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Abstract

An active beacon localisation system is described that
estimates position and heading for a mobile robot.  An
Iterated Extended Kalman Filter is applied to the beacon
and dead-reckoning data to estimate optimal values of
position and heading, given a model for the localiser
and robot motion.  This paper describes the
implementation and experimental results of the
localisation system.  Position and heading angle updates
are calculated in real time every 150 milliseconds with a
measured standard deviation of path error of 40 mm in a
12 metre square workspace.

1. Introduction

Absolute position and heading angle determination of
mobile robots is necessary for long term reliable
operation.  The effects of wheel slippage and wheel
imperfection cause the accumulation of errors in localisers
which rely on the integration of wheel rotation increments.
This paper solves the problem in an effective and practical
manner using active ultrasonic beacons at known
positions.  Although active beacons are at odds with
notions of complete robot autonomy in an unstructured
environment, they offer advantages of accuracy, simplicity,
speed and cost - factors of interest to industrial and office
applications, where the environment can be partially
structured.  The use of active beacons allows mobile
robots to perform adaptive and autonomous activities,
such as exploration, online path planning and obstacle
avoidance.

The concept of beacon systems for localisation is not
new [1, 2, 3, 4].  The system described in this paper is a
significant improvement over an earlier version [2] in
terms of update speed and accuracy, particularly for
moving robot vehicles.  The system in this paper takes a
different approach to the one in [1] where an a priori map
of a static  environment, containing passive ultrasonic
beacons, is assumed which does not require active

beacons.  The two approaches are complementary, since a
map of the environment can be established using the
system described here with an appropriate range finder[6].
Other localisation systems use beacons placed at known
positions in the environment:  [3] uses reflective strips in
the environment for a rotating laser mounted on the robot,
and [4] uses ultrasonic pulses from the robot with an
infrared return from the beacon.  The laser system [3],
although very precise, is considerably more expensive than
the ultrasonic system described here.  The beacons in [4]
are more complex than the beacons of this paper, since
they require infrared coded transmission in addition to
reception of ultrasonic pulses from the robot.  Reference
[4] provides a useful noise rejection approach similar to
that employed here.

The ultrasonic localiser of this paper has been
developed as part of an autonomous robot project
described in [6].  The localiser has been found to be both
robust and accurate for moving autonomous robot
vehicles.  This paper briefly introduces the hardware
structure of the system described more fully elsewhere [2,
5] and concentrates on the robust implementation of an
Iterated Extended Kalman Filter (IEKF) [11] to optimally
estimate the position and heading angle of the mobile
robot.  The results of validity and accuracy experiments are
presented to quantify the performance of the localisation
system.

2. Localiser Structure

The components of the localisation system are shown in
figure 1.  There are six ultrasonic beacons in the 12 metre
square laboratory connected to a transmitter controller
which sequences the firing of the beacons in a cyclical
manner 123456123 etc.  Successive beacons are fired 150
msec apart to allow settling of reverberation between
pulses.  A beacon is fired by transmitting a 40 kHz
2.5 msec burst.  Beacon 1 is distinguished by transmitting
two bursts 3 msec apart, as shown in figure 2.  The
measured positions and the approximate time between
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firing of the beacons are known to the ultrasonic receiver
on board the robot vehicle.

Figure 1 - Overview of Localiser (not to scale).

The receiver array is composed of eight ultrasonic
receivers arranged at 45 degree intervals.  The receivers are
interfaced to a microprocessor that logs arrival times and
amplitudes of beacon pulses and passes it onto a
Transputer for position and orientation estimation using
Kalman filtering.  The arrival time accuracy is limited by a
0.6 msec rise time of the pulse envelope, giving a  standard
deviation of arrival times of 0.2 msec.

Figure 2 -  Sequence of Beacon Firing.

3. System Modelling and Kalman
Filtering Equations

A brief review of Kalman filtering [1, 11, 12, 13] is
presented in this section using the notation of  [11].

3.1. Review of Kalman Filtering

Kalman filtering is an algorithm for optimally
estimating the n dimensional state of a system, denoted x,
given a set of measurements in the m dimensional vector
y.  The state for our localiser contains the position,
orientation and velocity of the robot, as well as state
information of the localiser itself, such as the speed of
sound and beacon cycle time.  The measurements are the
arrival times and amplitudes of the received pulses and the
dead-reckoning information obtained from the wheel
position encoders on the robot.

The localiser is modelled as a discrete time system,
where each sample time corresponds to the time of firing
of each beacon.  Thus the state is updated more than 6
times a second.  The Kalman filter problem is formulated
in terms of two equations: the state transition equation;
and the measurement equation.  In a linear system, this
takes the form:

x(k+1) = ΦΦ  x(k)  +  w(k+1) (1)
y(k+1) = M x(k+1) + v(k+1) (2)

where ΦΦ  is called the state transition matrix, and M is
called the measurement matrix, w(k+1) is state noise and
v(k) is the measurement noise with

E[w(k+1)] = 0,  E[ w(k+1) w(k+1)T] = Q(k) (3)
E[v(k)]      = 0,  E[ v(k+1) v(k+1)T]   = R(k) (4)

where E[  ] is the expectation, and Q and R are diagonal
variance matrices of the state and measurement noise.
Both Q and R are assumed to be known or can be reliably
estimated online.   The Kalman filter has two steps per
measurement cycle: i)  state prediction,  ii) measurement
processing.

3.2. State and Error Prediction

The system modelling in the state transition equation (1) is
used to predict the next state.  Given the state at time
sample k, the state at time k+1 called x̂(k+1 | k) is
predicted:

x̂(k+1 | k) = ΦΦ  (k+1, k)  x̂(k | k) (5)

The predicted error covariance matrix can also be
computed at this stage:

P(k+1 | k) = ΦΦ(k+1, k) P(k | k) ΦΦT(k+1, k) + Q(k) (6)

3.3. Measurement Processing

The new measurement or observation y(k+1) is compared
with the predicted measurement, to form the observation
error or innovation, oe(k+1) :

oe(k+1) = y(k+1) - M(k+1) x̂(k+1 | k) (7)

The predicted state is added to a matrix-scaled value of the
innovation, with the matrix scaling factor called the
Kalman gain K(k+1):

x̂(k+1 | k) = x̂(k+1 | k) + K(k+1) oe(k+1) (8)

where the Kalman gain is given by:



 K(k+1) = P(k+1|k)MT(k+1) .

[M(k+1)P(k+1|k)MT(k+1)+R(k+1)]-1 (9)

The new state error covariance matrix is computed by:

P(k+1 | k+1) = [I - K(k+1) M(k+1)] P(k+1 | k) (10)

  = [I-K(k+1)M(k+1)]P(k+1|k)[I-K(k+1)M(k+1)]T +

         K(k+1)R(k+1)KT(k+1) 
(11)

where equation (11) is better numerically conditioned
than equation (10) [11, p270].

3.4. Extension to Non-Linear Problems - The
Iterated Extended Kalman Filter.

In practice, the state and measurement equations are often
non-linear and the state equation takes the form:

x(k+1) = f(x(k), u(k)) + w(k+1) (12)

where u(k) represents external inputs to the system.
The non-linear measurement equation has the form:

y(k+1) = h(x(k+1))  + v(k+1) (13)

When the system non-linearity is not "too severe", the
system can be linearised about an operating point, and the
linear Kalman filter equations applied.  The best operating
point can be obtained by iteration [11], giving  equations
known as the Iterated Extended Kalman Filter (IEKF).

3.5. Selection of the State Variables

The state vector should include all variable information
necessary to predict the next state of the robot and to
enable measurements to be expressed in terms of the state.
The robot position, (xpos, ypos),  velocity magnitude, v,
and direction, θθ , are incorporated in the state.  Also needed
is the state of the beacons, such as the beacon cycle time,
T, and the speed of sound, s.  These parameters are not
known precisely a priori, and are estimated online.  The
beacon firing time, t0, is incremented when each beacon

fires and needs to be present in the state vector, since the
measurement equation requires this information.  The state
vector is:

x = [xpos ypos v θ T t0 s]T (14)

3.6. State Transition Equations

The state transition equations (15) below define the
function f in equation (12) for the localisation system.

xpos(k+1) = xpos(k) + v(k) T(k) cosθ(k) 
ypos(k+1) = ypos(k) + v(k) T(k) sinθ(k) 
v(k+1)  = v(k)
θ(k+1)  = θ(k) + ∆θ(k)
T(k+1)  = T(k)
t0(k+1)  = t0(k) + T(k)

s(k+1)  = s(k)

(15)

The input ∆θ∆θ (k) is obtained from the dead-reckoning
system on board the robot and will be discussed in section
4.5.  The linearised state transition matrix ΦΦ  is the partial
derivative matrix:
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βfi
 βxj

 = 









1

0
0
0
0
0
0

   

0
1
0
0
0
0
0

   

Tcosθ
Tsinθ

1
0
0
0
0

   

-Tvsinθ
Tvcosθ

0
1
0
0
0

   

vcosθ
vsinθ

0
0
1
1
0

   

0
0
0
0
0
1
0

   

0
0
0
0
0
0
1

(16)

3.7. Ultrasonic Measurement Equations

Figure 3 - Measurement Geometry.

In this section, the arrival time of the pulses from the
ultrasonic beacons is derived in terms of the state vector x,
which defines the non-linear function h of equation (13).
Here the robot position and velocity are taken into account
as well as the state of the ultrasonic beacons.  The
subscript i is used to denote the beacon number from
which the pulse has been sent.  The distance from the robot
to the beacon is:

di = (xpos-bxi)
2 +(ypos-byi)

2 (17)

and the unit vector representing the direction from the
beacon to the robot is given by:

ui = 
1
di

 (xpos-bxi, ypos-byi) (18)

The arrival time of the pulse from beacon i is denoted by ti
and is expressed in terms of the firing time t0 :

ti =  t0 + tflight  (19)



where tflight  is the time of flight of the ultrasonic pulse to

the new robot position at time ti.  Assuming the robot

speed and direction remain constant during tflight

tflight   =   
di + tflight v(cosθ,sinθ).ui

 s (20)

solving for tflight   and substituting in equation (19)

ti  =  t0 + 
di

 s - v(cosθ,sinθ).ui
  =  hi(x) (21)

Equation (21) forms the measurement equation (13).
As pulses are received the measurement equation (21)
changes due to incrementing i modulo the number of
beacons.  Each measurement is treated independently and
hence the measurement vector is one dimensional.
Differentiating equation (21) gives the linearised
measurement matrix M:

M  =   
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(22)

A closed form solution for each component can be
obtained [7], for example:

βti
 βxpos

  =      
  uix  +  

v.(1 - u ix
2, -u ixu iy)

d i  (s - v.ui)
  

(s-v.ui)
(23)

where ui = (uix, uiy) and v = v (cosθ, sinθ).

3.8. Incorporation of Dead Reckoning Data

The dead-reckoning data is read in the incremental
form of robot angular velocity and robot speed, so that the
effects of drift are minimised.  The dead-reckoning
measurements are only accurate over short distances, and
accumulate error due to wheel slippage and deformation.
This contrasts with the ultrasonic beacon measurements,
which have random independent errors that do not
accumulate but are not smooth.  Thus the two
measurements complement each other.

The angular velocity data from dead-reckoning cannot
be expressed in terms of the state.  A more efficient
approach is to define an input to the state transition
equation for θθ :

θ(k+1) = θ(k) + ∆θ(k) = θ(k) + T(k) ω(k) (24)

where ωω(k) is the angular velocity at time step k.  The
speed of the robot is treated as a measurement since it is a
direct function of the state:

speed(k+1) = v(k+1) (25)

3.9. Rejecting Echoed Arrival Times

The pulse arrival time of an ultrasonic beacon is
sometimes delayed due to an indirect path incorporating
reflections off obstacles, walls, ceiling or floor.  This may
occur when the direct path is obscured.  These delayed
pulses will be referred to as echoed arrival times.

An echoed arrival time should be identified and
rejected, otherwise the IEKF will produce a grossly
erroneous state estimate or even diverge.  During
initialisation of the IEKF, all arrival times are assumed to
have a high variance.  This prevents echoed arrival times
causing divergence of the IEKF, but slows initial
convergence of the state.

Once the IEKF has converged sufficiently, echoed
arrival times can be identified from the observation error
in equation (7).  If the observation error is an outlier
statistically , the measurement is rejected.

3.10. State Transition Noise Variances.

The state transition variance matrix, Q in equation (3),
is assigned based on the robot motion type available online
from the path planner.  Four categories are used:
stationary, no acceleration, straight ramp and curve.  The
incorporation of the dead-reckoning heading information
as an input sets the heading variance to the square of an
offset plus a fraction of the angle increment ∆θ∆θ  of
equation (24).

3.11. Measurement Noise Variances.

The variance of errors in pulse arrival times is needed
by the IEKF ( R matrix).  A simple constant has been
employed to model the measurement noise variance.  More
complicated models have been suggested in [4] whereby
the standard deviation is a linear function of distance plus
an offset, to compensate for the inaccurate estimation of
the speed of sound in [4].  These models are not adopted
here since the speed of sound is estimated online.

The arrival time error variance was determined
experimentally by examining the observation error from
data received when the robot vehicle was stationary.  The
standard deviation was found to be approximately 0.2
msec and reasonably independent of robot position and
beacon identity.



4. Experimental Results and
Performance of the System

The localiser is mounted above the centre of the driving
wheel base of the Robuter mobile robot vehicle.  The paths
taken by the robot vehicle during several test runs were
recorded on the floor using a pen attached to the driving
wheel base.  The drawn paths were digitised at
approximately 50 points per path by measuring the x and y
coordinates on the laboratory with estimated accuracy of
10 mm.  The raw arrival times and receiver amplitudes
from the ultrasonic beacons and Robuter motion data were
stored in a data file.  The IEKF was run with the raw data
and the minimum signed difference (positive to the left)
between localiser and measured path was evaluated and is
referred to as the path error.

Figure 4 shows the path taken by the Robuter.  The
localiser path refers to the results of the IEKF process
with beacon, robot motion control and dead-reckoning
data inputs.  The times at corners are indicated for
reference purposes.  The IEKF is given 15 seconds in the
initialisation phase and converges to the correct position at
20 secs.  There is an offset in the first straight from t=35
to 51 due to further fine tuning of the IEKF state, but after
this the localiser path accurately follows the robot's true
path.   On corners the localiser path is on the outside.

The path error is plotted in figure 5.  The major
excursions occur on corners after the initial straight.  The
maximum error is limited to 100 mm, with a standard
deviation in path error from 20 seconds until 120 seconds
of 40 mm.
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Figure 4 - Actual Path and Localiser Path.

The heading angle of the path and localiser are plotted
in figure 6.  The localiser performs less accurately on
corners.  The reason for the path error and the heading
error on corners is apparent from figure 6 where ringing in
the actual heading angle of the PID controller of the
Robuter wheel locomotion is evident at the start and end
of corner movements.  The dead-reckoning information

used by the IEKF is the path commanded , not the actual
wheel increments which could not be easily accessed.
Evidently  the Robuter PID controller needs tuning.
Ideally the wheel increments should be read directly.
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Figure 5 - Path Error of Experimental Data.
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The observation errors in figure 7 indicate echoed
arrival times.  Those above 3 msec are rejected by the
localiser.  There are a few just below this threshold which
cause corresponding path errors  in figure 5.

The capability of the localiser to estimate the speed of
sound is shown in figure 8, where three different initial
estimates of the speed of sound were set, and all converge
on the same value in the end.  All initial standard
deviations were set at 5 m/sec.

Since it was discovered that the dead-reckoning data is
unreliable when the Robuter overshoots on corners,
results were analysed without this data [7].  The path error
standard deviation was 35 mm and actually less than that
with dead-reckoning measurements.   However, the
position error along the path (not measured) is strongly
suspected to be worse due to the noisier speed estimate
(not shown).  Also, the path error and heading estimates
were not as smooth.
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5. Conclusions

A localisation system has been presented which
successfully integrates both ultrasonic beacon data with
dead-reckoning data in a working mobile robot system.
Experimental verification of the system has been
performed.  The use of the Iterated Extended Kalman
Filter in real time proved effective for not only estimating
the position and heading, but also rejecting echoed arrival
data and providing an estimate of the uncertainty in the
localiser output.
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