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ABSTRACT

Thiy paper presents a novel sonar sensor consisting of
three transmitters and three receivers that can localise
and classify 3D targets into 16 different naturally
cccurring indeor classes. The sensor produces sub-
millimeter range and sub-degree bearing accuracies
using an aptimal matched filter time of flight estimator
up to a range of 6 meters. The sensor configuration,
hardware and processing are described.  Experimental
results from the sensor are presented.

1. Introduction

Ultrasound is an active, yet unobtrusive,
technique for robot sensing. Most research on sonar
sensing has concentrated on  two  dimensional
representation and sensing of the environment [1-11].
While important information is present in a 2D view of
the world, it is useful to investigate 3D sensing for the
following reasons:

® an accurate representation of the environment
requires 3D primitives, For example, 3D reflectors
not in the same horizontal plane as a 2D sensor can
cause measurement errors due to the assumption
that all reflectors are in the same horizontal plane.

s less opportunity exists in 3D sensing for incorrect
measurement association with a map and incorrect
measurement fusion with other sensors

e robust permanent 3D natural beacons can be
selected more easily. Examples are the ceiling wall
intersections of a room,

Three dimensional sonar target classification based on
pulse amplitude measurements [12] and threshold based
time of flight [13] have been developed. Other
approaches to 3D sonar sensing are reported in [14-16].
We present a new more accurate and robust device
based on extending a 2D sonar system proposed in [3],
to perform three dimensional sonar target localisation
and classification. The accuracy 1s derived from the use
of wide bandwidth transducers and optimal arrival time
estimation with match filtering and pulse shape
madelling. The sensor is intended for mobile robots
operating in indoor environments and can classify
targets into 16 distinct classes. Accurate range, azimuth
and elevation angles are estimated by the sensor,
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The paper is organised as follows: In section 2,
we review the approach of classifying 2D targets that
forms the basis of the sensor presented here. In section
3, 3D target classifications are discussed and the 3D
sensor is described in section 4. In section 5,
experimental results obtained from the sensor are
presented and section 6 concludes by highlighting
applications of the sensor and future work.

2. Sonar Sensing in 2D

A sonar sensor that localises and classifies
targets in 2D was introduced in [5, 17]. As our 3D
sensor is an extension of the 2D work, a brief outline of
the 2D sonar sensor 15 presented here,

The principle measurement used by this system
is the Time of Flight (TOF) of a transmitted ultrasonic
pulse to return to a receiver after reflecting off a target.
The TOF estimation is performed by finding the
maximum correlation between the received ultrasonic
pulse and a set of stored templates - also called a
matched filter. This TOF estimator is the minimum
variance estimator when noise is white and Gaussian
(18]. The templates are generated by carefully
modelling the effects that change the pulse shape from
the time of its transmission to its reception - such as
angle of transmission and reception and frequency
dependent absorption losses in air. By using a matched
filter, TOF estimation can be performed to a sub sample
precision. The Distance of Flight (DOF) is caleulated
by simply multiplying the TOF by the speed of sound.

2.1. Vector Receiver

Figure 1 shows two receivers RI and R2
separated by a distance 4. The DOF from the
transmitter T to the two receivers is ry and ry. Using
one receiver and thus one DOF we can ascertain the

distance to the transmitter.
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Figure 1: Vector Receiver



With both receivers and thus two DOFs r; and r,
we can determine the bearing angle ¢ to the transmitter
using

a_[—"_i‘ M

2 Ird
With both distance and bearing estimation, the two
receiver configuration is said to be a vector receiver.

However in this application, the transmitter does
not directly transmit to the two receivers. The
ultrasonic pulses reach the two receivers after reflecting
off targets. In this case, the distance and bearing
estimates made by the vector receiver is to the virtual
image of the ransmitter rather than the transmitter itself.
This is shown in Figure 2,
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Figure 2: Vector Receiver With Target

When there are many targets, each receiver may have a
multitude of DOF estimates for each pulse that is
transmitted. The problem arises of pairing the many
DOF estimates from the two receivers such that they
correspond Lo the same target. By reducing the receiver
separation {d} this problem is greatly reduced because
both DOFs that form a pair will have similar values.
The increased accuracy of DOF estimation, which is
obtained by the correlation technique, provides
sufficiently accurate bearing estimation with the spacing
reduced to 35 mm.

2.2, Target Classification

Two transmitters and two receivers are required
to classify targets into planes, corners and edges.
Figure 3 shows the 2D sensor array where TRO is a
transceiver, R1 is a receiver and T1 is a transmitter.
The receiver of transceiver TR0 and the receiver R1
form a vector receiver. The transmitter of transceiver
TRO and the transmitter T1 are spread apart to enable
better performance in target classification.

Figure 3: 2D Sensor Array

2.2.1. Detecting Planes, Corners and Edges

Figure 4 shows the 2D sensor array encountering
a plane. The label T/V represent the transceiver TRQ
and the receiver R1 while T1 is the second transmiteer.
The ry is the distance from TRO to the virtual image of
TRO. The DOF from R1 to the virtual image of TRO is
not shown for simplicity. Using equation (1), the
bearing o, from the vector receiver to the virtual image
of the T1/V' can be determined. Using ez and r,. an
estimate for the angles B, o', and the distance ¥y can be
made from the equations below,

B o = ™ Beosig
e £l = bsiney

Captane = 01 + P

fép;w =1|(J1 +bsinoy ) + {bc:us[):tj2 (2)
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Figure 4: Geometry For Plane Reflector

Far each r,, where 1 is the DOF from the virtual image
of T1 to TRO, an estimate of o, can be obtained. If
there exists an (ry,0,) within a certain error bounds to
estimates (r'y,pn. @ 2plane) then the target is classified
as plane,

A corner can be analysed in a similar fashion
except the virtual image is reversed and the angle
Brorasr = ~Bpiwer For anedge g =0. The angle p and
ranges from each transmitters can be wused o
discriminate target types. Note that in the case of
corners and edges, we have no way of determining their
orientation since the virtual image is invariant under a
rotation about the corner and edge.

3. Nomenclature of 3D Targets

There are three basic target categories: planes,
lines and poinis. Line targets are formed by the
intersection of two planes. Point targets are formed by
the intersection of three planes. Line and point targets
can be subdivided into corners and edges. When
viewed from the sensor, a comer is a concave
orthogonal intersection of planes whilst an edge is the
convex intersection of planes.
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As the predominant planes that exist in rooms are
vertical and horizontal, we constrain ourselves to these
two target types and their intersections. Figure 5 depicts
an instance of each target type, A Vertical Line
Corner is a concave intersection of two vertical planes.
A Horizontal Line Corner is concave intersection of a
vertical and a horizontal plane. A Horizontal Line
Edge and a Vertical Line Edge are the same as their
Line Corner counter parts but the intersections are
convex. A Point Cormer is a concave intersection of
two Vertical and one Horizontal plane. A Point Edge
is the same as Point Corner but the intersections are
convex. Finally, Complex Point is a point that has a
mixture of concave and convex intersections of planes.
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Figure 5: Simplified Room Scenario
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Figure 6: 3D Sensor Array

4. 3D Sensor Configuration.

The sensor configuration that we use for 3D
target localisation and classification is shown in Figure
6. This consists of two 2D sonar arrays with one
mounted in the horzontal direction and the other
maounted in the vertical direction. The transceiver TRO,
the receiver R1 and the wansmitter T1 form the
horizontal sensor array while TR0, R2 and T2 form the
vertical sensor array.

n¥ ® target
x T | .
—@ prjection
Sensor g ‘c\ﬁﬁ.{get_:.
array 2D Projection Plane 5

Figure 7: 2D Projection Plane
4.1. 3D Target Localisation

Figure 7 shows the 2D sensor array with its
associated projection plane. It projects the target from
the 3D space onto a horizontal plane,

Figure 8 shows the 3D coordinate system. The
3D sensor uses the receivers RO, R1 and R2 to form a
3D vector receiver. The receivers RO and R1 estimate
the horizontal bearing angle o whilst the receivers R0
and R2 give the vertical bearing angle .

Y targei

Figure 8: 3D Coordinate System

4.2. Target Classification in 3D

Using the 3D sensor configuration, we are able
o make a 2D classification of both the herizontal and
vertical sonar views of the target. Each target is
classified as one of either a plane, comer, edge or
unknown for both its vertical and horizontal views. As
a result, there can be sixteen different target types of
which nine are positively classified in both views, six
are semi classified, while one is totally unclassified.
Table 1 shows the nine positively classified targert types
and the appropriate classifications made by the vertical
and horizontal sensor arrays.

When the sensor locates a 3D plane, it determines the
normal and a point on the 3D plane. As a result of the
sensor array orientation - relative to the room, no
reflection of ultrasonic pulses can reach it from
horizontal planes. It follows that vertical planes are
predominantly seen by the sensor.

When the device detects a horizontal line corner
or edge, it is able to completely establish the 3D
loeation of the line which is created by the intersection
of the two planes. However it cannot ascertain the
orientation of these intersecting planes. Assuming that
the room consists of predominantly horizontal and
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vertical planes, we can determine the erientation for the
intersecting planes. However, this strategy will fail
when planes are not always horizontal or vertical,

When locating vertical line corners and edges,
we can similarly establish the location of the line in 3D,
however unlike its  horizontal counterparts, no
assumptions can be made about the erientation of the
intersecting planes. Furthermaore with these two vertical
line target types, the sensor is able to detect any off-
vertical slant in the line target as long as the line is
contained in a vertical plane that includes the y-axis. A
slanted vertical line that meets the above constraint is
shown in Figure 9. This localisation property 1$
position dependent. A slanted vertical line may be
detected with the sensor in one position while it may be
missed if the semsor observed it from a different
position.  Although the detection of slanted vertical
lings is position dependent, the detection of absolutely
vertical lines which is a subset of slantad vertical lines is
independent of position. These absolutely vertical lines
are the more commonly cbserved target Lype in indoor
SCENArios

Table 1: Target Classification

Horizontal Vertical 1D Target Classification
Sensor Sensor
Classification | Classification
Planc Plane 3D Plane
Plane Corner Horizontal Line Corner
Plane Edge Horizontal Ling Edge
Corner Plane Vertical Line Comner
Corner Carner Corner Point
Corner Edge Complex Point
Edge Plane Vertical Line Edge
Edge Comer Complex Point

t Edge | Edge Edge Point

A Slanted Vertical
Line Edge

Figure 9: A Slanted Vertical Line

In detecting point cormers and point edges, the
device returns the 3D position of the point. It does not
fix the orientation of the three planes whose intersection
created the point. It may be generally assumed that ane
of the planes is horizontal and the other two a vertical.

5. Experimental Results

Polaroid 7000 series ultrasonic transducers were
used in the sensor array. A photo of the sensor aray
and the analogue interface clectronics is given in Figure
10, A custom designed data capture card was built to
acquire the complete ultrasonic echoes.  The data
capture card consists of three 800 kHz 12 bit analogue
1o digital converters, A computer based on the Intel
486DX/66 was used to perform all computation. The
results were taken with the roem temperature varying
between 20°C to 22°C while the relative humidity
varied from 34% to 40%-.

Receiver & Transmitter
Interface Circuitry

Figure 10; Photo of the sensor array and analogue
electronics

5.1, Field of View

The regions in which the sensor localises and
classifies targets was determined experimentally and the
results are shown in Figure 11. Within the region
targets are localised and completely classified more than
50% of the time without ever being wrongly classified.
“The axis labelling convention is shown in Figure 8.
Figures 1 1(a) and {b) show that hoth vertical planes and
vertical line corners can be detected to approximately 6
meters. The closest that these targets can be detected 15
limited by the saturation of the receiver amplifiers
which occurs at 0.5 m. Figure 11(c) shows the region of
detection for a comer point. The comer point Wwas
located 380 mm below the xz-plane {0 model a sensor
mounted on a robot.  This results in reduced echo
energy and consequently the region of view is less than
that of a vertical plane. The region of view for 2
vertical line edge shown in Figure 11{c) was obtained
using a cylinder with a diameter of 35 mm. The edge
type targets have a smaller region of detection as they
return little energy.
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Figure 11: Field of View Resulis

5.2. Standard Deviation of Range and
Bearings

The absolute accuracy of the 2D sensor
configuration was investigated in [5, 17] and we will not
reproduce similar results for this system. The standard
deviation in parameters for consecutive measurements is
investigated. The results are tabulated below in
Table 2. They show the standard deviation in both
distance and bearing estimates for 20 consecutive
measurements of a vertical plane that is directly in front
of the sensor array. The standard deviation of the range
estimate is less than a millimeter while the standard

deviation in bearing estimation is less a few tenths of a

degree.

Standard Deviation Vertical Plane Wertical Plane
1.OEm away 3.22m away

Range (mm) 0.23 (.51

Angle afdegrees) 0.0823 0.1928

Angle B (degrees) 0.1626 0.2285

5.3. Speed of Operation

The dominant factor in the speed of operation of
the sensor is the time taken in estimating the time of
flight via correlation and increases with the number of
targets. A single plane at 3 meters takes 4 seconds to
localise and classify. This will be reduced significantly
when the computation is optimised.

Jmetes
Figure 12; Sensor sereen dump showing 4 different
3D objects localised and classified simultaneously.

Figure 13: A camera view of the scene in Fig 12.

5.3. Multiple Target Demonstration

The sensor has the capability of simultancously
localising and classifying multiple targets with one
measurement cycle. Figure 12 shows the sonar view of
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the multiple target scene and Figure 13 shows the more
conventional visual view of the same scene from a
camera mounted on the sensor.

6. Concluding Remarks

We developed a sonar sensor that can localise
targets in 3D to sub-millimeter accuracy in range and
less than (.2° angle. The targets are classified into
sixteen types of which nine types are classified without
unknowns in either horizontal or vertical views. The
region of detection is suitable for indoor mobile robots,
The sensor can be used for robot lecalisation and map
building. To fix position in a known floor plan, we
need two (x,z} independent target observations. By
allowing the sensor array to rotate about the y-axis, we
increase the likelihood of observing these two required
largets.

For 2D map building tasks, the sensor will
improve the results obtained by its 2D predecessor.
When creating 2D maps, the 2D sensor was not able to
verify whether targets detected were in the same
horizontal plane as the sensor.

With the increased accuracy and reliability that is
afforded by the 3D sonar, sensor data fusion with other
information sources is being considered. Future work
will concentrate on fusing a camera view with the sonar
measurements.
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