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Abstract

Many objects found in domestic environments
are symmetrical. In this paper, a novel method
to detect axis of reflectional symmetry in digi-
tal images is presented. The proposed approach
utilizes image gradients and edge pixel match-
ing to find lines of symmetry. Preliminary re-
sults, comparing the symmetry detector with
the Generalized Symmetry Transform [Reisfeld
et al., 1995] is provided.

1 Introduction

Symmetry is one of many attention mechanisms that
humans use in everyday life. Many objects in the do-
mestic environment are symmetrical. In general, cups,
cans, bowls and boxes have reflectional symmetry about
a straight line. The way objects are grasped and ma-
nipulated are also related to their axis of symmetry. For
example, in the case of a can, grasping is done by apply-
ing force on opposite sides of its axis of symmetry, in a
manner perpendicular to the axis. This paper describes
a reflectional symmetry detector that locates global mir-
ror lines in 2D digital images.

1.1 Related Research
Symmetry has been viewed as an important attentional
operator in Computer Vision for several decades. The
Generalized Symmetry Transform [Reisfeld et al., 1995]
is a multi-scale approach to detect reflectional and radial
symmetry in digital images. This transform produces
a symmetry map, which is similar to an edge image.
Each point on the map consists of the magnitude and
direction of symmetry inferred by all other points in the
image, calculated at a given scale. At large scale val-
ues, the transform can been seen as a global context-free
(low level) symmetry operator. With small scale val-
ues, it acts in a similar fashion to interest point detec-
tors, such as Harris Corners [Harris and Stephens, 1988].
This transform has been used in human identification

[Hayfron-Acquah et al., 2002] and corner detection [Oh
and Chien, 2002] applications. Recently, a focused ver-
sion of the Generalized Symmetry Transform [Choi and
Chien, 2004] has been suggested. This version of the
transform can recognize image features, such as polygon
corners, at a specific angle.

Other global symmetry detection schemes have also
been proposed. A clustering approach was suggested by
[Labonte et al., 1993]. An algorithm involving General-
ized Complex Moments was developed by [Shen et al.,
1999], which is capable of finding both reflectional and
radial symmetry in 2D high contrast grayscale images.
Its computational complexity and ability to operate on
natural images have yet to be tested.

Other robotic applications of symmetry include hu-
man gait detection [Hayfron-Acquah et al., 2003], com-
pletion of occluded shapes [Zabrodsky et al., 1993] and
the use of fast radial symmetry [Loy and Zelinsky, 2003]
in the detection and tracking of human eyes.

1.2 The Generalized Symmetry Transform
The Generalized Symmetry Transform uses image gradi-
ent orientation, a distance-based Gaussian function and
image gradient intensity to generate symmetry maps.
The symmetry map is essentially an image of symme-
try contributions made by all pixel pairs in the origi-
nal image. Two symmetry maps are produced by the
transform, one containing the magnitude of symmetry
contribution and the other the phase.

With pi and pj being two pixels in the input image,
we define a set Γg(p) as

Γg(p) = { (i, j) | pi + pj
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The following distance weight function is used
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along with a phase weight function

P (i, j) = (1− cos(θi + θj − 2αij))(1− cos(θi − θj)) (3)



Figure 1: The Generalized Symmetry Transform

The parameters involved are displayed in Figure 1.
Note that σ alters the scale at which symmetry calcu-
lations take place, thereby allowing for the generation
of symmetry maps at different resolutions. The phase
function, P (i, j), contains two terms. The first term,
(1− cos(θi + θj − 2αij)) is maximized when gradients at
pi and pj are oriented in a symmetric fashion, similar to
that shown in Figure 3(a). The second term prevents the
matching of pixels with similar image gradients, such as
pixels along a straight line.

The contribution function C(i, j) is defined as

C(i, j) = Dσ(i, j)P (i, j)rirj (4)

ri and rj are logarithmic functions of the pixels’ gradient
intensity.

The contributions of all points are used in the gener-
ation of the symmetry map. The symmetry magnitude,
also known as the isotropic symmetry is

Mσ(p) =
∑

(i,j)∈Γg(p)

C(i, j) (5)

In order to obtain an axis of reflectional symmetry
from the map, thresholding followed by a Hough Trans-
form is required.

2 Proposed Method

The proposed approach to symmetry detection is unique
in several ways. Firstly, the method was designed with
robotic applications in mind. It is not meant to pro-
vide a comprehensive coverage of symmetry at all scales,
nor will it provide a Gaussian cloud of possible locations

Figure 2: Fast Reflectional Symmetry Detection using
Hough Transform. Note that only edge pixels are used
by this algorithm

of symmetry. The symmetry detection algorithm uti-
lizes Hough Transform [Duda and Hart, 1972] to quickly
process images and identify global lines of reflectional
symmetry. The detector returns the axes of reflectional
symmetry as straight lines. The algorithm is meant to
operate very quickly, and requires less computational re-
sources than the Generalized Symmetry Transform.

2.1 Fast Symmetry Detection using Hough
Transform

The input image is first converted into an edge image us-
ing an appropriate edge filter. We used the Canny edge
filter for this task. Each pair of edge pixels, i and j, votes
for a particular r and θ in the Hough transform accumu-
lator. A weight function W (i, j) is used to adjust the
Hough accumulation for edge pixels with non-symmetric
gradient orientations. The edge points i and j are shown
in Figure 2. In order to maximize Hough Space resolu-
tion, the origin of the coordinate system is placed at the
centre of the image.

The following equation is used to calculate θ. Note
that −π

2 < θ(i, j) 6 π
2

θ(i, j) = arctan(
yj − yi

xj − xi
) (6)

The radius R(i, j) is found using

R(i, j) = (
xi + xj

2
) cos[θ(i, j)]+(

yi + yj

2
) sin[θ(i, j)] (7)

The set Γf is the set of edge pixel pairs with the cor-



responding R and θ shown in Figure 2.

Γf (r, θ) = {(i, j) | R(i, j) = r, θ(i, j) = θ} (8)

Note that only edge pixels are considered, in con-
trast to the Generalized Symmetry Transform, which
processes all image pixels. In order to reject noisy edge
pixels and to favour votes made by edge pixels with sym-
metric image gradients, weighted Hough voting is used

H(r, θ) =
∑

i,j∈Γf (r,θ)

W (i, j) (9)

A Gaussian weight function was used in the Hough
voting process. The weight W (i, j) is maximized when
gradient orientations of pixels are symmetric about their
mid point. Figure 3 illustrates the relationship between
image gradient angles and the level of symmetry. When
angles ψi and ψj are equal, the level of symmetry is at
its maximum. If |ψi − ψj | = π

2 , there is no symmetry
between the edge points. Only the absolute magnitude
of angles are used in these calculations. Horizontal and
vertical Sobel filtering is used to determine image gradi-
ents. The parameter σ in equation 10 is used to adjust
the ”strictness” of the gradient symmetry criteria. A
low sigma will favour edge pairs with high symmetry be-
tween the gradient directions of its edge pixels. Using a
high sigma has the reverse effect, allowing less symmetric
edge pairs to have a greater effect in the voting.

W (i, j) =
1

σ
√

2π
e
−(ψi−ψj)

2

2σ2 (10)

The Hough space is discretized into a fixed number of
cells or ”bins” in both the R and θ direction. These bins
accumulate votes made by the edge pixel pairs. After ac-
cumulation, peaks in the Hough accumulator are iden-
tified using Non-Maxima suppression. This algorithm
locates the Hough bin with the highest value and se-
lects it as a peak. It then suppresses all bins around the
selected peak to zero. This is repeated until all peaks
with a value above a threshold is found. The default
suppression neighbourhood is 1

10Rmax by 1
10θmax. The

suppression threshold is half of the highest peak in the
accumulator at the start the suppression, and remains
the same through all iterations.

3 Preliminary Results

Generalized Symmetry and Fast Symmetry detection re-
sults are presented below. In order to quantify the com-
parison between these two methods, simple pass-fail tri-
als were used. The test images contained a grey vase with
a vertical line of symmetry through its centre point. The
location of this line of reflectional symmetry was used as
ground truth. If the location of the symmetry line de-
tected with Fast Symmetry was within 1 pixel of ground

(a) |ψi − ψj | = 0

(b) |ψi − ψj | ≈ π
2

Figure 3: Angles used in weight calculations. Arrows in-
dicate image gradient direction at the edge pixels. Max-
imum symmetry occurs when ψi = ψj , in (a). (b) will
receive a very low voting weight, as |ψi − ψj | ≈ π

2



truth, the test was successful. Otherwise, the symme-
try detection was considered a failure. As Generalized
Symmetry does not return a symmetry line, the location
with maximum contributed value, that is, the point with
maximum isotropic symmetry, was used as an indication
of detection accuracy. If this point is located within 1
pixel of the real symmetry line, the test was a success.

Three test images were used. The first had a dark
shape, the vase, against a light background. The other
two images had the same vase set against backgrounds
with changing intensity. The tests were repeated after
adding Gaussian noise to the input images. All the test
images were 64x81 pixels in size.

3.1 Trial Results
In all test cases, the Fast Symmetry detector was able to
find the vertical line of symmetry at the exact, ground
truth, location. The Generalized Symmetry Transform
was able to find the axis of symmetry in Test Image 1,
when no noise was added. Lowering the scale parameter
also produced a corner-detecting behaviour, as seen in
Figure 4(c) and 7(d). With added noise, the Generalized
Symmetry algorithm was only able to detect the axis of
symmetry with σ = 10.

For Test Image 2 and 3, where the background had
variations in intensity, the Fast Symmetry detection was
sucessful for both images. The Generalized Symmetry
algorithm was only able to find the line of symmetry
with a σ of 10, for Test Image 3. As seen in Figure 6(d),
the line of symmetry found was near the top of the vase,
and was not very distinct. With the addition of Gaussian
noise, the Generalized approach failed for both images,
regardless of the scale factor, σ, used.

Looking at Equation 3, the problem with varying
background gradients for the Generalized Symmetry
Transform becomes more apparent. The transform was
designed to favour opposing image gradients, while re-
jecting image gradients in the same direction. Basically,
the algorithm assumes either light objects on a dark
background, or dark objects on a light background. With
variations in the background, this leads to zero contribu-
tions being made by pixel pairs across the left and right
edges of the vase in Test Image 2. The algorithm was
still able to find the vertical line of symmetry in Figure
6 as the gradient variations only effected matches that
produced symmetry along horizontal lines. That is, the
background gradient affected pixel pairs that had pixels
on the top and bottom of the vase, not those on the left
and right side.

3.2 Comparison Between Fast Symmetry
and Generalized Symmetry Detection

In Figure 7, the multi-resolution nature of the General-
ized Symmetry Transform can be seen. By varying σ,

(a) Test Image 1 (b) Fast Symmetry

(c) Generalized Sym-
metry, σ = 2.5

(d) Generalized
Symmetry, σ = 10,
with edge image
overlayed

(e) Test Image 1 with
with Gaussian noise
added

(f) Fast Symmetry

(g) Generalized Sym-
metry, σ = 2.5

(h) Generalized
Symmetry, σ = 10

Figure 4: Symmetry detection results for Test Image 1.
(b)-(d) contain results for the test image. (e) is Test
Image 1 with added Gaussian noise. The noise had σ =
0.1, with image intensity defined between 0 and 1. (f)-
(h) contain detection results for the noisy image. Bright
pixels in the Generalized Symmetry results have high
levels of detected symmetry



(a) Test Image 2 (b) Fast Symmetry

(c) Generalized Sym-
metry, σ = 2.5

(d) Generalized
Symmetry, σ = 10

(e) Test Image 2 with
Gaussian noise added

(f) Fast Symmetry

(g) Generalized Sym-
metry, σ = 2.5

(h) Generalized
Symmetry, σ = 10

Figure 5: Symmetry detection results for Test Image
2. Note the intensity variation in the background of
(a). (b)-(d) contain results for the test image. (e) is
Test Image 2 with added Gaussian noise. The noise had
σ = 0.1, with image intensity defined between 0 and 1.
(f)-(h) contain detection results for the noisy image

(a) Test Image 3 (b) Fast Symmetry

(c) Generalized Sym-
metry, σ = 2.5

(d) Generalized
Symmetry, σ = 10

Figure 6: Test image 3 results

corners as well as symmetry lines could be seen on the
maps. However, the choice of scale, σ, is not directly
obvious from the input image dimensions. Also, diago-
nal symmetry lines were not found in Figure 7 using the
transform unless σ was set to between 9 and 11. Con-
trary to this, our detector was able to find all four lines
of reflectional symmetry. Even though the edge image
produced by the Canny filter had several imperfections
along the left side of the square, the detector still func-
tioned correctly.

The computational complexity of both symmetry al-
gorithm is O(n2), with n equal to the number of input
pixels. The number of possible pixel pairs is given by
n(n−1)

2 . However, the Fast Symmetry algorithm only
operates on edge pixels, while the Generalized Symme-
try algorithm operates on all image pixels. The number
of edge pixels is generally much smaller than the total
number of pixels in an image. Hence, the Fast Symmetry
algorithm requires fewer calculations than the General-
ized approach. Our approach has combined the post-
processing stage of applying Hough Transform to the
Symmetry map into the algorithm itself. The calcula-
tion of local gradient intensities have been removed by
the use of edge images, which removes pixels with low
image gradient magnitude.

There was a noticeable difference in the execution time
for the two algorithms. The original image in Figure 7 is
64x64 pixels in size. The Generalized Symmetry Trans-



(a) Input Image (b) Fast Symmetry

(c) Gen. Symmetry σ=15 (d) Gen. Symmetry σ=2.5

Figure 7: Symmetry Detection performed on a simple
square box. Top Left: Original Image. Top Right:
Hough Transform Symmetry Detection Results. Bot-
tom: Generalized Symmetry Transform Results

form has n = 4096 for this image. This produced over
8 million unique pixel pairs, a large number for such a
small image. With our edge-based detector, the edge im-
age consisted of around 200 pixels. This meant less than
30000 pairs of pixels. Clearly, the generalized method
will have serious computational limitations if applied to
larger images, especially in time-critical situations, such
as visual tracking and robotic grasping.

Both algorithms were implemented as a MATLAB
script, not optimized or vertorized. On a host PC with a
Pentium4 2.2GHz processor and 1GB of main memory,
the Fast Symmetry algorithm only required 5 to 10 sec-
onds to complete for the 64x64 images. The Generalized
Symmetry Transform required over three minutes to ex-
ecute. For larger input images, around 300x300 in size,
the Generalized Symmetry Transform took a very long
to run under MATLAB, in the order of several hours.
The Fast Symmetry algorithm, including Non-Maximal
suppression to detect peaks in Hough space, required
around 10 to 20 seconds to process these images.

The Fast Symmetry algorithm has also been imple-
mented in C code. This program was tested on images
taken with a Firewire (IEEE1394) camera. The scene
consisted of symmetrical objects, such as cups and bot-
tles, under non-uniform lighting, with some background
clutter. The program was able to perform symmetry

detection on these test images in under 1 second. The
Canny edge detection as well as the peak finding were
included in the timing. By sampling the edge pixels be-
fore pairing, similar to the approach used in Random-
ized Hough Transform [Xu and Oja, 1993], the perfor-
mance of our algorithm can be improved, with some loss
in noise robustness. Sampling one-quarter of the edge
pixels, the program was able to perform symmetry de-
tection on 640x480 images in roughly 150 milliseconds
with no noticable change in detection rate.

3.3 Fast Symmetry Detection on
Household Objects

Source images containing objects commonly found in
domestic environments were obtained via Google im-
age searches. These images vary in size and complex-
ity. Some of them have poor lighting and produced
noisy edge images. Due to their size, symmetry detec-
tion using the Generalized Transform was not feasible.
As such, only the Fast Symmetry Detection results were
computed.

The results are shown in the Appendix.

4 Applications and Future Work

The Fast Symmetry Detection algorithm was designed
for use in robotic applications. It will be applied to
object tracking and object localization through stereo
matching of symmetry lines. The detected symmetry
can provide additional information for grasping of ob-
jects.

The detector will be employed in a robotic system
to locate, manipulate and visually track household ob-
jects. The detected symmetry, especially axes of symme-
try perpendicular to the table plane, will be used by the
robot as a way to identify possible objects in the scene.
The experimental platform consists of a pan-tilt capable
robot head with colour stereo vision and a PUMA 6-
Degree-of-Freedom robot arm with two-fingered end ef-
fector. Objects found in the domestic environment, such
as cups, bowls, cans and plates will be the test cases in
these experiments.

Previously, symmetry has mainly been applied to of-
fline processing domains, such as image registration, 3D
model compression, solving for the shape of partially oc-
cluded objects and so on. The speed of this algorithm
should allow it to be used in real-time applications such
as tracking and grasping.

Currently, peak detection in Hough space is a ma-
jor weakness in the algorithm. As seen in the results
when operating on noisy real-world images, too many
peaks were found. That led to an excess of symmetry
lines, even when σ was decreased to reject noisy matches.
Approaches such as hierarachical Hough Transforms,



Smoothing of Hough space and Gaussian dispersion of
votes may improve the peak finding results.

In terms of pre-processing, better edge filtering will
enhance the performance of the algorithm. Fewer noisy
edges mean more accurate results and fewer pixels to
process, which also leads to faster execution times. The
removal of edges before performing the Hough voting
is also a possibility. For example, if the robot already
knows that there are multiple objects placed on a table,
then it can remove all edges oriented parallel to the ta-
ble, and just look for vertical axes of symmetry using the
remaining, non-horizontal edges. Perspective projection
also has a negative impact on symmetry detection. As
such, the removal of perspective effects is also a valu-
able pre-processing step. This is only a problem when
objects are close to the camera, and of sufficient size, to
be affected by perspective effects.

5 Conclusion

A viable alternative to the The Generalized Symmetry
Transform has been proposed. The algorithm can detect
reflectional lines of symmetry very quickly, even for noisy
input images. The algorithm is also able to find lines of
symmetry for large images, containing background in-
tensity variations. While the Generalized transform re-
quires a scale factor to be set before use, the Fast Sym-
metry Detector is able to detect reflectional symmetry
across the entire image in a scale free manner. How-
ever, our algorithm cannot detect small, locally symmet-
ric features such as the corners of a box and symmetry in
fine texture. The proposed algorithm is more computa-
tionally efficient than Generalized Symmetry Transform.
After further research, it will be applied to time-critical
applications, such as visual tracking and robotic grasp-
ing.
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Appendix: Fast Symmetry Detection on
Household Objects

(a) Input image (b) Fast Symmetry

Figure 8: Symmetry Detection on a White Cup. (a)
Original Image. (b) Symmetry Lines detected by Fast
Symmetry algorithm

(a) Input image (b) Fast Symmetry

Figure 9: Fast Symmetry Detection on two Highly Tex-
tured Objects. The 45 degree line was inter-object sym-
metry detected between the bottom edge of the right
cup, and the left edge of the upright cup

(a) Input image (b) Fast Symmetry

Figure 10: Symmetry Detection on three bottles placed
side-by-side. The results was produced from a Hough
space peak search with −5o < θ < 5o

(a) Input image with Gaus-
sian Noise

(b) Fast Symmetry

Figure 11: Symmetry Detection on an image with noise.
The results were produced from a Hough space peak
search with −5o < θ < 5o



(a) Input image

(b) Fast Symmetry

Figure 12: For this image, the suppression size used was
doubled to remove some inter-object symmetry.

(a) Input image (b) Fast Symmetry

Figure 13: Fast Symmetry Detection again on Highly
Textured Objects. The results were produced from a
Hough space peak search with −5o < θ < 5o

(a) Input image

(b) Fast Symmetry

Figure 14: Symmetry Detection on a scene with Multiple
cups (a) Original Image. (b) Symmetry Lines detected
by Fast Symmetry algorithm


