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Abstract— This paper addresses the problem of visual servo
control for a humanoid robot in an unstructured domestic
environment. The important issues in this application are
autonomous planning, robustness to camera and kinematic
model errors, large pose errors, occlusions and reliable visual
tracking. Conventional image-based or position-based visual
servoing schemes do not address these issues, which motivated
the proposed hybrid position-based scheme exploiting fusion
of visual and kinematic measurements. Kinematic measure-
ments provide robustness to visual distractions, and allow
servoing to continue when the end-effector leaves the field
of view. Visual measurements provide the complementary
benefits of accurate pose tracking and online estimation
of the hand-eye transformation for kinematic calibration.
Furthermore, it is shown that calibration errors in the focal
length and baseline can be approximated as an unknown scale
of the end-effector, which can be estimated in the tracking
filter to overcome camera calibration errors. The improved
accuracy and robustness compared to conventional position-

Fig. 1. Upper-torso humanoid robot for domestic tasks.

based servoing is demonstrated experimentally. is calculated directly from image plane measurements.
For humanoid control, the main drawback is the unpre-
|. INTRODUCTION dictability of trajectories in Cartesian space, particularly

To perform useful tasks, a domestic humanoid robofOr large initial pose error. Recent work shows that this
must be able to recognize objects and accurately contr§fn be avoided by decoupling orientation and translation
the relative pose of the end-effector. Object recognitiohd]- In position-based servoing [13], [14], the control
and tracking are discussed in our previous work [10]-rror is calculated from 3D pose parameters reconstructed
[12], while this paper addresses the problem of end-effectdfom visual measurements, which facilitates Cartesian path
control. If the joint encoders, camera parameters anBlanning. However, this approach is sensitive to camera
kinematic model are known, control is a trivial problem incalibration and the chosen pose estimation algorithm. Also,
inverse kinematics [1]. However, practical humanoid robotéN€ gripper is not necessarily maintained within the visual
are likely to violate these conditions. For instance, affordfi€ld, although solutions to this issue have been proposed
ability requires low manufacturing tolerances and cheaf?l- Other servoing schemes have been demonstrated, in-
sensors, while light-weight, compliant limbs are necessar§uding 2-1/2-D visual servoing [9] and frameworks based
for safety and low power consumption, but are difficultOn linear approximations [3]. A recent comparison revealed
to model kinematicallyVisual servoingovercomes these little variation in the stability, robustness and sensitivity to
issues by incorporating visual measurements of the engalibration errors of visual servoing schemes [4].
effector in the control loop, but faces significant challenges For autonomous planning, our humanoid robot must rely
in an unstructured domestic environment. In particularpn internal models to calculate the control reference. Cam-
large pose error and obstacles may render the end-effec®ia calibration errors thus influence positioning accuracy
unobservable, while clutter confuses visual tracking. regardless of the approach used, and must be addressed by

Visual servoing schemes are generally distinguishethe controller. Many servoing schemes emphasize main-
as image-basedor position-based and endpoint open- taining features within the field of view. However, the
loop (EOL) or endpoint closed-loogECL) [7]. An ECL  possibility of large initial pose errors and obstacles in
controller observes both the end-effector and target, ardpmestic tasks may result in unavoidable loss of visual
an EOL controller observes only the target while usingeedback. Thus, visual servoing for domestic tasks should
kinematic control. While ECL control is less sensitive toinstead be characterized by robustness to occlusions.
calibration errors, EOL is not affected by occlusion of the This work adopts position-based control, since humanoid
end-effector. In image-based servoing, the control errdiasks are naturally planned in Cartesian space [6]. Our
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proposed scheme achieves robustness to both calibration f;mera
errors and occlusions by fusing kinematic and visual WC .o @
measurements in a Kalman filter. Kinematic measurementsrignt 4’%

provide robustness to visual distractions and occlusiongamera

while visual measurements provide accurate pose tracking. ' h

This hybrid approach benefits of both EOL and ECL

control and offers a significant improvement over conven- "Ho:

tional schemes. However, since both camera and kinematic A
models are required, the influence of calibration errors is grepe?
two-fold. To facilitate reliable, long-term operation, the target\
proposed scheme therefore incorporates online calibration. object k SHg

Fusion of kinematic and visual measurements was previ-
ously demonstrated for control of a dextrous hand [15], and
our paper improves on this work by handling occlusions
and introducing online calibration.

The following section defines the configuration of our
robot, and the controller is formulated in Section III.
Robust end-effector tracking using visual and kinemati
measurements is described in Section IV, and Section ) _ _
details the experimental implementation. Finally, the result, ode; the velocity screw is transformed byis (see

in Section VI demonstrate the improvement of the propose! ] Eorlicran_ﬁ]orr:mg velo?t?/llsc.rte\;\_/) be::ct)rr](_a p;assmlg t.to the
scheme over similar position-based techniques. controfier. The fundamental imitation o this formutation 1S

the uncertainty ifVHg, which may be estimated by direct
Il. COORDINATE FRAMES AND NOTATION visual observation (ECL control) or kinematically through

In this paper, 3D points are represented in upper-case aidis and ®BHg (EOL control). The hybrid controller pro-
2D points in lower-case. Coordinate frames are specifie@osed in the paper fuses visual and kinematic estimates to
in superscript, such &X, and the homogeneous transfor-exploit the benefits of both ECL and EOL control.
mation matrixBH, transforms points from framé to B IV. ROBUST GRIPPERTRACKING
as BX = BHA”X. Our experimental platform (see Figure ' _ _
1) consists of a 3-axis stereo head and Puma arms, and! "€ Pose of the end-effector is robustly estimated by
Figure 2 shows the relevant coordinate frames. Fr@nse fusing visual and k!nemat|c mea;urgments inlemated
rigidly attached to the stereo cameras &wds attached to Exte_nded Kalm_an fie(lEKF), which is cpmmonly used
the base of the head, whitHc is parameterized by pan for visual servoing [13], [14]. In our application, t_he state
and tilt angles. The cameras are positioned in rectilineaf(k) consists of the end-effector pose and velocity screw,
configuration afX — +b. FrameB is attached to the Puma US€d to calculate the control error in equation (1), and
baseE is attached to the end-effect@,locates the pose of gddmonal parameters for online calibration as discussed

the object, ands describes the desired relative pose of thd" the following sections. Constant velocity dynamics are

object and gripper. The end-effector pose is equivalentl ssumed for the pose parameters, while the calibration
represented by the transformatidfHg or pose vector arameters are modelled as constants. Details of the IEKF

Wpe = (X,Y,Z,0,6,y), whereX, Y andZ are translations, equat_ions can.be found i.n [8]. .The following sectioqs
and Euler angle®, 6 and v represent orientation. describe the wsugl and kinematic sensor models which
are used to predict the measurement vegtpr) for a
Il VISUAL SERVO CONTROLLER given statex. Section IV-C then summarizes the practical
The controller in this work follows the formulation in implementation of the IEKF.
[7], with the addition of the grasp frame. The task is to,
control the end-effector to align the grasp frame with the ~ . .
object frame. The control error is the pose error between OUr Servoing framework uses 3D model-based visual

the grasp and object frames, given by the transformatiorif@cking with active artificial cues (LEDs), which are
more readily detected than passive markers. The manually

®Ho = (He®He) - WHo (1)  measured LED location&G;, i = 1...6, form the model
The above transformation is identity when the control tasfhoWn in Figure 3. The thumb and forefinger LEDs rotate

is achieved. For each new observationfip andWHg, @boutPs and Ps through angless and 63 respectively,
the controller calculates the velocity screi@,V)T of and are recalculated whenever these angles change. The

the end-effector that drives the pose error to zero. Usingleasurement model to predict the image plane projections
proportional control with gains and kp, the desired 9 iS formulated from the camera model as:

Fig. 2. Coordinate frames and transformations for visual servoing.

where CTq is the translational component &fHo and
éGGO,GAo) is the rotational component (angle and axis
9/f rotation). In practice, the Puma operates in “tool-tip”

Visual Measurements

velocity screw in the grasp frame is: LR = “RPCHWHEEG; (4)
G Gp G _ o
Q = ki’6o”Ao (2)  wherebRg; are the predicted measuremetéie is the
OV = k®To-°%Qx°To (3) predicted pose andRP are the camera projection matrices.
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calibration of f. Conversely, the verge and baseline are
poorly calibrated and vary as the head moves. Verge error
introduces a translatioh(v), which does not effect servo-
ing accuracy since the object and gripper are equally biased
when aligned. Thus, the main contributor to reconstruction
error is the uniform scal&; (b, v).
We now consider the gripper poinGj = (X%,Y,Z)".
To analyse the effect df1(b,v), we assum& G; =0 and
Fig. 3. Articulated model of active LED features for tracking.  the poseTe = (Xg,Yg,Zg)' is purely translational. Let
G =K1(Gj+Tg) represent the location of LEDs observed
by poorly calibrated cameras (that is, after scalinghy.
In real systems with imprecise camera models, thdneactual measurementsFg; are the projections o6;:
estimated pose is an unknown transformation of dee | . f T
tual pose, which we now examine in the following error ~ 9 = m(Kl(xﬂLXE)ib Ki(¥i+Ye)) (12)
analysis. To simplify the analysis, we ignore the predicted
state and kinematic measurements in the Kalman filter stalow, let Te represent the estimated pose. From equation
estimator, and consider a state estimator that minimizd4). the predicted (unscaled) measurements are:
onIy the sum of squared image plane errors, defined by L Rx f
TG = (X +Xe£b, Yi+Ye)"  (13)

)= 3 a0 ("pe). ta) + ¢*("6("pe)."g) (5) Zi+Ze
Substituting equations (12) and (13) into (5) and solving
whered(§,g;) is the Euclidean distance between the prethe minimization analytically, the optimal pose estimate is:
dicted and actual measurements. Consiet (X,Y,Z)" >
observed atx = (*x,'y)" andRx = (Rx,Ry)T. Assuming Te= F(Gi,Te) +4NZeb
pin-hole cameras with calibrated focal length baseline Kif(Gi,Te) +4NZeb
2b and zero verge angle (rectilinear stereo), the predicted where f (Gj, Te) = Xe Y XZ +Ye Y Y,Z — Ze(3 X2+ 5 Y?)

> KlTE (14)

measurements in inhomogeneous coordinates are: and N is the number of LEDs. From equation (14), the
LR f - intuitive resultTg = K3 Tg (ie. the estimated pose is scaled
TR = Z(X £b,Y) (6) by K1) only occurs wherN =1 or K; = 1. Otherwise, the

induced bias is a function of the model itself; the estimated

pose for two different objects at theameposition, and

in the presence of theame calibration errors, will be

o (xR by 4Ry, 2f>T (7) different. For visual servoing, the pose error may not
X—"X reduce to zero even when the task is achieved.

Now, let Zb*, f* andv* represent thactualbaseline, focal The above analysis suggests a solution to the problem
length and verge angle. When the calibrated and actuaf camera calibration errors, by simply estimating the

verge angle differ (violating rectilinear stereo) the actualinknown scalé; along with the pos&'pg in the tracking
measurementsRx are effectively rotated by — v*: filter. This is achieved by replacing equation (4) with

LRy _ f* ((X £2b*)cogv — v*) FZsin(v —v*), Y) LR (K1, WpE) = “RPPHWYHE - (K1FG;))  (15)

Zeogy — v*) £ (X £ 20%) sin(v — v*) To sufficiently constrain the scale, four or more measure-
Applying a small angle approximation to the above, subments are required with at least one feature on each image
stituting the result into equation (7) and taking a Taylomplane. Monocular measurements do not sufficiently con-
series expansion about= f*, b="b" and v = v*, the  strain the scale since the projection from a single camera
relationship betweeiX andX can be approximated as:  js non-invertible. Section IV-C describes how the IEKF
)A((b, f,v) ~ Ky (b,v)X +Ka(£)(0, 0, 2)T +T(v) (8) handles the state update when the scale is unconstrained.

taking the positive sign fot and negative foR. Then, the
optimal reconstruction from minimization @?2(X) is:

~

X =

where B. Kinematic Measurements
b—b* X2+ 72 The Puma controller reports the end-effector pose in the
Kilbv) = 14— =+ — (v~ v') (9 base frameBHg, from kinematic measurements. Thus, an
Ko(f) = (f—f%)/f* (10) appropriate measurement prediction is
T(v) = (v—v¥)(2b°X/Z, 0, 20T  (12) BHe = BHw"HE (16)

Since the LEDs occupy a small, distant volume, the termahere BHe is the predicted measuremeNYHg is the

(X2 4Z?)/2b*Z and D*X/Z are approximately constant predicted pose, anfiHy is the hand-eye transformation.

and equation (8) can be treated as linear. Typically, hand-eye calibration is performed once and then
Equation (8) reveals that focal length error scalesZhe assumed to remain constant. We propose the alternative

coordinate byKz(f), which can be neglected due to goodapproach of treating the hand-eye transformation as a
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dynamic bias between the kinematically and visually ob- | e
served pose. This is implemented by addfitdy to the prew
state vector, and dynamically updating the transformation E e
through equation (16). However, solving iy requires prann B |<J >
WHE to be sufficiently constrained by visual measurements. ’_| evimation [ | measurement
When the solution is unconstrainethyy does not partic- wio| | e L5 f -
ipate the state update, as described below. T e )M -
visual servo Cartesian
C. Kalman Filter Implementation ;I controller | &y Puma contollr >
EQ
During servoing, the IEKF is updated at the sample

rate of visual measurements. The state vector can now be
summarized ax(k) = (WpE(k),WfE(k), Bpw(k), Ky(k)" Fig. 4. Block diagram of visual servoing control loop.
whereWpg (k) andWig (k) are the pose and velocity screw
of the end-effector®py (k) is the hand-eye transformation predicted features measured features
(expressed as a pose vector) and s&algk) compensates . ] o
for camera calibration errors. Combining visual and kine- @ o g
matic measurements, the measurement vector can be writ- '
ten asy(k) = (“go(k),?go(K), ..., gs(K), Rge(k), ®pe (K)) "
wherebRg;(k), i =1...6, are the positions of the LEDs on A
the left and right image planes, afgg (k) represents the S aj 7
kinematic pose of the end-effector. Measurement prediction S '
is given by equations (15) and (16), and occluded LEDsSFig. 5. Associating LEDs and candidates based on global matching.
are excluded from the state update by setting a large error
variance for LEDs that are not observed.
As mentioned above, special care must be taken 1) ppg Once the pose is known, the hand-eye transfor-
constrain the estimated state. It is well known that 3D POSgyation is initialized aHy = BHgWHE?, whereBHE is
can be recoyered fro.m three monocular measurements, ?é'ported by the Puma controller.
though multiple solutions may exist [5]. However, monoc-
ular measurements do not constraa, while Bpw (k) V. IMPLEMENTATION
requires an estimate of visual pose. Furthermore, robust Figyre 4 illustrates the components of the controller.
LED detection relies on global consistency (see Sectiofctive visioncontrols the gaze direction to maximize visual
V). The following hierarchy of state estimators, based ofxformation. The control strategy depends on the pose
the number of visual features, and ng, is adopted t0  error: when the error is large, the cameras track only the
ensure only constrained parameters are updated: object (with EOL visual servoing), while the mid-point
« N <3 and ng < 3. All visual measurements are petween the object and gripper is tracked when the error
discarded due to possible association errors and the small. Gripper measuremeritlentifies the LEDs on the
IEKF uses only kinematic measurements. gripper using the process below, which are fed along with
e N >3 or ng >3 (but not both): Three or more kinematic measurements into tip@se estimatiorblock.
monocular measurements sufficiently constrain th@bject trackingsimilarly estimates the pose of the grasping
pose and hand-eye transformation, but not scale. target. Thevisual servo controllercalculates the pose
« n_ >3 and ng > 3: Sufficient measurements exist to error and velocity screw, which is finally actuated by the
constrain all state variables. Cartesian Puma controllerThe control cycle continues
When necessary, state parameters are excluded from thetil the pose error is sufficiently small.
state update by setting the corresponding rows and columnsStereo images are captured at 25 Hz and 3288
of the measurement Jacobian to zero. pixel resolution and processed on a duel Xeon PC. The
Since the IEKF solves the non-linear system equationsain problem is to measure the position of each LED
numerically, a good initial state estimate is required. If then the presence of occlusions and background clutter. The
hand-eye transformation is already known from previouvackground is discarded by identifyingegion of interest
trials, the initial pose is calculated from kinematic mea{ROI) as the bounding box enclosing the predicted LED
surements, otherwise an autonomous calibration proceduiations. A two step process is then applied to detect LEDs
is executed. Calibration begins by scanning the workspade the ROI. First, colour filtering produces a binary image
for the colour of the LEDs. To avoid association errorsjdentifying red pixels, and the centre of mass of connected
the LEDs are then individually lit and measured in succesblobs serves as initial LED candidates. The candidate
sive frames using colour filtering and image differencingassociated with each LED (ie. thessociation problein
Finally, the initial pose and scale factor are estimated bis identified using a global matching algorithm, which
minimizing equation (5) using the Levenberg-Marquardis more reliable than closest-point matching but cheaper
algorithm, with the scale initially set to unity, orientation than a full search. The process is illustrated in Figure 5;
to zero, and translation estimated from the average positidhe associatiors;; between LED§ and candidate; is
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TABLE |
EXPERIMENTAL POSITIONING ACCURACY

Controller  er var(er) ey var(eg)
(mm) (mnd)  (rad) (rad)
proposed 54 0.4 0.11  0.003
ECL 294 0.9 022 0.01
EOL 54.5 1.6 0.18  0.008

(a) Proposed controller. (b) EOL controller.

Fig. 6. Pose of object and gripper at completion of servoing task.

supported by other prediction/candidate pairs with similar

relative displacements. In this exampdg, is supported by

three pairs, includingy, andg, with matching displacement Fig. 7. Stereo image of final pose at completion of the servoing task in

VeCtorSaik and djl- The algorithm searches for all gOOd the presence of visual distractions and occlusions.

associations and determines the largest self-consistent set.

At least three self-consistent associations are required for

sufficient confidence in the measurements. controller is bounded only by the servoing termination

threshold. The improvement over ECL control indicates

that calibration is important for accurate visual servoing,
The proposed method was tested using the positionirgnd can be achieved using the proposed online methods.

task illustrated in Figure 6(a). The target consists of tw

coloured markersA and B, and the goal is to centra B Tr_acklng Robustnfess _
between the thumb and index finger, while aligning all This second experiment tests our controller in the pres-

points collinearly. To achieve this goaG is placed at ©€nce of poor tracking conditions: the end-effector is ini-
the midpoint betweeG; and Gs with the y-axis pointing tially outside the field of view and &irtual 3D obstacle

towardsGs, andO is centred aA with the y-axis pointing is rendered on the Ieft.image plane. Figure 7 shows the
towards B. After completing each trial, the positioning completed task, and Figure 8 plots the translation error

accuracy is measured as the translational ezrdoetween and estimated scale. Scale estimation only commence after
A and the midpoint between the fingertips: the first three seconds, when the gripper enters the field

of view. After six seconds, the gripper is obscured by the
(17) virtual obstacle and the scale parameter remains fixed at the
most recent estimate (hand-eye transformation estimation
continues based on the fixed scale). The controller achieves
a final pose error oér = 10.9 mm andey = 0.087 radian
r&ﬁe virtual obstacle is removed for these measurements),
which is only a small reduction in accuracy from the ideal

VI. EXPERIMENTAL RESULTS

1~ . -
er = '2(G3+G5)A

whereﬂ, §, (33 and (35 are calculated from stereo mea-
surements averaged over a ten frames. The rotational er
gy is the angle formed by the line&\( B) and Gs, Gs):

.[ Gs—Gs B-A @ conditions considered in the previous experiment.
€ =C0S | ——— —— o
|Gs—G3| |B—A] C. Effect of Camera Calibration Errors
A. Positioning Accuracy Calibration errors are now deliberately introduced to test

. . the bounds of the error model in Section IV-A. The cali-
In this experiment, the proposed controller was com-

pared to conventional ECL and EOL schemes. The ECL
controller was implemented by removing the scale and

kinematic parameters and measurements from the 1EKF, izz - p— 1:

and the EOL controller was implemented by discarding ‘ Y
the IEKF and using only kinematic measurements. For
each case, five trials were performed with an initial pose
error of about 100 mm and 0.25 rad (the camera and target™ =
both initially visible). Figure 6 shows the completion ofa ™o 2 « & & 1 o 2 4« & 8 1
typical trial for the proposed and EOL controllers, with the Tme e Tme e
estimated gripper overlaid in yellow a@andG indicated

in white and red respectively. Table | shows the average
final pose error and error variance. As expected, accuragy.
is lowest for the EOL controller, while the proposed

150 . 1

Translation Error (mm)
Scale

(a) Translation error (b) Estimated scale

. 8. Controller performance in the presence of occlusions and clutter.

«Q
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Fig. 9. Translation error and scale for baseline errors.

the gripper is occluded, and visual measurements provide
accurate pose control and online estimation of the hand-
eye transformation. Experimental results verify both the
increased accuracy gained with visual feedback and the
robustness to occlusions gained with kinematic feedback.
The combination of scale estimation and kinematic/visual
fusion proposed in this work overcomes many of the
classical problems associated with position-based visual
servoing and provides a useful framework for controlling

a humanoid robot in an unstructured environment.
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(1]

brated baselinenpt the mechanical baseline) was scaled by

0.7 to 1.5, and the verge angle was offset by -0.07 to 0.142]

radian (-6 to +8 degrees). Figure 9 shows the translational

pose error and estimated scale at the completion of trialgg)

with varying baseline, and indicate that the positioning
accuracy is reasonably independent of baseline error whe
the scale is estimated using the proposed error modep
Figures 10 shows the results for verge offset and verify
that the error model is only valid within the bounds of the [5
small angle approximations used to derive equation (8).
This result indicates that a linear error model is sufficient
to compensate for verge errors of abat.05 rad.

VIl. DISCUSSION ANDCONCLUSIONS

This paper presented the development and implemen-
tation of a 3D model-based visual servoing framework

for a domestic humanoid robot. The proposed framework®]
emphasizes robustness to occlusions and online compensa-
tion for calibration errors. Sensitivity to calibration errors [9]

is usually considered the primary drawback of position-
based visual servoing. However, we show that the effect o
arbitrary errors in the baseline and small errors in the verge

angle can be modelled as an unknown scale. Experimem[éil]

results demonstrate that the accuracy of the controller is
improved by estimating the unknown scale along with

the pose of the end-effector. The proposed error modé?!

is appropriate for the practical camera platform, since the
baseline and verge angle continuously vary as the head is

actuated while the other camera parameters are fixed gl

easily calibrated.

Conventional position-based visual servoing schemdg4l

employ either EOL or ECL control and are therefore
susceptible to hand-eye calibration errors and/or visual

occlusions. The robust pose estimator proposed in thi&5]

paper avoids both issues by optimally fusing kinematic
and visual measurements. Kinematic measurements allow
the controller to operate (with reduced accuracy) while
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