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ABSTRACT

We describe a sensor that fuses sonar and visual dara o
create a three dimensional (309 moedel of the environment
with application 10 robot navigation. The environment is
characterized by a set of connected horizontal 2nd vertical
lines. 3D sonar data is augmented by making dedyctions
nceming the conmection and definition of lines in 2D
visual data. Amy errors that may resmlt from incorrect
interpretation of the 2D camera data, such as false
connections berween lines, can be detected by moving the
tobot Experimental results from the sensor are presented.

1. Intreduction

The sensing and modeling of the environment are importan:
in realizing an auwtonomous robot vehicle. Due o
inadequacies of single sensor systems, the use of maltiple
sensor dala fusion is increasingly popular. The choice of
combining somar and visual data in this paper is motivated
by the complementary natre of the we information
streams. 'We present 2 aovel method of combining sonar
and visual data to create a 3D sensing combination that
models structwred indoor environments. The senser
combination is intended for autonomous mobile robots
operating indoors on problems such: as localisation and map
building. Few systems based on the fusion of sonar and
fsuzl data have been reported n the literature (2, 9, 11],
e mainly 1o poor sonar sensors. This paper reports high
resolution and accuracy, due to the state-of-the-art 3D sopar
sensor {3, 7, 8] and the novel vision fusing strategy.

The structure of the paper is as follows: “Section |
ntraduces sensor data fusion and ‘the motivation for
cembining sonar and vispal data. In Section 2, an overview
of the 30y environmental modeling sechnique iz presented
and the assumptions employed are stated. Seetion 3 details
the algorithms and their limitations, In Section 4, the
perfarmance is  illustrated with experimental results.
Finally, conclusions and extensions are presented in
Section 5.
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1.1. Fusion of Vision sand Sonar

Sensor data fusion is the combination of twe or more
information  streams. By  exploiting redundancy  and
complementarity of information, semsor data can be
improved by redecing unceriainty and processing time, and
by inereasing accuracy and diversity [10].

Data from a CCD camera represents a 2D projection
of 3D features in the environment. Stereoscopy, laser strip
lighting and other techniques rely on wiangutation in 2D to
extract the third dimension of range. Conversely, a sonar
sensor is intrinsically a detector of the range and employs
miangulation and data association on three reccivers lo
resolve the two bearing angles to targers. By combinin 2 the
twe informaiion streams, we hope 1o exploit the accurate
range sensing capability of sonar sensor while capitalizing
on the detailed bearing perception afforded by 2 camera.

Processing of visual data can be time consuming as
algorithms tend to maintain and exploil the 2D relationships
that exisis in raw visual data, In contrast. sonar sensing
relies on specular reflections and diffraction from largens.
For the sonar sensor to detect a targel, a reflected pulse of
sufficient amplitude must reach the sensor array. This can
oceur if a smooth surface presents a sufficiently large arca
perpendicular to the direction of the sensor, or an edge 15
sufficiently close to diffract back enough enerzy or a right-
angled concave comer is within the beam width of the
sensor. As a consequence, the sonar sensor usually detects
relatively few targets compared 10 a vision system. The
processing of the sonar data is fast compared to vision due
to the sparseness of the sonar data. The possibility then
arises for sonar to speed up the processing of the visual
data by selecting corresponding tegions of interest in the
raw visual data, or conversely the dense visual data can
enrich the sparse sonar data. We take [he latter approach in
this paper.

Lidle esearch has been reported on the fusion of
vistal and senar data. The fusion of monocular image data
and sonar scans is discussed by Jones er af (9], where the
low aztmuth resotution sonar range data is combined with
vertical edge features from a camera to provide an
environmenial model. Matthies and Elfes [11] describe the
integration of senar and scanline stereo in creating an
occupancy grid for mobile robot mapping. Tn that system,
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the complementary nature of the information provided by
scanline stereo and sonar is exploited. The scanline stereo
detects and localizes boundaries but misses unmarked
surfaces. On the other hand, the sonar sensor detects broad
surfaces and misses boundaries.  Abidi [2] describes the
fusion of stereo vision and ultrasonic range. The greatest
eTrOr in slereo measurements are in the range, whilst the
ultrasonic range dala has good range measurements, but
lacks lateral resolution due its wide beam pattern, These
two complementary information sources are combined 1o
improve the 3D coordinate estimate. The work presented
here uwses more refined sonar sensing technigues which
provide accurate range, bearing and target lype estimates.
Thus the sonar sensing allows for more robust and accurate
sensor data fusion with vision than previous techniques.

2. Environmental Modeling Approach

In this section, we present an overview of the 3D
environmentzl modeling approach using sonar and vision.
As most indoor environments contain an abundance of

zontal and vertical lines, the environmental model is
cnaracterized using these features,

Feceiver & Transnutté’r
Interface Circuitry

Figure 1: Sonar Sensor and CCD Camera

2.1. Sonar and Vision Pre-processing

A sonar sensor has been developed to localise and classify
targets into 16 different target types [4,7.8], including
targets seen by a camera as horizontal lines, vertical lines
and points in an indoor environmenl. The sonar sensor
consists of three receivers (bottom left in Figure 1) and
three transmitters (transceiver bottom lefi. top left and
bottom right in Figure 1). The three receivers enable 3D
location estimation by providing range plus vertical and
horizontal bearing information.  The three lransmitters
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provide complementary target information allowing target
classification.

Figure 2 shows a simplified room scenario with an
instance of cach of target type that the sonar sensor is able
to distinguish, Importantly, it classifies targets seen as
visual lines into one of four catepories: Horizontal Line
Corner, Vertical Line Corner, Horizontal Line Edge and
Vertical Line Edge. Furthermore, it classifies visual points
into one of three categories: Point Corner, Paint Edge and
Complex Point.

Figure 2: Simplified Indoor Scene

With the line type targets, the sonar sensor locates a 3D
point in the direction normal to the ling, defined by range,
r, vertical bearing, 0, horizontal bearing Y on the line. For
the point type targets, the sonar sensor locates the 3D

position of the point {r, G. 7). The coordinate system is
illustrated in Figure 4.

The visual data is obtained using a greyscale CCD
camera and is processed using a Hough transform to extract
a set of equations of all lines that occur in the image. To
facilitaze data fusion, a relationship between a sonar 3D
point, (r. &, Y}, and the image pixel (Px, Py) is established.
Consequently, a sonar point ¢an be transformed into a pixel
location on the camera view. Conversely, a pixel can be
transformed to a line in 3D sonar coordinate space.

An outline of the fusion process is shown in
Fagure 3. Before attempting any fusion, the raw sonar data
and the raw visual data are processed individually to a high
level. The high level sonar data consists of 3D localization
and classification information of detected targets. High
level visual data consists of bounded straight lines. An
unbounded line descriptor is one which identifies all points
on a line. A bownded descriptor is an unbounded
descriptor which also includes end points of the line.
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Figure 3: Sensor Data Fusion Model

The environmental modeling starts with the
processed sonar data and successively incorporates straight
lines from the high level visual data. Three stages are
employed: The first stage relies solely on the processed
sonar data to create an initial map. The sccond stage
assoclates  sonar  targets  with  corresponding  visual
counterparts and this introduces new information provided
by the visual data, such as end points of lines. In the final
stage, the environmental map is expanded by iteratively
combining the remaining visual data.

I target
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Figure 4: Sensor Coordinate System

2.2, Modeling Assumptions

An indoer environment composed of mainly horizontal and
vertical lines is assumed in this paper, such as an office or
warchouse.

The modeling system often encounters redundant
location information for the same target from sonar and
vision. For example, a point target has an estimated 3D
sonar location {r, ., %} and vision location at pixel (Px,,
Py(). The 3D position of the point can be estimated from
the sonar data alone. The pixel (Pxy, Py,) provides

redundant information and could be incorporated into the
position estimate using techniques such as Bayesian
statistics or Kalman filtering. However the accuracy of the
sonar bearing angles has been established 1o be less than
0.02° [4,8] compared to a pixel bearing angle error of half
the angular arc of a pixel, or 0.16°. In practice the pixel
bearing is  worse still due to noise in estimating edges in an
image. Consequently data fusing will be heavily biased
towards the sonar data and we simply choose the sonar data
in preference to the vision where redundancy occurs.

3. Environmental Representation

A polyhedral environmental representation consisting of
line and point objects is a nawral choice in this application.

Table 2: Object Types

Line Object Type

Description Data Element
Line Identification L
Mumber

3D coordinate I, oLy

End Fixels 1Px), Py;) and {Pxa, Py,

Ultrasound Definitions | Def}oeo om0 and Def,.o.

Simple Definition Defgnne

Termination Points Py and Ps

Point Object Type

Description Data Element
Point Identification P
Number
3D coordinate r oY
Pixel [Px, Py}

Ultrasound Definitions | Defooono) and Defenica

Connecting Lines Li,Lpandls

The data structures for both line and point objects arc
shown in Table 2. A unique identification number is
assigned to each line object and to each point object. The
facility of maintaining the object’s 3D location and the
object’s position on the image is provided by separate
fields in the data structures. The line object data structure
contains a field to register its simple definition which
catagorizes the ling as lying in a horizontal plane, being a
vertical line or an anomalous line.

The connecting lines of a point abject identify the
lines which end at that point. This facilitates establishment
and maintenance of connections belween objects. Because
only horizontal and vertical lines are represented, the
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environmental data structure limits the number of lings that
can connect 1o a point Lo three. In most cases, a maximum
of twa horizontal and one vertical line will intersect at any
given point

3.1. Stage 1: Initial Map Creation

An mnitial map is created from sonar sensor target positions
and classifications for line and point objects. Plane largets
can alsa be stored, but are not combined with vision with
the current implementation. The connections between the
objects are investigated by testing whether point objects are
end points for line objects. A threshold on the distance
between a point and the unbounded line is used to establish
an end point relationship.

3.2, Stage 2: Correspondence

In this stage, the sonar line objects are combined with
corresponding lines from vision. The first step identifies
which bounded vision lines correspond to each 3D sonar
line.  This is the only stage where redundancy exists
between vision and sonar. The map is refined with the end

. points obtained from vision by projecting them onto the 3D
sonar line.

3.3. Stage 3: Iterative Processing of
Remaining Visual Data
In this stage suitable camera lines are iteratively

tneorporated into the environmental model. At least one
line object merged from sonar and vision must be present Lo
start adding camera lines.  The first step is to identify the
most sustable camera line to add to the environmenial map.
Thus is chosen as the line that provides the best connectivity
lo existing objects. The process stops when no suitable
camera lines remain.

By establishing the most suitable camera line Cp.a
connection between Cp and a line abject L; through the
point object P; is identified. Consequently, when creating
this new line object from Cy, we know it will terminate a1
one end with an existing point object Pi. We refer to this

_condition as a single ended constraint on the new line
abject. Furthermore, we must determine if the second end
of the new line object is constrained. The connectivity of
the camera line Cy is tested with all other existing line
objects. [If a line object Ly, is found such that it connects
with the other end of the camera line €y at the end point

object Py, (where Py # Pp) then the two ends of the camera
line are constrained. We refer to this condition as a double
ended constraint on the new line object. The process of
incorporating a new ling object into the environmental
model depends on Cy having a single or double coded
canstraint.

With a double ended constraint on the cumera line
Cy, both end points already exist and a new line object only
is added. If Cy possess a single ended constraint, then an

689

point object is also created corresponding to the end of the
line. Note that this requires the simple definition (vertical
or horizontal) of the line 1o establish the 3D location of the
new objects using only the 2D camera line Cy. The simple
definition of the line must be inferred from the 2D camera
line Cp.. We now derive a method for achieving the simple
definition.

The orientation of camera lines generated by vertical
and horizontal 3D lines are first derived. Using the
coordinate from of Figure 4, the parametric equation of a
vertical line is:

x=xsy=(h-yh+y.z=z (n

The gradient of the line projected onto the camera plane,
dxfdyp, is zero, as shown below:

il

= =0

dt

(#3]

i

Thus any 3D vertical line will always appear vertical an the
camera projection. The gradient dxp/dyp, of a 3D horizontal
line on the camera projection plane can take any value
including vertical as accurs when the horizontal line passes
through the camera focal point. The gradient can be zero
only when either v is zero or it approaches infinity. This
implies that a horizontal line can never cross the line Yp=0
These results show that the definition of the new line object
as horizental or vertical from its eamera line Cy, alone can
lead 1o errors, A heuristic is employed to categorize the
new line object in most situations:

! If Cy is vertical then the new line ohject is defined as
verfical.

2. Otherwise, If C does not pass through the line ¥p=th,
then define as horizontal,

I Otherwise define as anomalous,

If indoor environments consist predominantly of vertical or
horizontal lines, the rules will proficiently evaluate the
definition of the new line object. However, errors in
definition can occur, and are discussed in [4].

Onee a definition for the most suitable camera line
Cy is made, we are able to establish the 3D location of the
new objects. The procedure iterates until no more suitable
camera lines remain.

3.4. Errors and Limitations of Stage 3

Errors can occur as a result of the heuristic procedure to
infer 3D classification from 2D camera data.  Also it is




possible from a camera view to falsely connect two objects
which are really at different ranges. Both these classes of
errors can be quickly and easily detected and corrected by
moving the sensor as described in detail in [4].

4,  Experimental Results

A corner ohject with an overlapping plane is shown in
Figure 5. The sonar sensor locates the vertical line corner
of this structure. The lines extracted from the image are
shown in Figure 5. Lines labelled 1 to 4 are not included in
the final environmental mode] since they are not connected
directly or indirectly to a sonar line or point.

senar venical
line comer
= TT—a

sanar point camer

Figure 5: Original Image and Lines Extracted by Image
Processing

The remaining lines in Figure 5 are correctly established in
their 3D positions,
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A second example illustrates the accuracy of the
sensor with results from the target shown in Figure 6. The
lines extracted from the image are labelled with numbers 1
to 7. Data is collected from 10 measurements, By
physically measuring the lengths of lines and comparing
them with the experimentally produced wvalues, the errors
list in table 2 is obtained.

senar verlical
line comer
T

SONEr Point corner

Figure 6: Camera View and Lines Extracted

The worst case error in measuring the length of lines is less
than 4.2%. As expected, this error oceurs far away from
the original sonar data. The worst case standard deviatuon
in measuring the length of a line is less than 2.6 cm or 5%
of the line length.



Table 2: Statistics of Measuring the Length of a Line
from i} Samples.

Line | Physically | Mean from | St. Dev. Error
Measured Sensor Sensor %

1 (0.499 m 0.500 m 00075 m 0.213

2 (493 m 0.498 m 0031 m 0.927

_ 1,498 m 0484 m 00104 m -2.767
4 0493 m 0.502 m 0.0141 m 1.760

3 0496 m 0.504m | 0.0235m 1416

6 0.499 m 0478 m | 00258 m | -4.131

7 149 m 0.509 m 0.0255 m 2.583

With a 486 66 MHz processor, processing time is of the
order of 90 seconds for this 3D reconstruction task.. The
major part of this time 1s spent in vision processing. The
ume taken for the three stages of fusion is negligible
compared to the vision processing time.

5. Conclusions and Extensions

In this paper, we have described a technique that fuses
“sonar and visual data to create a 3D environmental model
with applications to robol navigation.  The model
characterizes the environment as a sct of connected
horizontal and vertical lines. Starting with sparse sonar
observations, the environmental model 1s expanded
successively 1o include lines seen in the visual data. The
calculations from 2D vision to produce 3D environmental
information are performed by making deductions as to the
connection and  definition of wvisual lines from the
msufficient 2D data.  Errors resulting from  wrong
deductions can be detected by maoving the robot to second
location,

The results suggest that the information gain
obtained by fusion of visual and senar data is significant
compared to each sensor acting alone. The accuracy of the
sonar sensor i locating 3D features is transferred to
corresponding objects in the camera lines, but accuracy
decreases as sibling objects are generated from the camera
lings without corresponding sonar data.

The vision processing is the bottleneck in terms of
processing speed. If the vision processing were moved to a
specialized DSP, the performance of this environmental
modeling scheme would be suitable for robot navigation
tasks.

Future work will attempt to include somar plane
targets in the fusion process since these occur frequently in
indoor environments. Experiments in robot map building
using the sensor are envisaged.
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