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Abstract— This paper addresses the problem of visual servo
control for a humanoid robot in an unstructured domestic
environment. The important issues in this application are
autonomous planning, robustness to camera and kinematic
model errors, large pose errors, occlusions and reliable visual
tracking. Conventional image-based or position-based visual
servoing schemes do not address these issues, which motivated
the proposed hybrid position-based scheme exploiting fusion
of visual and kinematic measurements. Kinematic measure-
ments provide robustness to visual distractions, and allow
servoing to continue when the end-effector leaves the field
of view. Visual measurements provide the complementary
benefits of accurate pose tracking and online estimation
of the hand-eye transformation for kinematic calibration.
Furthermore, it is shown that calibration errors in the focal
length and baseline can be approximated as an unknown scale
of the end-effector, which can be estimated in the tracking
filter to overcome camera calibration errors. The improved
accuracy and robustness compared to conventional position-
based servoing is demonstrated experimentally.

I. I NTRODUCTION

To perform useful tasks, a domestic humanoid robot
must be able to recognize objects and accurately control
the relative pose of the end-effector. Object recognition
and tracking are discussed in our previous work [10]–
[12], while this paper addresses the problem of end-effector
control. If the joint encoders, camera parameters and
kinematic model are known, control is a trivial problem in
inverse kinematics [1]. However, practical humanoid robots
are likely to violate these conditions. For instance, afford-
ability requires low manufacturing tolerances and cheap
sensors, while light-weight, compliant limbs are necessary
for safety and low power consumption, but are difficult
to model kinematically.Visual servoingovercomes these
issues by incorporating visual measurements of the end-
effector in the control loop, but faces significant challenges
in an unstructured domestic environment. In particular,
large pose error and obstacles may render the end-effector
unobservable, while clutter confuses visual tracking.

Visual servoing schemes are generally distinguished
as image-basedor position-based, and endpoint open-
loop (EOL) or endpoint closed-loop(ECL) [7]. An ECL
controller observes both the end-effector and target, and
an EOL controller observes only the target while using
kinematic control. While ECL control is less sensitive to
calibration errors, EOL is not affected by occlusion of the
end-effector. In image-based servoing, the control error

Fig. 1. Upper-torso humanoid robot for domestic tasks.

is calculated directly from image plane measurements.
For humanoid control, the main drawback is the unpre-
dictability of trajectories in Cartesian space, particularly
for large initial pose error. Recent work shows that this
can be avoided by decoupling orientation and translation
[9]. In position-based servoing [13], [14], the control
error is calculated from 3D pose parameters reconstructed
from visual measurements, which facilitates Cartesian path
planning. However, this approach is sensitive to camera
calibration and the chosen pose estimation algorithm. Also,
the gripper is not necessarily maintained within the visual
field, although solutions to this issue have been proposed
[2]. Other servoing schemes have been demonstrated, in-
cluding 2-1/2-D visual servoing [9] and frameworks based
on linear approximations [3]. A recent comparison revealed
little variation in the stability, robustness and sensitivity to
calibration errors of visual servoing schemes [4].

For autonomous planning, our humanoid robot must rely
on internal models to calculate the control reference. Cam-
era calibration errors thus influence positioning accuracy
regardless of the approach used, and must be addressed by
the controller. Many servoing schemes emphasize main-
taining features within the field of view. However, the
possibility of large initial pose errors and obstacles in
domestic tasks may result in unavoidable loss of visual
feedback. Thus, visual servoing for domestic tasks should
instead be characterized by robustness to occlusions.

This work adopts position-based control, since humanoid
tasks are naturally planned in Cartesian space [6]. Our
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proposed scheme achieves robustness to both calibration
errors and occlusions by fusing kinematic and visual
measurements in a Kalman filter. Kinematic measurements
provide robustness to visual distractions and occlusions,
while visual measurements provide accurate pose tracking.
This hybrid approach benefits of both EOL and ECL
control and offers a significant improvement over conven-
tional schemes. However, since both camera and kinematic
models are required, the influence of calibration errors is
two-fold. To facilitate reliable, long-term operation, the
proposed scheme therefore incorporates online calibration.
Fusion of kinematic and visual measurements was previ-
ously demonstrated for control of a dextrous hand [15], and
our paper improves on this work by handling occlusions
and introducing online calibration.

The following section defines the configuration of our
robot, and the controller is formulated in Section III.
Robust end-effector tracking using visual and kinematic
measurements is described in Section IV, and Section V
details the experimental implementation. Finally, the results
in Section VI demonstrate the improvement of the proposed
scheme over similar position-based techniques.

II. COORDINATE FRAMES AND NOTATION

In this paper, 3D points are represented in upper-case and
2D points in lower-case. Coordinate frames are specified
in superscript, such asAX, and the homogeneous transfor-
mation matrixBHA transforms points from frameA to B
as BX = BHA

AX. Our experimental platform (see Figure
1) consists of a 3-axis stereo head and Puma arms, and
Figure 2 shows the relevant coordinate frames. FrameC is
rigidly attached to the stereo cameras andW is attached to
the base of the head, whileWHC is parameterized by pan
and tilt angles. The cameras are positioned in rectilinear
configuration atCX =±b. FrameB is attached to the Puma
base,E is attached to the end-effector,O locates the pose of
the object, andG describes the desired relative pose of the
object and gripper. The end-effector pose is equivalently
represented by the transformationWHE or pose vector
WpE = (X,Y,Z,φ ,θ ,ψ), whereX, Y andZ are translations,
and Euler anglesφ , θ andψ represent orientation.

III. V ISUAL SERVO CONTROLLER

The controller in this work follows the formulation in
[7], with the addition of the grasp frame. The task is to
control the end-effector to align the grasp frame with the
object frame. The control error is the pose error between
the grasp and object frames, given by the transformation:

GHO = (WHE
EHG)−1 ·WHO (1)

The above transformation is identity when the control task
is achieved. For each new observation ofWHO andWHE,
the controller calculates the velocity screw(Ω,V)> of
the end-effector that drives the pose error to zero. Using
proportional control with gainsk1 and k2, the desired
velocity screw in the grasp frame is:

GΩ = k1
G

θO
GAO (2)

GV = k2
GTO−GΩ×GTO (3)
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Fig. 2. Coordinate frames and transformations for visual servoing.

where GTO is the translational component ofGHO and
(GθO,GAO) is the rotational component (angle and axis
of rotation). In practice, the Puma operates in “tool-tip”
mode; the velocity screw is transformed byEHG (see
[7] for transforming velocity screw) before passing to the
controller. The fundamental limitation of this formulation is
the uncertainty inWHE, which may be estimated by direct
visual observation (ECL control) or kinematically through
WHB and BHE (EOL control). The hybrid controller pro-
posed in the paper fuses visual and kinematic estimates to
exploit the benefits of both ECL and EOL control.

IV. ROBUST GRIPPERTRACKING

The pose of the end-effector is robustly estimated by
fusing visual and kinematic measurements in anIterated
Extended Kalman filter(IEKF), which is commonly used
for visual servoing [13], [14]. In our application, the state
x(k) consists of the end-effector pose and velocity screw,
used to calculate the control error in equation (1), and
additional parameters for online calibration as discussed
in the following sections. Constant velocity dynamics are
assumed for the pose parameters, while the calibration
parameters are modelled as constants. Details of the IEKF
equations can be found in [8]. The following sections
describe the visual and kinematic sensor models which
are used to predict the measurement vectory(x) for a
given statex. Section IV-C then summarizes the practical
implementation of the IEKF.

A. Visual Measurements

Our servoing framework uses 3D model-based visual
tracking with active artificial cues (LEDs), which are
more readily detected than passive markers. The manually
measured LED locations,EGi , i = 1. . .6, form the model
shown in Figure 3. The thumb and forefinger LEDs rotate
about P5 and P3 through anglesθ5 and θ3 respectively,
and are recalculated whenever these angles change. The
measurement model to predict the image plane projections
L,Rgi is formulated from the camera model as:

L,Rĝi = L,RPCHW
WĤE

EGi (4)

where L,Rĝi are the predicted measurements,WĤE is the
predicted pose andL,RP are the camera projection matrices.
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Fig. 3. Articulated model of active LED features for tracking.

In real systems with imprecise camera models, the
estimated pose is an unknown transformation of theac-
tual pose, which we now examine in the following error
analysis. To simplify the analysis, we ignore the predicted
state and kinematic measurements in the Kalman filter state
estimator, and consider a state estimator that minimizes
only the sum of squared image plane errors, defined by

D2(WpE)≡∑
i

d2(Lĝi(WpE),Lgi)+d2(Rĝi(WpE),Rgi) (5)

whered(ĝ,gi) is the Euclidean distance between the pre-
dicted and actual measurements. ConsiderX = (X,Y,Z)>

observed atLx = (Lx,Ly)> and Rx = (Rx,Ry)>. Assuming
pin-hole cameras with calibrated focal lengthf , baseline
2b and zero verge angleν (rectilinear stereo), the predicted
measurements in inhomogeneous coordinates are:

L,Rx̂ =
f
Z

(X±b,Y)> (6)

taking the positive sign forL and negative forR. Then, the
optimal reconstruction from minimization ofD2(X) is:

X̂ =
b

Lx−Rx

(Lx+ Rx, Ly+ Ry, 2 f
)>

(7)

Now, let 2b∗, f ∗ andν∗ represent theactualbaseline, focal
length and verge angle. When the calibrated and actual
verge angle differ (violating rectilinear stereo) the actual
measurementsL,Rx are effectively rotated byν −ν∗:

L,Rx =
f ∗ ((X±2b∗)cos(ν −ν∗)∓Zsin(ν −ν∗), Y)>

Zcos(ν −ν∗)± (X±2b∗)sin(ν −ν∗)

Applying a small angle approximation to the above, sub-
stituting the result into equation (7) and taking a Taylor
series expansion aboutf = f ∗, b = b∗ and ν = ν∗, the
relationship betweenX and X̂ can be approximated as:

X̂(b, f ,ν)≈ K1(b,ν)X +K2( f )(0, 0, Z)>+T(ν) (8)

where

K1(b,ν) = 1+
b−b∗

2b∗
+

X2 +Z2

2b∗Z
(ν −ν

∗) (9)

K2( f ) = ( f − f ∗)/ f ∗ (10)

T(ν) = (ν −ν
∗)(2b∗X/Z, 0, 2b∗)> (11)

Since the LEDs occupy a small, distant volume, the terms
(X2 + Z2)/2b∗Z and 2b∗X/Z are approximately constant
and equation (8) can be treated as linear.

Equation (8) reveals that focal length error scales theZ
coordinate byK2( f ), which can be neglected due to good

calibration of f . Conversely, the verge and baseline are
poorly calibrated and vary as the head moves. Verge error
introduces a translationT(ν), which does not effect servo-
ing accuracy since the object and gripper are equally biased
when aligned. Thus, the main contributor to reconstruction
error is the uniform scaleK1(b,ν).

We now consider the gripper pointsGi = (Xi ,Yi ,Zi)>.
To analyse the effect ofK1(b,ν), we assume∑Gi = 0 and
the poseTE = (XE,YE,ZE)> is purely translational. Let
G∗

i = K1(Gi +TE) represent the location of LEDs observed
by poorly calibrated cameras (that is, after scaling byK1).
The actual measurementsL,Rgi are the projections ofG∗

i :

L,Rgi =
f

K1(Zi +ZE)
(K1(Xi +XE)±b, K1(Yi +YE))> (12)

Now, let T̂E represent the estimated pose. From equation
(4), the predicted (unscaled) measurements are:

L,Rĝi =
f

Zi + ẐE
(Xi + X̂E±b, Yi +ŶE)> (13)

Substituting equations (12) and (13) into (5) and solving
the minimization analytically, the optimal pose estimate is:

T̂E =
f (Gi ,TE)+4NZEb2

K1 f (Gi ,TE)+4NZEb2 K1TE (14)

where f (Gi ,TE) = XE ∑XiZi +YE ∑YiZi−ZE(∑X2
i +∑Y2

i )
and N is the number of LEDs. From equation (14), the
intuitive resultT̂E = K1TE (ie. the estimated pose is scaled
by K1) only occurs whenN = 1 or K1 = 1. Otherwise, the
induced bias is a function of the model itself; the estimated
pose for two different objects at thesameposition, and
in the presence of thesame calibration errors, will be
different. For visual servoing, the pose error may not
reduce to zero even when the task is achieved.

The above analysis suggests a solution to the problem
of camera calibration errors, by simply estimating the
unknown scaleK1 along with the poseWpE in the tracking
filter. This is achieved by replacing equation (4) with

L,Rĝi(K1,
WpE) = L,RPCHW

WĤE · (K1
EGi) (15)

To sufficiently constrain the scale, four or more measure-
ments are required with at least one feature on each image
plane. Monocular measurements do not sufficiently con-
strain the scale since the projection from a single camera
is non-invertible. Section IV-C describes how the IEKF
handles the state update when the scale is unconstrained.

B. Kinematic Measurements

The Puma controller reports the end-effector pose in the
base frame,BHE, from kinematic measurements. Thus, an
appropriate measurement prediction is

BĤE = BHW
WĤE (16)

where BĤE is the predicted measurement,WĤE is the
predicted pose, andBHW is the hand-eye transformation.
Typically, hand-eye calibration is performed once and then
assumed to remain constant. We propose the alternative
approach of treating the hand-eye transformation as a



dynamic bias between the kinematically and visually ob-
served pose. This is implemented by addingBHW to the
state vector, and dynamically updating the transformation
through equation (16). However, solving forBHW requires
WHE to be sufficiently constrained by visual measurements.
When the solution is unconstrained,BHW does not partic-
ipate the state update, as described below.

C. Kalman Filter Implementation

During servoing, the IEKF is updated at the sample
rate of visual measurements. The state vector can now be
summarized asx(k) = (WpE(k),W ṙE(k),BpW(k),K1(k))>

whereWpE(k) andW ṙE(k) are the pose and velocity screw
of the end-effector,BpW(k) is the hand-eye transformation
(expressed as a pose vector) and scaleK1(k) compensates
for camera calibration errors. Combining visual and kine-
matic measurements, the measurement vector can be writ-
ten asy(k) = (Lg0(k),Rg0(k), . . . ,Lg6(k),Rg6(k),BpE(k))>

whereL,Rgi(k), i = 1. . .6, are the positions of the LEDs on
the left and right image planes, andBpE(k) represents the
kinematic pose of the end-effector. Measurement prediction
is given by equations (15) and (16), and occluded LEDs
are excluded from the state update by setting a large error
variance for LEDs that are not observed.

As mentioned above, special care must be taken to
constrain the estimated state. It is well known that 3D pose
can be recovered from three monocular measurements, al-
though multiple solutions may exist [5]. However, monoc-
ular measurements do not constrainK1, while BpW(k)
requires an estimate of visual pose. Furthermore, robust
LED detection relies on global consistency (see Section
V). The following hierarchy of state estimators, based on
the number of visual featuresnL and nR, is adopted to
ensure only constrained parameters are updated:

• nL < 3 and nR < 3: All visual measurements are
discarded due to possible association errors and the
IEKF uses only kinematic measurements.

• nL ≥ 3 or nR ≥ 3 (but not both): Three or more
monocular measurements sufficiently constrain the
pose and hand-eye transformation, but not scale.

• nL ≥ 3 and nR≥ 3: Sufficient measurements exist to
constrain all state variables.

When necessary, state parameters are excluded from the
state update by setting the corresponding rows and columns
of the measurement Jacobian to zero.

Since the IEKF solves the non-linear system equations
numerically, a good initial state estimate is required. If the
hand-eye transformation is already known from previous
trials, the initial pose is calculated from kinematic mea-
surements, otherwise an autonomous calibration procedure
is executed. Calibration begins by scanning the workspace
for the colour of the LEDs. To avoid association errors,
the LEDs are then individually lit and measured in succes-
sive frames using colour filtering and image differencing.
Finally, the initial pose and scale factor are estimated by
minimizing equation (5) using the Levenberg-Marquardt
algorithm, with the scale initially set to unity, orientation
to zero, and translation estimated from the average position
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Fig. 4. Block diagram of visual servoing control loop.
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Fig. 5. Associating LEDs and candidates based on global matching.

of LEDs. Once the pose is known, the hand-eye transfor-
mation is initialized asBHW = BHE

WH−1
E , whereBHE is

reported by the Puma controller.

V. I MPLEMENTATION

Figure 4 illustrates the components of the controller.
Active visioncontrols the gaze direction to maximize visual
information. The control strategy depends on the pose
error: when the error is large, the cameras track only the
object (with EOL visual servoing), while the mid-point
between the object and gripper is tracked when the error
is small.Gripper measurementidentifies the LEDs on the
gripper using the process below, which are fed along with
kinematic measurements into thepose estimationblock.
Object trackingsimilarly estimates the pose of the grasping
target. Thevisual servo controllercalculates the pose
error and velocity screw, which is finally actuated by the
Cartesian Puma controller. The control cycle continues
until the pose error is sufficiently small.

Stereo images are captured at 25 Hz and 384× 288
pixel resolution and processed on a duel Xeon PC. The
main problem is to measure the position of each LED
in the presence of occlusions and background clutter. The
background is discarded by identifying aregion of interest
(ROI) as the bounding box enclosing the predicted LED
locations. A two step process is then applied to detect LEDs
in the ROI. First, colour filtering produces a binary image
identifying red pixels, and the centre of mass of connected
blobs serves as initial LED candidates. The candidate
associated with each LED (ie. theassociation problem)
is identified using a global matching algorithm, which
is more reliable than closest-point matching but cheaper
than a full search. The process is illustrated in Figure 5;
the associationai j between LEDĝi and candidateg j is
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Fig. 6. Pose of object and gripper at completion of servoing task.

supported by other prediction/candidate pairs with similar
relative displacements. In this example,ai j is supported by
three pairs, includinĝgk andgl with matching displacement
vectors d̂ik and d jl . The algorithm searches for all good
associations and determines the largest self-consistent set.
At least three self-consistent associations are required for
sufficient confidence in the measurements.

VI. EXPERIMENTAL RESULTS

The proposed method was tested using the positioning
task illustrated in Figure 6(a). The target consists of two
coloured markers,A and B, and the goal is to centreA
between the thumb and index finger, while aligning all
points collinearly. To achieve this goal,G is placed at
the midpoint betweenG3 andG5 with the y-axis pointing
towardsG5, andO is centred atA with they-axis pointing
towards B. After completing each trial, the positioning
accuracy is measured as the translational erroreT between
Â and the midpoint between the fingertips:

eT =
∣∣∣∣12(Ĝ3 + Ĝ5)− Â

∣∣∣∣ (17)

where Â, B̂, Ĝ3 and Ĝ5 are calculated from stereo mea-
surements averaged over a ten frames. The rotational error
eθ is the angle formed by the lines (Â, B̂) and (̂G3, Ĝ5):

eθ = cos−1

(
Ĝ5− Ĝ3

|Ĝ5− Ĝ3|
· B̂− Â

|B̂− Â|

)
(18)

A. Positioning Accuracy

In this experiment, the proposed controller was com-
pared to conventional ECL and EOL schemes. The ECL
controller was implemented by removing the scale and
kinematic parameters and measurements from the IEKF,
and the EOL controller was implemented by discarding
the IEKF and using only kinematic measurements. For
each case, five trials were performed with an initial pose
error of about 100 mm and 0.25 rad (the camera and target
both initially visible). Figure 6 shows the completion of a
typical trial for the proposed and EOL controllers, with the
estimated gripper overlaid in yellow andO andG indicated
in white and red respectively. Table I shows the average
final pose error and error variance. As expected, accuracy
is lowest for the EOL controller, while the proposed

TABLE I

EXPERIMENTAL POSITIONING ACCURACY.

Controller eT var(eT) eθ var(eθ )
(mm) (mm2) (rad) (rad2)

proposed 5.4 0.4 0.11 0.003
ECL 29.4 0.9 0.22 0.01
EOL 54.5 1.6 0.18 0.008

Fig. 7. Stereo image of final pose at completion of the servoing task in
the presence of visual distractions and occlusions.

controller is bounded only by the servoing termination
threshold. The improvement over ECL control indicates
that calibration is important for accurate visual servoing,
and can be achieved using the proposed online methods.

B. Tracking Robustness

This second experiment tests our controller in the pres-
ence of poor tracking conditions: the end-effector is ini-
tially outside the field of view and avirtual 3D obstacle
is rendered on the left image plane. Figure 7 shows the
completed task, and Figure 8 plots the translation error
and estimated scale. Scale estimation only commence after
the first three seconds, when the gripper enters the field
of view. After six seconds, the gripper is obscured by the
virtual obstacle and the scale parameter remains fixed at the
most recent estimate (hand-eye transformation estimation
continues based on the fixed scale). The controller achieves
a final pose error ofeT = 10.9 mm andeθ = 0.087 radian
(the virtual obstacle is removed for these measurements),
which is only a small reduction in accuracy from the ideal
conditions considered in the previous experiment.

C. Effect of Camera Calibration Errors

Calibration errors are now deliberately introduced to test
the bounds of the error model in Section IV-A. The cali-
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Fig. 8. Controller performance in the presence of occlusions and clutter.
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Fig. 9. Translation error and scale for baseline errors.

 0

 2

 4

 6

 8

 10

 12

 14

-0.05  0  0.05  0.1

Tr
an

sl
at

io
n 

er
ro

r (
m

m
)

verge offset (rad)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.05  0  0.05  0.1

E
st

im
at

ed
 s

ca
le

verge offset (rad)

Fig. 10. Translation error and scale for verge errors.

brated baseline (not the mechanical baseline) was scaled by
0.7 to 1.5, and the verge angle was offset by -0.07 to 0.14
radian (-6 to +8 degrees). Figure 9 shows the translational
pose error and estimated scale at the completion of trials
with varying baseline, and indicate that the positioning
accuracy is reasonably independent of baseline error when
the scale is estimated using the proposed error model.
Figures 10 shows the results for verge offset and verify
that the error model is only valid within the bounds of the
small angle approximations used to derive equation (8).
This result indicates that a linear error model is sufficient
to compensate for verge errors of about±0.05 rad.

VII. D ISCUSSION ANDCONCLUSIONS

This paper presented the development and implemen-
tation of a 3D model-based visual servoing framework
for a domestic humanoid robot. The proposed framework
emphasizes robustness to occlusions and online compensa-
tion for calibration errors. Sensitivity to calibration errors
is usually considered the primary drawback of position-
based visual servoing. However, we show that the effect of
arbitrary errors in the baseline and small errors in the verge
angle can be modelled as an unknown scale. Experimental
results demonstrate that the accuracy of the controller is
improved by estimating the unknown scale along with
the pose of the end-effector. The proposed error model
is appropriate for the practical camera platform, since the
baseline and verge angle continuously vary as the head is
actuated while the other camera parameters are fixed or
easily calibrated.

Conventional position-based visual servoing schemes
employ either EOL or ECL control and are therefore
susceptible to hand-eye calibration errors and/or visual
occlusions. The robust pose estimator proposed in this
paper avoids both issues by optimally fusing kinematic
and visual measurements. Kinematic measurements allow
the controller to operate (with reduced accuracy) while

the gripper is occluded, and visual measurements provide
accurate pose control and online estimation of the hand-
eye transformation. Experimental results verify both the
increased accuracy gained with visual feedback and the
robustness to occlusions gained with kinematic feedback.
The combination of scale estimation and kinematic/visual
fusion proposed in this work overcomes many of the
classical problems associated with position-based visual
servoing and provides a useful framework for controlling
a humanoid robot in an unstructured environment.
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