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ABSTRACT 

A class of arbiters, known as batching arbiters, is 
introduced and defined. A particularly simple de- 
centralised example of a batching arbiter is de- 
scribed, with motivation given for the batching 
arbiter model adopted. It is shown that under 
reasonable assumptions, batching arbiters can be 
described by a finite state Markov chain. The key 
steps in the analysis of the arbiter performance 
are the method of assigning states, evaluation of 
state transition probabilities and showing that 
the Markov chain is irreducible. Arbiter per- 
formance parameters are defined, such as proportion 
of time allocated to each requester and mean wait- 
ing time for each requester. Apart from results 
describing the steady state behavior of the 
arbiter for general system parameters, a number 
of limiting results are also obtained corres- 
ponding to light and heavy request loading. 

Finally, numerical results of practical interest 
are presented, showing the performance para- 
meters of the arbiter versus request rates for 
various configurations. 

1 INTRODUCTION 

An arbiter [l] is a digital circuit designed to pro- 
vide mutually exclusive access to a shared resource 
among a number of competing requesters. Some form 
of arbitration can be found in virtually all digit- 
al computer based systems. Examples include bus 
sharing among CPU's and peripherals, multiport mem- 
ories and refresh control in dynamic memories. 

The characteristics of arbiters are key factors in 
determining the performance of computer systems [2]. 
Since arbiters play a dominant role in system re- 
source allocation, their modelling and performance 
evaluation is of considerable interest 131. This 
paper (which is a condensed version of [4]) de- 

scribes a method of modelling and analysing the per- 
formance of a class of arbiters, termed batching 
arbiters. Batching arbiters are defined more pre- 
cisely in Section 2 with a brief description given 
here. If a request for the resource occurs in an 
idling state, when no request inputs to the arbiter 
are active, then it and any further requests that 
occur within a certain time duration are batched 
together and serviced before any subsequent re- 
quests are considered. The batched requests are 
serviced in order of the requesters priorities 
which are assumed fixed. Any requests which occur 
during servicing of the batch are ignored until 
after all batched requests are serviced, at which 
time all pending requests are once again batched. 

A recent example of batching arbiter can be found 
in the new IEEE Futurebus [5] arbitration scheme, 
which employs a wired-or priority resolution cir- 
cuit to allocate the resource within a batch. The 
batching process is motivated by the desire to pre- 
vent hogging and achieve some degree of fairness. 
Batching arbiters can be implemented either as 
centralised or decentralised arbiters. 

A particularly simple implementation of a decentral- 
ized batching arbiter is presented in Section 3, 
in which a daisy chain sequences the servicing of 
batched requests and a common line locks out 
further requests. Batching arbiters differ from 
conventional fixed priority arbiters [l] in the 
lock out mechanism which guarantees all requesters 
are serviced within a finite time under all load- 
ing conditions. Simple fixed priority arbiters, 
such as Intel's 8289 Bus Arbiter (in a daisy chain 
configuration) and the IEEE S-100 bus DMA arbitrat- 
ion, allocate the resource to the highest priority 
request pending without any batching mechanism, 
thus the possibility exists of a high priority re- 
quester locking out others by recurrent requesting. 
Although this hogging situation cannot occur in 
batching arbiters, their fairness is limited under 
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heavy loading conditions, as will become apparent 
from the results presented later in this paper. 

The performance of batching arbiters cannot be an- 
alysed using standard queueing theory techniques, 
Bowever it is shown in Sections 4 and 5 that under 
reasonable assumptions, batching arbiters can he 
modelled and analysed with a finite state, irreduc- 
ible Markov chain. 

Two broad aspects of performance are considered in 
[41. The first, which is discussed in Section 6 
of this paper, is concerned with efficiency and 
utilization characteristics of batching arbiters. 
The second is an analysis of the behavior of the de- 
centralized daisy chain batching arbiter with re- 
spect to metastable behavior [4] [6]. Failure of 
arbiters due to metastable behavior is unavoidable 
due to the asynchronous nature of their inputs [7]. 
Reference [4] develops a technique for estimating 
the failure rate of the arbiter due to metastable 
behavior and identifies the significant factors 
that affect the failure rate. 

Limiting cases of light and heavy request loading 
are considered in the theoretical analysis, Also 
numerical results are presented in Section 7 to 
illustrate the effect of various system parameters, 
such as circuit time delays, mean request rates, 
numbers of requesters and service times, 

2 FIXED PRIORITY BATCHING ARBITER MODEL 

The behavior of arbiters with fixed priority and 
batching can be described by the following model, 
Assuming initially no requests are pending and no 
requesters are being serviced, then the first re- 
quest to occur initiates a time interval of dur- 
ation D . 
interval3 D 

Other requests occurring during this 

request and3no 
are batched together with the first 

requests occurring after the inter- 
val D3 

are considered until all the previous re- 
quests have been serviced. The batched requests 
are serviced in a logical time period referred 
to as a batch. As shown in Figure 1, a non- 
zero batch consists of a time interval D 
followed by the ordered servicing of the 2 atched 
requests (in the order defined by the fixed 
priority of the arbiter) followed by another time 
interval 

D1 
and then, if at least one request 

is made during the batch, a further time inter- 
val 

D3 
follows. 

Figure 1: Batch transitions of fixed 
priority batching arbiter model. 

Example 

The arbiter presented in this example is designed 
for three requesters labelled 1, 2 and 3. The 

highest priority is given to 1 then the next prior- 
ity to 2 and 3 is the lowest. The incoming requests 
from requesters 1, 2 and 3 determine the behavior 
of the model. Fig. 2 illustrates a sequence of 
events. 

Figure 2: Example model behavior 

Even though requester 3 requests before requester 1, 
batching and the fixed priority determines that re- 
quester 1 is serviced before requester 3. Notice 
that 2 requests before the servicing of 3 and,since 
2 isnotbatched with 3,3 isserviced before 2. Re- 
quester 1 requests soon after its service, enabling 
it to be serviced in the next batch. The time 
available for 3 to request to be included in the 
next batch is much shorter than for 1. In fact, if 
Dl = D3 = 0 in a particular arbiter, 3 can never 
be serviced in two consecutive batches. 

Definitions of time durations Dl, D2, D3 and ts(h) 

D1 occurs after all batched requests have been 
serviced 

D2 occurs after requests are batched. Requests 
lodged during D2 wait until after all currently 
batched requests have been serviced before 
being batched themselves. 

D3 occurs at the end of all batches preceding a 
non-zero batch. 

D3 
is generated only if at 

least one request occurs before the end of Dl 
in a non-zero batch, otherwise a zero batch 
follows 

D1' 
In a zero batch 

soon as a request occurs. D3 
occurs as 

t,(.h)corresponds to the time duration in which re- 
quester h is serviced and holds the resource. 
The arbiter is assumed to have a request input, 
Req.h, h=l ..k, from each requester. This 
is asserted to lodge a request and held until 
the arbiter responds by asserting the acknow- 
ledge signal, Ack. h, indicating that the re- 
source is allocated to requester h, as shown in 
Fig. 3. 

Figure 3: Arbiter request, acknowledge 
protocol. 

When requester h finishes with the resource it 
drops its Req. h signal and the arbiter responds 
by dropping its Ack. h signal. Requester h cannot 
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request again until Ack. h is low. The time dur- 
ation t (h) corresponds to Ack. h being high. The 
order ts(h) occurs within a batch is determined by 
h, with ?he smallest index h occurring first. 

Remarks 

(0 
(ii) 

(iii) 

(VI 

(vi> 

(vii) 

The case of Dl = D2 = D3 = 0 is not excluded. 

There are zk possible different hatches, 
where k is the number of requesters. 

The composition of time durations in a batch 
is a function of not only the requesters 
serviced during the batch, but also whether 
'a request occurs before Dl ends, because 
the existence of 
quest. 

D3 depends on such a re- 
(This was ignored in counting 

batches in remark (ii) above). 

A singleton batch, refers to a batch in which 
only one request is serviced. Suppose Dl=O, 
then the last requester serviced in a batch 
cannot form a singleton batch immediately 
following, without an intervening zero batch. 
(It is assumed that requester h requests a 
non-zero time after t,(h)). 

If D3=0, a zero batch is followed by a 
singleton batch, assuming that no two re- 
quests occur at exactly the same time. 

If Dl=D3=0, the lowest priority requester 
serviced in a batch cannot be serviced in 
the following batch. 

A full batch refers to the batch in which 
all requesters are serviced. 

If D1=D2=oy remarks (v) and (vi) imply the full ba ch 
never occurs. 

3 EXAMPLE OF A BATCHING ARBITER 

A simple decentralised daisy-chained arbiter 
which conforms to the batching arbiter model, is 
described in this section. The time durations 

D1' 
D2 and D 

?. 
are identified with circuit para- 

meters in [4 Similar designs have appeared 
elsewhere [El. 

In the distributed arbiter circuit shown in Fig.4 
each requester has a circuit module associated with 
it. The modules are connected via a daisy chain 
and a common line. The order of the modules in 
the daisy chain determines the priority of the 
requesters. 

Figure 4: Structure of decentralized daisy- 
chained batching arbiter. 

The start of the daisy chain is connected to logic 
'11, and the daisy'chain is "threaded" through each 
module. When a module receives a 1 on the daisy 
chain from higher modules in the chain, it passes 
the 1 further down the chain if the module has no 

request latched from its requester, otherwise it 
"keeps" the 1 until the latched requests have been 
serviced. This is achieved by use of the common 
line which realises a wired-or function of all the 
latched requests of the k modules. Thus, the 
common line is asserted when at least one request 
is latched. When the common line is asserted, no 
new requests can be latched in the modules, and 
when all latched requests have been serviced, the 
common line resets and all pending requests are 
latched. This has the effect of batching requests 
and preventing a high priority requester hogging 
the system by continually locking out the other 
requesters. 

4 PROBABILITY ANALYSIS OF THE BATCHING ARBITER 
MODEL. 

This section introduces assumptions regarding 
random request and service behavior. The batching 
arbiter model is then shown to be a finite state 
Markov chain. The state transition probabilities 
are derived in terms of requester and model para- 
meters. 

4.1 Request and Service Modelling 

The protocol for requesting, described in Fig. 3, 
leads to the following assertion: 

Gil The probability of a requester requesting 
after it has already requested and before it 
has finished being serviced is zero. 

The following assumptions are made to enable the 
analysis to be tractable. 

(ii) 

(iii) 

The probability of requester h making a re- 
quest whilst it has no request pending nor is 
being serviced is described by an exponential 
distribution in time: 

prob [no request in [O,tjl= eeAht (4.1) 

where 
'h 

is the mean request rate for 
requester h. 

The service time for requester h, t (h), 
can have an arbitrary distribution described 
by the probability density function fh: 

prob [t,< t,(h)< tbI = 'b 
t fh(t)dt (4.2) 

a 

The mean of 1 t,(h) is denoted - . 
'h 

Two special cases will be considered later: 

(4 
1 constant service time of - : 

'h 

f,(t) = 6(t - $ ) 

(b) exponentially distributed service times: 

f,(t) = phewpht 

(iv) Requesters request independently. 

(VI Service times are independent. 

Remarks 

(a) Assumption (ii) is a reasonable approximation 
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for random requests. It has the property of being 
memoryless : the probability of a request is in- 
dependent of previous requests (provided no request 
is pending). 

(b) Different requesters can have different re- 
quest rates and service times. 

4.2 State Definition 

The arbiter behavior is characterized by a sequence 
of batches in time. An idling period corresponds 
to a zero batch. Each batch has an associated 
state, determined by the set of requesters serviced 
in the batch. The state of the nth batch, kS(n), 
is defined as an integer in the range 0,.2 -1, 
where k is the total.number of requesters. SCd 
is a function of the nth batch as follows. 

Define v : (1, . . , k) + CO,11 by 
n 

1 , if reques er h is serviced 

v(h)b 
in the nt I5 batch, denoted 
h G S(n) 

0 , h + S(n) 

Then 
k 

S(n)l 1 v(h)2 
h-l 

(4.3) 
h=l 

For example, the zero betch has state zero and the 
full batch has state 2 -1. There is a one to one 
correspondence between the set of requesters ser- 
viced in a batch and the state of the batch. This 
explains the use of the notation h f S(n). 

4.3. Markov Property 

The sequence of states of the arbiter model with 
requesters obeying assumptions (i)-(v) of section 
3.1 forms a finite state Markov chain. That is 

prob[S(n)=i 1 S(n-l)=j,,S(n-2>=j2...,S(0)=jn] 

(4.4) 

is independent of j,, . . . . jn. 

S(n-2) = j, 1 Stn-1) = jl 1 S(n) = i 

I I 
I( ,I 
Ionly requests I 
Ihere are I 
Iserviced in 1 
lthe nth batch I 
I I 

Figure 5. Markov Property of Arbiter Model. 

Fig. 5 illustrates that the state of the n th 
batch 

is determined only by requests made during theth 
(n-I)th batch is only a function of the (n-l) 
batch's configuration and the mean request rates. 
This is true because the probability of a requester 
requesting is independent of its history provided 
it has no request pending. 
the start of the (n-l)th 

Any request pending at 
batch is reflected by the 

servicing of that request during the (n-l)th batch. 
Thus, all the information that determines (4.4) is 

contained in the states Hence it 
suffices to write prob[S&zdI &n-l)=jl] as a 
shorthand for (4.4). 

4.4 Derivation of State Transition Probabilities 

In order to derive probabilities of state transit- 
ions, some preliminary atomic expressions are intm 
duced from which final results can be expressed. 
Firstly, the probabilgty that requester h does 
not request during the service time of requester 
Q is derived under the condition that requester 
h has no request pending already 

prob requester h does not Req.h=O before t,(Q) 
request during ts(Q) 1 

co 

az 

0 fQ(t)e 

-Xhtdt (4.5) 

Consider the case of requester h not requesting 
during three consecutive time intervals 
ts(Ql), ts(Q2) and D, given that Req. h = 0 be- 

fore ts(Ql), and where the time duration D is 
constant. This is given by 

03 

I- I 
-kh(tl+t2+D)dt dt 

0 0 
fQl(tl)fQ2(t2)e 12 

c9 
-A t 

=e -XhD fq,,(tl)fQ h ldtl =<a (t2)eBXht2d$ 

0 
o '3. 

(4.6) 
The decomposition of (4.6) generalises to any 
number of time intervals. Consider now the prob; 
ability of requester h not having a request 
pending at the end of Dl in a batch with state 
izo. This probability is denoted by Q(i,h). Two 
cases arise: 

(0 requester h is serviced in the batch with 
state i; 

(ii) requester h is not serviced (h + i); and 
hence Req. h * 0 at the start of the batch. It 
follows that 

I I 

co 

eeAhDl n fQ(t)eBXhtdt, if hei 
Qei 0 

i 

Q>h 
Q(i,h) = (4.7) 

I 

m 
e-Ah(Dl+D2) m f,(t)e-'htdt, if h#i 

Qsi 0 

where VQ exponentially distrib- 
'uted service time 

I 

0) 
ofQ(t)e-'htdt = 

uQ+'h 

constant service 
e-'h"Q' times 

Fig. 6 illustrates the definition of Q(i,h) 
when hei. 
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ers not in S(n) do not request within D3. Thus 

Prob.no’request 
here=O(i ,h) 

Figure 6: Definition of A(i,h), hci 

The state transition probabilities are now derived 
for four cases: 

Case 1: S(n-1) = S(n) = 0 

prob R(n)=0 IS(n-l)=O] = 0 (4.8) 

This follows from the fact that a non-zero batch 
always precedes and follows a zero batch. The zero 
batch is defined to be the idle time between two 
non-zero batches, thus two consecutive zero batches 
cannot exist. Refer to Fig. 7. 

. . ts D1 

non-ret-o batch zero batch 

D3 DZ t, . . 

“a”-zero batch 

Figure 7: Zero batch 

Case 2: S(n-1) = j f 

prob [S(n) = 

between non-zero batches 

0, S(n) = 0 

0 1 S(n-1) = jl=,il Q(j,h) 

(4.9) 
Equation (4.9) gives the probability of the inter- 
section of the k independent events that e%h 
requester does not request during the (n-1) 
batch and hence a zero batch follows. 

Note that the ime duration D 
in the (n-l) ti5 batch because 9 

ist#o;a;;;l;ied 
he n 

the zero batch. 

Case 3: S(n-1) = 0, S(n) = i f 0. 

prob [S(n)=i IS(n-l>=O] is required. 
Consider Fig. 8. 

batch n-i 

I 

batch n 
Dg D2 ts ts . . 

. 
I 
I 

zero batch 

;.J 

State i 

requests 

Figure 8: Zero Batch to non-zero batch transition. 

For S(n)=i to follow S(n-l)=O, the first reques- 
ter to end the zero batch by requesting must be in 
SW. All the other requesters in S(n) must re- 
quest within the following D3 time period. But 
so that no more requesters request, the intersect- 
ion must be taken with the event that all request- 

prob [S(n)=i 1 S(n-l)=O] 

h is the first requester 

to request during 

I I 

S(n-l)=O 

S(n-l)=O. 

xprob 
remaining requesters 
request during D3 

bi S(n-1)=0 

xprob 

i 

requesters ki do not (4.10) 
request during D3 

Since the events of requesters requesting are 
mutually exclusive, the summation applies in (4.10). 
The terms in (4.10) are shown in [4] to give: 

E ch,.n [r-dhD31).n m'-EyD3 
hEi QEi fLi 

prob[S(n)=i IS(n-i)=O) = 
Q*h 

k 

E Ye 
L=i 

(4.11) 

Case 4: S(n-1) = j f 0, S(n) = i f 0 

prob [S(n)=ilS(n-l)=j] 

= prob 

i 

requesters ei request during 
batch n-l and at least 
one of which before D 

3 

(4.12) 

x R prob h 
hki 

I 

does not request 
during batch n-l I 

S(n-l)=j 
I 

The reason for inclusion of the condition "at least 
one of which before 
aid of Fig. 9. 

D3" is explained with the 

Figure 9.: Non-Zero to non-zero batch transition 

If no request occurred up to the end of Dl, then 
would not be present in batch n-l and a zero 

;$tch would follow . 

The terms in (4.12) are derived in [4] to give: 

prob[S(nl=i 16(n-l)=j] 

={ n cl-acj,h,,-“hD3l-ntQ(j,h)(1-c-~D3)3~b~(j.h)e-hnD3 
hEi hLi 

(4.13) 
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Equations (4.8), (4.9), (4.11) ard (4.13) define 
the Markov transition matrix for the batch states 
of the system. Notice that in all cases 
prob[S(n)=i 1 S(n-l)=jJ is independent of n. 
Hence the Markov chain is homogeneous. Define : 

p: . 
13 

0 prob[S(n)=i 1 S(n-l)=j] i,j=O,...,Zk-1 (4.14) 

then the matrix P is defined by: 

P is called the probability transition matrix. 

5 LIMITING PROPERTIES OF THE PROBABILITY TRANS- 
ITION MATRIX 

The probability transition matrix, P, is a non-neg- 
ative matrix (all elements non-negative) with 

, 
batch being in 

is given by: 

m-1 m-l 
Pi(fl) = L prob(Stnl=i)5(n-l)~j).pj(n-l1 = 

j-0 
lz pi j.pjcn-11 

j-0 

(5.l) 

where m42k . In matrix notation 

p(n) = P.p(n-1) = P".p(O) (5.2) 

where p(0) is the initial probability vector. 
Furthermore, p is defined as: 

pilim p(n) (when the limit exists) 
n* 

=lim Pnp(0) = P lim Pn-lp(0) = Pp 
(5.3) 

n* n+m 

P is called the limiting probability vector of 
the probability transition matrix P. Note that 
(5.3) shows that p is an eigenvector of P 
corresponding to the eigenvalue of 1. 

5.1 Principle Limiting Results as n+ a 

Theorem 1: The probability transition matrix 
of the fixed priority batch arbiter model, P, 
has a unique positive limiting probability 
vector independent of the initial probability 
vector, provided uh,hh > 0 for h=l, .., k 
and Dl+D3 > 0. 

Proof: Firstly it is shown that P is irreduc- 
ible and primijive [ll] by showing that all 
elements of P are positive (written P2 > 0). 
This follows from the theorem: 

P is irreducible and primitive if and only if 
some power of P is positive [9, p.8011. 

To show P2 = [p (2) 
ij 

] is positive, consider: 

(2) =:I;piupuj k 
P.. J-11 

, where m=2 

(5.4) 
‘Piwpwj ’ 

some w, O<w<m-1 

since pTupuj 2 0. for all i, u, j. 

So if, for every i and j, a w can be choyen 
such that p. p . > 0 

wrw "4 
then it follows that P > 0. 

The state co responds to an intermediate state 
i and j as shown in Fig. 10. 

batch n-2 batch n-l bztch n 
pi, 

1 

Figure 10: State transition illustrating proof 
of Theorem 1. 

In [4] it is shown that such an intermediate state 
W can be chosen when Dl + D3 > 0. 

0 

When Dl = D = 0, the full batch can never occur 
because all 2 ransitions to it have zero probability 
(including the full batch to full batch transition). 
This implies that P is reducible in the case of 

D1 
=D =O,since P has ankinvariant coordinate 

subspase of dimension 2 -1~2 = dimension of P, 
consisting of all but the last state (see definit- 
ion of reducibility in [9]). 

Define the smaller matrix, P1, as P with the 
last row and column removed (i.e. without full 
batch state) 

Pl g [pij] i,j = 0, .., m-2 

It is shown in [4] that P 
k 

has the same propert- 
ies as P in theorem 1. ote that P is a 
probability transition matrix (column &urns are 
unity) only when Dl=D3=0. The following theorem 
is proved in [4]. 

Theorem 2: The probability transition matrix 
Pl as defined in (5.5) has a unique positive 
limiting probability vector independent of the 
initial probability vector provided 
uh, Xh>O for h=l, . . . . k and Dl=D3=0. 

5.2 Heavy Request Loading Limit of the Probabil- - 
ity Transition Matrix. 

In this subsection the limiting behavior of P as 
the request rates tend to infinity is examined. 
(The zero limit can be found in 141). The manner 
in which the request rates tend to infinity is 
defined as follows: 

The average request rate, X, is defined: 

-- (5.6) 

and relative request rates, 
rh' 

are defined: 

h=1,2,.. ,k (5.7) 

The request rates are allowed to approach infinity 
keeping rh of (5.7) constant for each requester. 
As request rates become large, requesters request 
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soon after releasing the resource. The limiting 
behavior depends on whether D +D3 is zero. 

. ;t 
For 

Dl+D3>0, the limiting probabil ty vector is indep- 
endent of the initial probability, with all states 
having zero probability except for the full batch 
[41. That is, the arbiter services every requester 
in each batch. 

When DL+D3=0, the full batch can never occur, as 
discussed m section 2 remark (vii), and the limit- 
ing behavior is more interesting. From (4.7) 

lim Q(i, h) = 1, .if hei and:h>ll forall Rei 
A+- 0, otherwise (5.8) 

and from (4.9) and 0.8) 

limp =0 
A-w Oj 

j = 0, 1 . . . . m-l (5.9) 

and from (4.12) 

lim Pi0 = 'f' 
t 

if i=2f-1i.e. singleton state 

A+- 0, otherwise (5 .lO> 

For i f 0 and j + 0 (4.13) and (5.8) imply. 

lim P 
A- ij = 

i 

1, if i contains all requesters 
except the lowest priority re- 
quester in state j. 

‘0, otherwise (5.11) 

The powers of the matrix P formed from (5.9), 
(5.10) and (5.11) cycle with a period of two after 
the third power [4]. The limiting probability 
vectors in the two cycle have all zero elements 
except for two states corresponding to the full 
batch without requester k and the full batch with- 
out requester k-l. The probabilities of these 
states exchange after each state transition and 
depend on the initial state. The physical inter- 
pretation of this result is that the arbiter 
oscillates between the two states, with the two 
lowest priority requesters k and k-l receiv- 
ing half the servicing that the others receive. 
This interesting situation can be seen later in 
the numerical results for heavy request load- 
ing and small values of D +D 

1 3' 

6 PERFORMANCE PARAMETERS 

It has been shown that the Markov chain model for 
the arbiter has a unique limiting probability 
vector for finite positive request rates. After 
sufficient time, the probability of a particular 
batch occurring will be constant regardless of 
the initial state of the arbiter. From the 
batch probabilities in the steady state, many 
useful performance parameters of the arbiter can 
be determined which are functions of the request 
rates, service times, the total number of re- 
questers, k, and interbatch times *l' D2 and D 

3 
. 

6.1 Utilisation 

Suppose the system has reached steady state with 
probability vector 

T 
P = [P 0' Pl, P,, .**, Pm-ll (6.1) 

thus 

m-l 
n= 1 nj (6.2) 

j=o 

Let t. 
J. 

be the mean length of time of a batch with 
state J, defined as follows: 

'D1+D2+D3+ c 1 , 
hEj 'h 

j=1,2 ,...,m-1 

t 4 ' 
j- - 1 (6.3) 

, j=O 

The proportion a5 time devoted to the j state is 
given by 

n.t. 
(6.4) 

taking the limit as n- of (6.4) gives 

lim Ty = 

tj Lim 2 
n-too n 

m-l (6.5) 
n-ro lim ni 

It - 
i=O in+ n 

Equation (6.5) suggests defining the following 
utilisation parameter 

t.p. 
Ujn JJ m-l 

c 
i=O 

tiPi 

(6.6) 

Similarly the proportion of time spent servicing 
requester R, k-pa, is defined by 

I$ 
i such that 

Rei 
eroeQ = m-l (6.7) 

c p.t. 
i=O * ' 

The idling time for the system is defined as the 
proportion of time not spent servicing requests 

idle time b 1 -F (6.8) 
11=1 

eroeR 

6.2 Mean waiting time for each requester. . . . . 
The waiting time for requester h is the time 
from when requester h requests to when requester 
h receives the resource. In [4] an expression is 
derived for w(i,j,h), the mean waiting time for 
requester h given that S(n)=i follows 
S(n-l)=j where requester h is serviced during 
state i. The uncondition mean waiting time for 
requester h, MWT(h), can then be expressed: 

Now sample n successive batches. Let 
nj(j=O, . . , m-l) be the number of states=j, and 
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HKT(h) = lim L W(i,j,hI prob[S(n-l)=j. S(n)+ hGSf(nJ 
n-m j=o i such I I 

that hEi 

m-1 
= L I: 

j=o x 
W(i,j,h).pij.pj 

Such that 
hCi lI PU 

such that 
hEu 

6.3 Heavy Request Loading Limit of Performance 
Parameters 

Two cases arise: (i) Dl + D3 > 0 (ii) Dl + D3 = 0. 
The limit as request rates approach infinity with 
fixed ratios as defined in (5.7) is an idealisation 
of a heavily loaded request situation. In practice, 
batching arbiters have parameters Dl and D3 much 
smaller than mean service times and consequently 
the probability of requests occurring during Dl+D3 
at the end of a batch is quite small, even for 
large request rates. As a result the case of 

Dl + D3 = 0 approximates the behavior of most 
batching arbiters under heavy loading and will be 
considered in more detail here. In order that the 
heavy loading limit for Dl + D3 > 0 be borne out 
in practice, inconceivably large request rates must 
occur in most batching arbiters. As can be seen in 
[4], the case (i) limit gives the full batch occurr 
ing with probability 1 and limiting performance 
parameters can then be derived. For Dl + D3 = 0. 

N-l 
lim 
A-m p= 

lim lim p(n) = lim lim 1. L p(n) 
A-m n+m A-m N-b@ N n=O 

N-l 
(6.10) 

= lim lim i r: p(n) 

N-+m MC 
N 

n=o 

= 
[ 
0, 0, .., ?4 so7 

i’ i’ 
E=ii; 1 

Where k-l is the state with all requesters 
serviced except k-l. 

The steps in (6.10) are justified in [4], by showing 
N-l 

lim p(n) = lim $ 1 p(n) 
n* N-- n=O 

and 

N-l 
lim + 1 p(n) converges uniformly. 
N+-= n=O 

Equation (6.10) can be interpreted physically by 
observing that the arbiter alternates between the 
batch servicing all but the lowest priority request- 
er and the batch servicing all but the second lowest 
priority requester. This occurs because the last 
requester serviced in a batch is unable to request 
in time to be included in the next batch. 

It follows from (6.3), (6.7) and (6.10) that 

I 
2 

LhTl ' 
h#k and jfk-1 

lim ProPh = 
RI-Jr 

h=k or h-k-l 

k-2 
where T1 = 2ID2 + E -L,+.L+L 

g=l k! Pk-1 Pk 

and D1 + D2 = 0 

It follows from (6.9), [4] and (6.10) that 

lim MWT(h) = 
x- 

where Tl is 

Dl+D =0 
3 

defined in (6.11) and 

, hxk and h#k-1 

, h=k or h=k-1 

(6.13 

Note the unfairness in (6.11) and (6.12) for the 
two lowest priority requesters, who receive 
approximately half the servicing that other re- 
questers receive. 

7 COMPUTER STUDY AND NUMERICAL RESULTS 

Much of the interesting and relevant behavior of 
batching arbiters occurs between the limiting ex- 
tremes of light and heavy request loading. This 
behavior may best be examined using numerical com- 
,P;;e;o$e;i;$ uesq.since t e the retfcaa exgr;g;esg;f 

b intepretetf for Pnterme ist 
rates. 
7.1 Assumptions 
The following simplyfying assumptions are made in 
the computer study 

Tz =u 

A& = x 9, = 1,2,...,k (7.2) 

t,(E) = ; (7.3) 

All requesters are assumed to have identical re- 
quest and service statistical characteristics, 
with constant service times. 

7.2 Description of Results 

In graphs 1, 2 and 3 some results of the computer 
study are presented. The interbatch time durations 

Dl' 
D2 and D3 are expressed in units of service 

time and are selected to correspond approximately 
to an arbiter design such as that shown in section 
3. For applications with large service times, for 
example in an arbiter for resolving multiple in- 
terrupts, D2 and D3 can be approximated as 
zero. Dl' 

For a bus arbiter, for example, much short- 
er service times are typical, and the value of 
0.2 service times was chosen for that case. 

In Graph 1, the proportion of time allocated to 
each requester is plotted against the request rate, 
X, in (7.2). Higher priority requesters receive 
more time than lower priority requesters. However 
for request rates below 0.25 requests/service 
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time, all requesters receive approximately equal 
time. 

Note that for large request rates in Graph 1, the 
lowest priority requesters receive about half the 
time that the others receive as predicted by re- 
sults in section 6.3. A physical explanation for 
this unfairness is that the lowest priority re- 
quester is serviced last when serviced in a batch, 
and thus cannot request in time to be included in 
the next batch. Then the second lowest priority 
requester is serviced last in this next batch and 
consequently suffers the same problem. For non- 
zero interbatch times, this effect is moderated, 
as seen in Graph 2. 

jm KWCRlIa\l OF TIME FO? EACH REOJZSTER 
5 REOJESTERS, Dl-0 03 DZ-0 00 D3-0 CB 

gw I 
CONSTANT SERVICE TB-‘ES 

-% 

k w 
hW 0 0 05 1.0 I .5 

meQI request rote Cro~rts/- Set-” tlmd 

Graph 1 

$ 0 
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%w 5 REZ<STERS, Dl=0 20 D2=0 20 D3=0 20 

8 

I 

CWSTANT SLWICE TIMES 
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.1: 
8N 

h 00 05 I 0 I 5 
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I 
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8 CONCLUSION 

This paper has presented theoretical and numerical 
results on the performance of a class of arbiters 
termed batching arbiters. The modelling and 
analysis presented has been shown to give results 
of practical interest for computer system designers. 

In the utilisation results, an important feature 
of batching arbiters was highlighted: The two 
lowest priority requesters receive approximately 
half the servicing compared with other requests, 
under heavy loadings and small interbatch times. 
Another feature which may apply more generally 
than to batching arbiters, is that the "fairness" 
of the arbiter depended very much on the criterion 
for assessment. In terms of proportion of time 
each requester received, the arbiter was fair up 
to the saturation levels of requesting. However, 
in terms of relative mean waiting times for re- 
questers, the arbiter was not fair for even mod- 
erate request loadings. Thus, for throughput 
appl.ications the arbiter allocates the resource 
,fairly but not for applications sensitive to 
access times of the requesters. In all cases 
batching arbiters have bounded waiting times 
independently of request loadings - a property 
fixed priority unhatched arbiters lack. 
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