ uvq == s (16)

A quaternion can also be constructed from Euler angles:
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where Sx = sin(x), Cx = cos(x). Using (17), let        and
be the quaternion equivalent of σσB and δδB. These rotations
are concatenated by complex multiplication to give the
desired orientation relative to the current gripper pose      :
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Finally, the inverse of (16) is applied to       to calcu-
late (γ, uG), the error angle and axis of rotation between
current and desired gripper orientations, expressed in the
gripper frame. The control error ∆σσ is calculated as:

Guγ∆ =σσ (19)

The current implementation uses proportional velocity
control to drive the gripper to a target pose, but other con-
trol laws are easily accommodated. The control signal in
(3) is calculated as                              , for constants c1 and
c2, and passed to the PUMA controller which determines
joint velocities and provides motion control.

3 Implementation and Image Processing

As described earlier, all processing is performed on a
desktop PC. Frame-rate vision (25Hz PAL) is achieved by
restricting images to 320×240 pixels with 16-bit colour.
Coloured point features on target objects and the gripper
and extracted using predefined filters implemented as
lookup tables. Conventional binary image processing and
sub-pixel centroid calculations are used to locate features.
Performance is improved by restricting processing to win-
dows of interest, generated by projecting estimated point
feature locations onto the image planes using (5) and (6).
Additionally, the Pentium MMX architecture is exploited
where possible to perform parallel pixel processing. Com-
bining these techniques, the system measures image fea-
tures and generates control commands at video frame-rate.

The point features gi on the gripper are implemented as
individually controlled red LEDs. During initial pose es-
timation, each LED is flashed and measured in sequence.
This allows the gripper model points to be associated un-
ambiguously with measured features, but requires greater
than ng frames to capture all LEDs. After Kalman filter
initialization, the LEDs are activated and measured si-
multaneously, providing a new pose estimate every frame.
The association problem is solved by projecting the esti-
mated gripper pose onto the image planes (using (5) and
(6)), and associating the projected points with measured
features using robust pattern matching. Unmatched model
points are assumed to be occluded by the gripper.
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4 Experimental Results

Real experiments were performed on the humanoid robot
to demonstrate the robustness and flexibility of the pro-
posed system. Since gripper pose estimation is central to
the visual servoing approach developed here, the first ex-
periment was designed to demonstrate the accuracy and
robustness of model-based pose estimation to track large
changes in pose. The gripper was manually positioned
with the z axis aligned to the x axis of the base frame and
driven in a screw trajectory, ie. translated along the grip-
per z-axis at about 45 mm/s, and rotated around the same
axis at about 0.35 rad/s. Such a trajectory caused each
model point on the gripper to suffer occlusion at some
time. With active vision used to track the gripper, the
Kalman filter produced pose estimates over a 7 s period.

Figure 4 shows the a stereo view from the robot during
the tracking sequence, with a wire-frame overlay of the
estimated gripper pose. Figure 5 shows the pose parame-
ters estimated in the base frame, with a linear ramp in one
translational and one rotational degree of freedom as ex-
pected for a screw trajectory. While it was not possible to
make absolute pose measurements, a least-squares linear
fit to the ramping components provides a quantitative ap-
proximation of tracking accuracy. The linear fit gives a
standard error of about 2 mm and 0.04 rad from the ex-
pected trajectory, which indicates that model-based Kal-
man filtering, with active vision, can accurately and
robustly track rapid changes in the pose of the gripper.

The second experiment employs all the elements of the
system to perform a manipulation task in the presence of a
large initial pose error. The task is to locate and stack
three randomly placed wooden blocks. Each block has an
identical spot painted on the top and bottom face, with the
three blocks coloured green, blue and yellow. The steps
carried out to complete the task are as follows:
1. Locate and grasp the blue block by visually servoing

to the spot on the top face.
2. Rotate the block so the bottom spot is visible, and

measure the position of this spot in the gripper frame.
3. Locate the green block, and visually servo the gripper

so the bottom of the blue block is placed on top of the
green block. Release the blue block.

4. Repeat for the yellow block.
The experiment is performed with a large initial pose

error, such that the blocks and the gripper are not visible
in the same frame. During the initial period of visual ser-
voing, the system tracks the gripper pose and uses the
stored block position to generate control errors. When the
gripper is sufficiently close to the block, both the gripper
and block are measured in the control loop. Manipulator
speed is kept sufficiently low that dynamic effects can be
ignored (this will be the subject of future work).

The sequence of images in Figure 6 shows the human-
oid executing the stacking task, with approximate progress
times indicated. The first image illustrates the initial pose
error, and the final image shows the stacked blocks after
completion. This successful result demonstrates a level of
flexibility suited to humanoid tasks; grasping, examining

Figure 4. Stereo view from the robot showing gripper and estimated
gripper pose overlaid as a wireframe model.

Figure 5. Estimated gripper pose (position and orientation) for the screw
trajectory tracking experiment.

Figure 6. Sequence showing the humanoid perform a stacking task in the
presence of a large initial pose error, with progress times indicated. A
video sequence of this demonstration may be found at:
http://www.ecse.monash.edu.au/centres/IRRC/ServoDemoQCIF.mpg.
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and assembling objects are all performed in the presence
of a large initial pose error.

5 Conclusions and Future Directions

This paper presents a flexible position-based visual ser-
voing framework to address the issues involved in per-
forming general manipulation tasks by a humanoid robot.
Solutions to classical drawbacks of position-based visual
servoing are proposed and experimentally validated. Ac-
tive vision removes the need for accurate camera calibra-
tion and handles large pose errors (even when the gripper
and target are not simultaneously observable) without
losing visual feedback during servoing. Model-based
gripper pose estimation using a Kalman filter provides
robust hand-eye self-calibration, without requiring an ini-
tial estimate. Experimental work verifies the robustness
and flexibility of the system, allowing complex tasks in-
volving grasping and assembling objects to be performed.

Future work can proceed in a number of directions.
Modifying the control law to account for robot dynamics
will lead to performance improvements, as will adding
vergence control to active vision. Incorporating more so-
phisticated scene analysis and motion planning will allow
the humanoid to operate reliably in a cluttered environ-
ment. More complex manipulations may be possible by
cooperatively servoing both arms on the humanoid plat-
form. Finally, a long term goal is to have task specifica-
tions interpreted visually through human interaction.
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