
THE ANALYSIS AND PERFORMANCE OF BATCHING ARBITERS +

Lindsay Kleeman and Antonio Cantoni

Department of Electrical and Computer Engineering
University of Newcastle

New South Wales 2308

+ Work supported by the Australian Computer Research Board

ABSTRACT

A class of arbiters, known as batching arbiters, is
introduced and defined. A particularly simple de-
centralised example of a batching arbiter is de-
scribed, with motivation given for the batching
arbiter model adopted. It is shown that under
reasonable assumptions, batching arbiters can be
described by a finite state Markov chain. The key
steps in the analysis of the arbiter performance
are the method of assigning states, evaluation of
state transition probabilities and showing that
the Markov chain is irreducible. Arbiter per-
formance parameters are defined, such as proportion
of time allocated to each requester and mean wait-
ing time for each requester. Apart from results
describing the steady state behavior of the
arbiter for general system parameters, a number
of limiting results are also obtained corres-
ponding to light and heavy request loading.

Finally, numerical results of practical interest
are presented, showing the performance para-
meters of the arbiter versus request rates for
various configurations.

1 INTRODUCTION

An arbiter [l] is a digital circuit designed to pro-
vide mutually exclusive access to a shared resource
among a number of competing requesters. Some form
of arbitration can be found in virtually all digit-
al computer based systems. Examples include bus
sharing among CPU's and peripherals, multiport mem-
ories and refresh control in dynamic memories.

The characteristics of arbiters are key factors in
determining the performance of computer systems [2].
Since arbiters play a dominant role in system re-
source allocation, their modelling and performance
evaluation is of considerable interest 131. This
paper (which is a condensed version of [4]) de-

scribes a method of modelling and analysing the per-
formance of a class of arbiters, termed batching
arbiters. Batching arbiters are defined more pre-
cisely in Section 2 with a brief description given
here. If a request for the resource occurs in an
idling state, when no request inputs to the arbiter
are active, then it and any further requests that
occur within a certain time duration are batched
together and serviced before any subsequent re-
quests are considered. The batched requests are
serviced in order of the requesters priorities
which are assumed fixed. Any requests which occur
during servicing of the batch are ignored until
after all batched requests are serviced, at which
time all pending requests are once again batched.

A recent example of batching arbiter can be found
in the new IEEE Futurebus [5] arbitration scheme,
which employs a wired-or priority resolution cir-
cuit to allocate the resource within a batch. The
batching process is motivated by the desire to pre-
vent hogging and achieve some degree of fairness.
Batching arbiters can be implemented either as
centralised or decentralised arbiters.

A particularly simple implementation of a decentral-
ized batching arbiter is presented in Section 3,
in which a daisy chain sequences the servicing of
batched requests and a common line locks out
further requests. Batching arbiters differ from
conventional fixed priority arbiters [l] in the
lock out mechanism which guarantees all requesters
are serviced within a finite time under all load-
ing conditions. Simple fixed priority arbiters,
such as Intel's 8289 Bus Arbiter (in a daisy chain
configuration) and the IEEE S-100 bus DMA arbitrat-
ion, allocate the resource to the highest priority
request pending without any batching mechanism,
thus the possibility exists of a high priority re-
quester locking out others by recurrent requesting.
Although this hogging situation cannot occur in
batching arbiters, their fairness is limited under

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or lo republish, requires a fee and/or specific permission.

01986 ACMO-89791-184-9/86/0500-0035 $00.75

35

heavy loading conditions, as will become apparent
from the results presented later in this paper.

The performance of batching arbiters cannot be an-
alysed using standard queueing theory techniques,
Bowever it is shown in Sections 4 and 5 that under
reasonable assumptions, batching arbiters can he
modelled and analysed with a finite state, irreduc-
ible Markov chain.

Two broad aspects of performance are considered in
[41. The first, which is discussed in Section 6
of this paper, is concerned with efficiency and
utilization characteristics of batching arbiters.
The second is an analysis of the behavior of the de-
centralized daisy chain batching arbiter with re-
spect to metastable behavior [4] [6]. Failure of
arbiters due to metastable behavior is unavoidable
due to the asynchronous nature of their inputs [7].
Reference [4] develops a technique for estimating
the failure rate of the arbiter due to metastable
behavior and identifies the significant factors
that affect the failure rate.

Limiting cases of light and heavy request loading
are considered in the theoretical analysis, Also
numerical results are presented in Section 7 to
illustrate the effect of various system parameters,
such as circuit time delays, mean request rates,
numbers of requesters and service times,

2 FIXED PRIORITY BATCHING ARBITER MODEL

The behavior of arbiters with fixed priority and
batching can be described by the following model,
Assuming initially no requests are pending and no
requesters are being serviced, then the first re-
quest to occur initiates a time interval of dur-
ation D .
interval3 D

Other requests occurring during this

request and3no
are batched together with the first

requests occurring after the inter-
val D3

are considered until all the previous re-
quests have been serviced. The batched requests
are serviced in a logical time period referred
to as a batch. As shown in Figure 1, a non-
zero batch consists of a time interval D
followed by the ordered servicing of the 2 atched
requests (in the order defined by the fixed
priority of the arbiter) followed by another time
interval

D1
and then, if at least one request

is made during the batch, a further time inter-
val

D3
follows.

Figure 1: Batch transitions of fixed
priority batching arbiter model.

Example

The arbiter presented in this example is designed
for three requesters labelled 1, 2 and 3. The

highest priority is given to 1 then the next prior-
ity to 2 and 3 is the lowest. The incoming requests
from requesters 1, 2 and 3 determine the behavior
of the model. Fig. 2 illustrates a sequence of
events.

Figure 2: Example model behavior

Even though requester 3 requests before requester 1,
batching and the fixed priority determines that re-
quester 1 is serviced before requester 3. Notice
that 2 requests before the servicing of 3 and,since
2 isnotbatched with 3,3 isserviced before 2. Re-
quester 1 requests soon after its service, enabling
it to be serviced in the next batch. The time
available for 3 to request to be included in the
next batch is much shorter than for 1. In fact, if
Dl = D3 = 0 in a particular arbiter, 3 can never
be serviced in two consecutive batches.

Definitions of time durations Dl, D2, D3 and ts(h)

D1 occurs after all batched requests have been
serviced

D2 occurs after requests are batched. Requests
lodged during D2 wait until after all currently
batched requests have been serviced before
being batched themselves.

D3 occurs at the end of all batches preceding a
non-zero batch.

D3
is generated only if at

least one request occurs before the end of Dl
in a non-zero batch, otherwise a zero batch
follows

D1'
In a zero batch

soon as a request occurs. D3
occurs as

t,(.h)corresponds to the time duration in which re-
quester h is serviced and holds the resource.
The arbiter is assumed to have a request input,
Req.h, h=l ..k, from each requester. This
is asserted to lodge a request and held until
the arbiter responds by asserting the acknow-
ledge signal, Ack. h, indicating that the re-
source is allocated to requester h, as shown in
Fig. 3.

Figure 3: Arbiter request, acknowledge
protocol.

When requester h finishes with the resource it
drops its Req. h signal and the arbiter responds
by dropping its Ack. h signal. Requester h cannot

36

request again until Ack. h is low. The time dur-
ation t (h) corresponds to Ack. h being high. The
order ts(h) occurs within a batch is determined by
h, with ?he smallest index h occurring first.

Remarks

(0
(ii)

(iii)

(VI

(vi>

(vii)

The case of Dl = D2 = D3 = 0 is not excluded.

There are zk possible different hatches,
where k is the number of requesters.

The composition of time durations in a batch
is a function of not only the requesters
serviced during the batch, but also whether
'a request occurs before Dl ends, because
the existence of
quest.

D3 depends on such a re-
(This was ignored in counting

batches in remark (ii) above).

A singleton batch, refers to a batch in which
only one request is serviced. Suppose Dl=O,
then the last requester serviced in a batch
cannot form a singleton batch immediately
following, without an intervening zero batch.
(It is assumed that requester h requests a
non-zero time after t,(h)).

If D3=0, a zero batch is followed by a
singleton batch, assuming that no two re-
quests occur at exactly the same time.

If Dl=D3=0, the lowest priority requester
serviced in a batch cannot be serviced in
the following batch.

A full batch refers to the batch in which
all requesters are serviced.

If D1=D2=oy remarks (v) and (vi) imply the full ba ch
never occurs.

3 EXAMPLE OF A BATCHING ARBITER

A simple decentralised daisy-chained arbiter
which conforms to the batching arbiter model, is
described in this section. The time durations

D1'
D2 and D

?.
are identified with circuit para-

meters in [4 Similar designs have appeared
elsewhere [El.

In the distributed arbiter circuit shown in Fig.4
each requester has a circuit module associated with
it. The modules are connected via a daisy chain
and a common line. The order of the modules in
the daisy chain determines the priority of the
requesters.

Figure 4: Structure of decentralized daisy-
chained batching arbiter.

The start of the daisy chain is connected to logic
'11, and the daisy'chain is "threaded" through each
module. When a module receives a 1 on the daisy
chain from higher modules in the chain, it passes
the 1 further down the chain if the module has no

request latched from its requester, otherwise it
"keeps" the 1 until the latched requests have been
serviced. This is achieved by use of the common
line which realises a wired-or function of all the
latched requests of the k modules. Thus, the
common line is asserted when at least one request
is latched. When the common line is asserted, no
new requests can be latched in the modules, and
when all latched requests have been serviced, the
common line resets and all pending requests are
latched. This has the effect of batching requests
and preventing a high priority requester hogging
the system by continually locking out the other
requesters.

4 PROBABILITY ANALYSIS OF THE BATCHING ARBITER
MODEL.

This section introduces assumptions regarding
random request and service behavior. The batching
arbiter model is then shown to be a finite state
Markov chain. The state transition probabilities
are derived in terms of requester and model para-
meters.

4.1 Request and Service Modelling

The protocol for requesting, described in Fig. 3,
leads to the following assertion:

Gil The probability of a requester requesting
after it has already requested and before it
has finished being serviced is zero.

The following assumptions are made to enable the
analysis to be tractable.

(ii)

(iii)

The probability of requester h making a re-
quest whilst it has no request pending nor is
being serviced is described by an exponential
distribution in time:

prob [no request in [O,tjl= eeAht (4.1)

where
'h

is the mean request rate for
requester h.

The service time for requester h, t (h),
can have an arbitrary distribution described
by the probability density function fh:

prob [t,< t,(h)< tbI = 'b
t fh(t)dt (4.2)

a

The mean of 1 t,(h) is denoted - .
'h

Two special cases will be considered later:

(4
1 constant service time of - :

'h

f,(t) = 6(t - $)

(b) exponentially distributed service times:

f,(t) = phewpht

(iv) Requesters request independently.

(VI Service times are independent.

Remarks

(a) Assumption (ii) is a reasonable approximation

37

for random requests. It has the property of being
memoryless : the probability of a request is in-
dependent of previous requests (provided no request
is pending).

(b) Different requesters can have different re-
quest rates and service times.

4.2 State Definition

The arbiter behavior is characterized by a sequence
of batches in time. An idling period corresponds
to a zero batch. Each batch has an associated
state, determined by the set of requesters serviced
in the batch. The state of the nth batch, kS(n),
is defined as an integer in the range 0,.2 -1,
where k is the total.number of requesters. SCd
is a function of the nth batch as follows.

Define v : (1, . . , k) + CO,11 by
n

1 , if reques er h is serviced

v(h)b
in the nt I5 batch, denoted
h G S(n)

0 , h + S(n)

Then
k

S(n)l 1 v(h)2
h-l

(4.3)
h=l

For example, the zero betch has state zero and the
full batch has state 2 -1. There is a one to one
correspondence between the set of requesters ser-
viced in a batch and the state of the batch. This
explains the use of the notation h f S(n).

4.3. Markov Property

The sequence of states of the arbiter model with
requesters obeying assumptions (i)-(v) of section
3.1 forms a finite state Markov chain. That is

prob[S(n)=i 1 S(n-l)=j,,S(n-2>=j2...,S(0)=jn]

(4.4)

is independent of j,, jn.

S(n-2) = j, 1 Stn-1) = jl 1 S(n) = i

I I
I(,I
Ionly requests I
Ihere are I
Iserviced in 1
lthe nth batch I
I I

Figure 5. Markov Property of Arbiter Model.

Fig. 5 illustrates that the state of the n th
batch

is determined only by requests made during theth
(n-I)th batch is only a function of the (n-l)
batch's configuration and the mean request rates.
This is true because the probability of a requester
requesting is independent of its history provided
it has no request pending.
the start of the (n-l)th

Any request pending at
batch is reflected by the

servicing of that request during the (n-l)th batch.
Thus, all the information that determines (4.4) is

contained in the states Hence it
suffices to write prob[S&zdI &n-l)=jl] as a
shorthand for (4.4).

4.4 Derivation of State Transition Probabilities

In order to derive probabilities of state transit-
ions, some preliminary atomic expressions are intm
duced from which final results can be expressed.
Firstly, the probabilgty that requester h does
not request during the service time of requester
Q is derived under the condition that requester
h has no request pending already

prob requester h does not Req.h=O before t,(Q)
request during ts(Q) 1

co

az

0 fQ(t)e

-Xhtdt (4.5)

Consider the case of requester h not requesting
during three consecutive time intervals
ts(Ql), ts(Q2) and D, given that Req. h = 0 be-

fore ts(Ql), and where the time duration D is
constant. This is given by

03

I- I
-kh(tl+t2+D)dt dt

0 0
fQl(tl)fQ2(t2)e 12

c9
-A t

=e -XhD fq,,(tl)fQ h ldtl =<a (t2)eBXht2d$

0
o '3.

(4.6)
The decomposition of (4.6) generalises to any
number of time intervals. Consider now the prob;
ability of requester h not having a request
pending at the end of Dl in a batch with state
izo. This probability is denoted by Q(i,h). Two
cases arise:

(0 requester h is serviced in the batch with
state i;

(ii) requester h is not serviced (h + i); and
hence Req. h * 0 at the start of the batch. It
follows that

I I

co

eeAhDl n fQ(t)eBXhtdt, if hei
Qei 0

i

Q>h
Q(i,h) = (4.7)

I

m
e-Ah(Dl+D2) m f,(t)e-'htdt, if h#i

Qsi 0

where VQ exponentially distrib-
'uted service time

I

0)
ofQ(t)e-'htdt =

uQ+'h

constant service
e-'h"Q' times

Fig. 6 illustrates the definition of Q(i,h)
when hei.

38

ers not in S(n) do not request within D3. Thus

Prob.no’request
here=O(i ,h)

Figure 6: Definition of A(i,h), hci

The state transition probabilities are now derived
for four cases:

Case 1: S(n-1) = S(n) = 0

prob R(n)=0 IS(n-l)=O] = 0 (4.8)

This follows from the fact that a non-zero batch
always precedes and follows a zero batch. The zero
batch is defined to be the idle time between two
non-zero batches, thus two consecutive zero batches
cannot exist. Refer to Fig. 7.

. . ts D1

non-ret-o batch zero batch

D3 DZ t, . .

“a”-zero batch

Figure 7: Zero batch

Case 2: S(n-1) = j f

prob [S(n) =

between non-zero batches

0, S(n) = 0

0 1 S(n-1) = jl=,il Q(j,h)

(4.9)
Equation (4.9) gives the probability of the inter-
section of the k independent events that e%h
requester does not request during the (n-1)
batch and hence a zero batch follows.

Note that the ime duration D
in the (n-l) ti5 batch because 9

ist#o;a;;;l;ied
he n

the zero batch.

Case 3: S(n-1) = 0, S(n) = i f 0.

prob [S(n)=i IS(n-l>=O] is required.
Consider Fig. 8.

batch n-i

I

batch n
Dg D2 ts ts . .

.
I
I

zero batch

;.J

State i

requests

Figure 8: Zero Batch to non-zero batch transition.

For S(n)=i to follow S(n-l)=O, the first reques-
ter to end the zero batch by requesting must be in
SW. All the other requesters in S(n) must re-
quest within the following D3 time period. But
so that no more requesters request, the intersect-
ion must be taken with the event that all request-

prob [S(n)=i 1 S(n-l)=O]

h is the first requester

to request during

I I

S(n-l)=O

S(n-l)=O.

xprob
remaining requesters
request during D3

bi S(n-1)=0

xprob

i

requesters ki do not (4.10)
request during D3

Since the events of requesters requesting are
mutually exclusive, the summation applies in (4.10).
The terms in (4.10) are shown in [4] to give:

E ch,.n [r-dhD31).n m'-EyD3
hEi QEi fLi

prob[S(n)=i IS(n-i)=O) =
Q*h

k

E Ye
L=i

(4.11)

Case 4: S(n-1) = j f 0, S(n) = i f 0

prob [S(n)=ilS(n-l)=j]

= prob

i

requesters ei request during
batch n-l and at least
one of which before D

3

(4.12)

x R prob h
hki

I

does not request
during batch n-l I

S(n-l)=j
I

The reason for inclusion of the condition "at least
one of which before
aid of Fig. 9.

D3" is explained with the

Figure 9.: Non-Zero to non-zero batch transition

If no request occurred up to the end of Dl, then
would not be present in batch n-l and a zero

;$tch would follow .

The terms in (4.12) are derived in [4] to give:

prob[S(nl=i 16(n-l)=j]

={ n cl-acj,h,,-“hD3l-ntQ(j,h)(1-c-~D3)3~b~(j.h)e-hnD3
hEi hLi

(4.13)

39

Equations (4.8), (4.9), (4.11) ard (4.13) define
the Markov transition matrix for the batch states
of the system. Notice that in all cases
prob[S(n)=i 1 S(n-l)=jJ is independent of n.
Hence the Markov chain is homogeneous. Define :

p: .
13

0 prob[S(n)=i 1 S(n-l)=j] i,j=O,...,Zk-1 (4.14)

then the matrix P is defined by:

P is called the probability transition matrix.

5 LIMITING PROPERTIES OF THE PROBABILITY TRANS-
ITION MATRIX

The probability transition matrix, P, is a non-neg-
ative matrix (all elements non-negative) with

,
batch being in

is given by:

m-1 m-l
Pi(fl) = L prob(Stnl=i)5(n-l)~j).pj(n-l1 =

j-0
lz pi j.pjcn-11

j-0

(5.l)

where m42k . In matrix notation

p(n) = P.p(n-1) = P".p(O) (5.2)

where p(0) is the initial probability vector.
Furthermore, p is defined as:

pilim p(n) (when the limit exists)
n*

=lim Pnp(0) = P lim Pn-lp(0) = Pp
(5.3)

n* n+m

P is called the limiting probability vector of
the probability transition matrix P. Note that
(5.3) shows that p is an eigenvector of P
corresponding to the eigenvalue of 1.

5.1 Principle Limiting Results as n+ a

Theorem 1: The probability transition matrix
of the fixed priority batch arbiter model, P,
has a unique positive limiting probability
vector independent of the initial probability
vector, provided uh,hh > 0 for h=l, .., k
and Dl+D3 > 0.

Proof: Firstly it is shown that P is irreduc-
ible and primijive [ll] by showing that all
elements of P are positive (written P2 > 0).
This follows from the theorem:

P is irreducible and primitive if and only if
some power of P is positive [9, p.8011.

To show P2 = [p (2)
ij

] is positive, consider:

(2) =:I;piupuj k
P.. J-11

, where m=2

(5.4)
‘Piwpwj ’

some w, O<w<m-1

since pTupuj 2 0. for all i, u, j.

So if, for every i and j, a w can be choyen
such that p. p . > 0

wrw "4
then it follows that P > 0.

The state co responds to an intermediate state
i and j as shown in Fig. 10.

batch n-2 batch n-l bztch n
pi,

1

Figure 10: State transition illustrating proof
of Theorem 1.

In [4] it is shown that such an intermediate state
W can be chosen when Dl + D3 > 0.

0

When Dl = D = 0, the full batch can never occur
because all 2 ransitions to it have zero probability
(including the full batch to full batch transition).
This implies that P is reducible in the case of

D1
=D =O,since P has ankinvariant coordinate

subspase of dimension 2 -1~2 = dimension of P,
consisting of all but the last state (see definit-
ion of reducibility in [9]).

Define the smaller matrix, P1, as P with the
last row and column removed (i.e. without full
batch state)

Pl g [pij] i,j = 0, .., m-2

It is shown in [4] that P
k

has the same propert-
ies as P in theorem 1. ote that P is a
probability transition matrix (column &urns are
unity) only when Dl=D3=0. The following theorem
is proved in [4].

Theorem 2: The probability transition matrix
Pl as defined in (5.5) has a unique positive
limiting probability vector independent of the
initial probability vector provided
uh, Xh>O for h=l, k and Dl=D3=0.

5.2 Heavy Request Loading Limit of the Probabil- -
ity Transition Matrix.

In this subsection the limiting behavior of P as
the request rates tend to infinity is examined.
(The zero limit can be found in 141). The manner
in which the request rates tend to infinity is
defined as follows:

The average request rate, X, is defined:

-- (5.6)

and relative request rates,
rh'

are defined:

h=1,2,.. ,k (5.7)

The request rates are allowed to approach infinity
keeping rh of (5.7) constant for each requester.
As request rates become large, requesters request

40

soon after releasing the resource. The limiting
behavior depends on whether D +D3 is zero.

. ;t
For

Dl+D3>0, the limiting probabil ty vector is indep-
endent of the initial probability, with all states
having zero probability except for the full batch
[41. That is, the arbiter services every requester
in each batch.

When DL+D3=0, the full batch can never occur, as
discussed m section 2 remark (vii), and the limit-
ing behavior is more interesting. From (4.7)

lim Q(i, h) = 1, .if hei and:h>ll forall Rei
A+- 0, otherwise (5.8)

and from (4.9) and 0.8)

limp =0
A-w Oj

j = 0, 1 m-l (5.9)

and from (4.12)

lim Pi0 = 'f'
t

if i=2f-1i.e. singleton state

A+- 0, otherwise (5 .lO>

For i f 0 and j + 0 (4.13) and (5.8) imply.

lim P
A- ij =

i

1, if i contains all requesters
except the lowest priority re-
quester in state j.

‘0, otherwise (5.11)

The powers of the matrix P formed from (5.9),
(5.10) and (5.11) cycle with a period of two after
the third power [4]. The limiting probability
vectors in the two cycle have all zero elements
except for two states corresponding to the full
batch without requester k and the full batch with-
out requester k-l. The probabilities of these
states exchange after each state transition and
depend on the initial state. The physical inter-
pretation of this result is that the arbiter
oscillates between the two states, with the two
lowest priority requesters k and k-l receiv-
ing half the servicing that the others receive.
This interesting situation can be seen later in
the numerical results for heavy request load-
ing and small values of D +D

1 3'

6 PERFORMANCE PARAMETERS

It has been shown that the Markov chain model for
the arbiter has a unique limiting probability
vector for finite positive request rates. After
sufficient time, the probability of a particular
batch occurring will be constant regardless of
the initial state of the arbiter. From the
batch probabilities in the steady state, many
useful performance parameters of the arbiter can
be determined which are functions of the request
rates, service times, the total number of re-
questers, k, and interbatch times *l' D2 and D

3
.

6.1 Utilisation

Suppose the system has reached steady state with
probability vector

T
P = [P 0' Pl, P,, .**, Pm-ll (6.1)

thus

m-l
n= 1 nj (6.2)

j=o

Let t.
J.

be the mean length of time of a batch with
state J, defined as follows:

'D1+D2+D3+ c 1 ,
hEj 'h

j=1,2 ,...,m-1

t 4 '
j- - 1 (6.3)

, j=O

The proportion a5 time devoted to the j state is
given by

n.t.
(6.4)

taking the limit as n- of (6.4) gives

lim Ty =

tj Lim 2
n-too n

m-l (6.5)
n-ro lim ni

It -
i=O in+ n

Equation (6.5) suggests defining the following
utilisation parameter

t.p.
Ujn JJ m-l

c
i=O

tiPi

(6.6)

Similarly the proportion of time spent servicing
requester R, k-pa, is defined by

I$
i such that

Rei
eroeQ = m-l (6.7)

c p.t.
i=O * '

The idling time for the system is defined as the
proportion of time not spent servicing requests

idle time b 1 -F (6.8)
11=1

eroeR

6.2 Mean waiting time for each requester.
The waiting time for requester h is the time
from when requester h requests to when requester
h receives the resource. In [4] an expression is
derived for w(i,j,h), the mean waiting time for
requester h given that S(n)=i follows
S(n-l)=j where requester h is serviced during
state i. The uncondition mean waiting time for
requester h, MWT(h), can then be expressed:

Now sample n successive batches. Let
nj(j=O, . . , m-l) be the number of states=j, and

41

HKT(h) = lim L W(i,j,hI prob[S(n-l)=j. S(n)+ hGSf(nJ
n-m j=o i such I I

that hEi

m-1
= L I:

j=o x
W(i,j,h).pij.pj

Such that
hCi lI PU

such that
hEu

6.3 Heavy Request Loading Limit of Performance
Parameters

Two cases arise: (i) Dl + D3 > 0 (ii) Dl + D3 = 0.
The limit as request rates approach infinity with
fixed ratios as defined in (5.7) is an idealisation
of a heavily loaded request situation. In practice,
batching arbiters have parameters Dl and D3 much
smaller than mean service times and consequently
the probability of requests occurring during Dl+D3
at the end of a batch is quite small, even for
large request rates. As a result the case of

Dl + D3 = 0 approximates the behavior of most
batching arbiters under heavy loading and will be
considered in more detail here. In order that the
heavy loading limit for Dl + D3 > 0 be borne out
in practice, inconceivably large request rates must
occur in most batching arbiters. As can be seen in
[4], the case (i) limit gives the full batch occurr
ing with probability 1 and limiting performance
parameters can then be derived. For Dl + D3 = 0.

N-l
lim
A-m p=

lim lim p(n) = lim lim 1. L p(n)
A-m n+m A-m N-b@ N n=O

N-l
(6.10)

= lim lim i r: p(n)

N-+m MC
N

n=o

=
[
0, 0, .., ?4 so7

i’ i’
E=ii; 1

Where k-l is the state with all requesters
serviced except k-l.

The steps in (6.10) are justified in [4], by showing
N-l

lim p(n) = lim $ 1 p(n)
n* N-- n=O

and

N-l
lim + 1 p(n) converges uniformly.
N+-= n=O

Equation (6.10) can be interpreted physically by
observing that the arbiter alternates between the
batch servicing all but the lowest priority request-
er and the batch servicing all but the second lowest
priority requester. This occurs because the last
requester serviced in a batch is unable to request
in time to be included in the next batch.

It follows from (6.3), (6.7) and (6.10) that

I
2

LhTl '
h#k and jfk-1

lim ProPh =
RI-Jr

h=k or h-k-l

k-2
where T1 = 2ID2 + E -L,+.L+L

g=l k! Pk-1 Pk

and D1 + D2 = 0

It follows from (6.9), [4] and (6.10) that

lim MWT(h) =
x-

where Tl is

Dl+D =0
3

defined in (6.11) and

, hxk and h#k-1

, h=k or h=k-1

(6.13

Note the unfairness in (6.11) and (6.12) for the
two lowest priority requesters, who receive
approximately half the servicing that other re-
questers receive.

7 COMPUTER STUDY AND NUMERICAL RESULTS

Much of the interesting and relevant behavior of
batching arbiters occurs between the limiting ex-
tremes of light and heavy request loading. This
behavior may best be examined using numerical com-
,P;;e;o$e;i;$ uesq.since t e the retfcaa exgr;g;esg;f

b intepretetf for Pnterme ist
rates.
7.1 Assumptions
The following simplyfying assumptions are made in
the computer study

Tz =u

A& = x 9, = 1,2,...,k (7.2)

t,(E) = ; (7.3)

All requesters are assumed to have identical re-
quest and service statistical characteristics,
with constant service times.

7.2 Description of Results

In graphs 1, 2 and 3 some results of the computer
study are presented. The interbatch time durations

Dl'
D2 and D3 are expressed in units of service

time and are selected to correspond approximately
to an arbiter design such as that shown in section
3. For applications with large service times, for
example in an arbiter for resolving multiple in-
terrupts, D2 and D3 can be approximated as
zero. Dl'

For a bus arbiter, for example, much short-
er service times are typical, and the value of
0.2 service times was chosen for that case.

In Graph 1, the proportion of time allocated to
each requester is plotted against the request rate,
X, in (7.2). Higher priority requesters receive
more time than lower priority requesters. However
for request rates below 0.25 requests/service

42

time, all requesters receive approximately equal
time.

Note that for large request rates in Graph 1, the
lowest priority requesters receive about half the
time that the others receive as predicted by re-
sults in section 6.3. A physical explanation for
this unfairness is that the lowest priority re-
quester is serviced last when serviced in a batch,
and thus cannot request in time to be included in
the next batch. Then the second lowest priority
requester is serviced last in this next batch and
consequently suffers the same problem. For non-
zero interbatch times, this effect is moderated,
as seen in Graph 2.

jm KWCRlIa\l OF TIME FO? EACH REOJZSTER
5 REOJESTERS, Dl-0 03 DZ-0 00 D3-0 CB

gw I
CONSTANT SERVICE TB-‘ES

-%

k w
hW 0 0 05 1.0 I .5

meQI request rote Cro~rts/- Set-” tlmd

Graph 1

$ 0
PWCQTICV O= TiE FOR EACH REWZZER

%w 5 REZ<STERS, Dl=0 20 D2=0 20 D3=0 20

8

I

CWSTANT SLWICE TIMES

F
L

.1:
8N

h 00 05 I 0 I 5
In*157 rea.est rote <re.zLJ.xts/meon -2-a-V t It--e>

Graph 2
MEAY UAITIf’G TIE FW4 EACH REOZSTER
5 R3XEJERs. DI-0.20 D2=0 20 D3=0.20

OD

I

CCR’lAhT SERVICE TIFZS

8 CONCLUSION

This paper has presented theoretical and numerical
results on the performance of a class of arbiters
termed batching arbiters. The modelling and
analysis presented has been shown to give results
of practical interest for computer system designers.

In the utilisation results, an important feature
of batching arbiters was highlighted: The two
lowest priority requesters receive approximately
half the servicing compared with other requests,
under heavy loadings and small interbatch times.
Another feature which may apply more generally
than to batching arbiters, is that the "fairness"
of the arbiter depended very much on the criterion
for assessment. In terms of proportion of time
each requester received, the arbiter was fair up
to the saturation levels of requesting. However,
in terms of relative mean waiting times for re-
questers, the arbiter was not fair for even mod-
erate request loadings. Thus, for throughput
appl.ications the arbiter allocates the resource
,fairly but not for applications sensitive to
access times of the requesters. In all cases
batching arbiters have bounded waiting times
independently of request loadings - a property
fixed priority unhatched arbiters lack.

REFERENCES

Ill

r21

[31

[41

[51

161

[71

[81

191

K.J. Thurber, E.D. Jensen,. L.A. Jack,
L.L. Kinney, P.C. Patton, L.C. Anderson,
"A systematic approach to the design of
digital bussing structures", AFIPS Conference
Proceedings, Full Joint Conference, 1972, 41,
part 11.

J. Kriz, "A queueing analysis of a symmetric
multiprocessor with shared memories and buses"
IEE Froc., Vol. 130, Pt E, No. 3, May
1983, pp 83-89.

A.B. Kovaleski, "High-speed bus arbiter for
multiprocessors", IEE Proc., Vol. 130, Pt E,
No. 2, March 1983, pp 49-56

L. Kleeman and A. Cantoni, "A class of
arbiters - structures and performance analy-
sis", Tech. Report EE8421, Department of
Electrical and Computer Engineering,
University of Newcastle, Australia, June 1984.

J. Theus, M. Taub and R.V. Ballakrishnan,
"Futurebus anticipates coming needs",
Electronics, July 12, 1984, pp 108-112.

L. Kleeman and A. Cantoni, "Metastable Be-
haviour and digital system reliability",
Tech. Report EE8441, Department of Electrical
and Computer Engineering, University of New-
castle, Australia, Sept. 1984, also to
appear IEEE Design and Test.

L.R. Marino, "General theory of metastable
operation", IEEE Trans. Cornput., Vol. C-30,
February 1981, pp. 107-115.

G. Coiffi, P. Velardi, "A fully distributed
arbiter for multiprocessor systems" Micro-
processing and Microprogramming 11, (1983),
pp. 15-22. I

Gantmacher, Matrix Theory, Vol. II, N.Y.
Chelsea Publishing Co., 1974.

43

