
Integration of Robust Visual Perception and
Control for a Domestic Humanoid Robot

Geoffrey Taylor and Lindsay Kleeman
ARC Centre for Perceptive and Intelligent Machines in Complex Environments

Department of Electrical and Computer Systems Engineering
Monash University 3800, Australia

Email: {Geoffrey.Taylor;Lindsay.Kleeman}@eng.monash.edu.au

Abstract— This paper describes a complete vision-based
framework that enables a humanoid robot to perform simple
manipulations in a domestic environment. Our system empha-
sizes autonomous operation with minimala priori knowledge
in an unstructured environment, with robustness to visual
distractions and calibration errors. For each new task, the
robot first acquires a dense 3D image of the scene using our
novel stereoscopic light stripe scanner that rejects secondary
reflections and cross-talk. A data-driven analysis of the range
map identifies and models simple objects using geometric
primitives. Objects are reliably tracked through clutter and
occlusions by exploiting multimodal cues (colour, texture and
edges). Finally, manipulations are performed by controlling
the end-effector using a hybrid position-based visual servoing
scheme that fuses visual and kinematic measurements and
compensates for calibration errors. Two domestic tasks are
implemented to evaluate the performance of the framework:
identifying and grasping a yellow box without any prior
knowledge of the object, and pouring rice from an inter-
actively selected cup into a bowl.

I. I NTRODUCTION

A practical humanoid robot in domestic and industrial
applications will be expected to operate with the flexibility,
skill and intelligence of a human. In recent years, humanoid
robotics research has made important steps towards this
goal by addressing problems such as locomotion [11],
interaction [9] and learning [2]. Our work develops the
perception and control skills necessary to perform simple
manipulations (such as pouring a drink) with minimuma
priori knowledge in an unstructured domestic environment,
which forms the basis of important applications such as
assisting the elderly and disabled. The proposed framework
is based on visual sensing, and integrates our previous work
in 3D range scanning [17], data-driven object classification
and modelling [16], multimodal tracking [15], and visual
servoing [13]. To perform tasks with maximum flexibility,
our novel methods address the following key challenges:

1) Ad hoc tasks with unknown objects:As a universal
aid, almost every task performed by a domestic robot will
involve different target objects and surroundings. Many
visual perception frameworks for robotic applications re-
quire the robot to learn a separate model for each unique
object [1], [12], which reduces the flexibility to perform
ad hoc tasks. In contrast, our work emphasizes adata-
driven approach to perception, and allows the robot to
identify cups, bowls, boxes and other simple objects with-
out explicit models. Lack of prior information about the
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Fig. 1. Metalman, an experimental upper-torso humanoid robot.

environment also affects sensing, since vision cannot rely
on the presence of particular cues, and task planning.

2) Robust sensing in uncontrolled conditions:The op-
portunity for association errors in visual sensing is particu-
larly acute in the cluttered, dynamic, unpredictable environ-
ment of a domestic robot. Visual sensing is susceptible to
background distractions, lighting variation and occlusions.
Our work exploits active sensing techniques and fusion of
multimodal measurements to develop visual perception and
control algorithms with a high tolerance to interference.

3) Robustness to calibration errors:Many humanoid
robots rely on accurate camera and kinematic calibra-
tion to locate and grasp objects [1], [6]. However, poor
system models can result from operational wear and the
complexity of calibration. Considerations of safety lead
to light, compliant structures that are difficult to model
kinematically. Furthermore, cheap construction and low
maintenance allow robots to achieve widespread applica-
tion, but make accurate manual calibration impractical.
Reliance on manual calibration should be minimized in
practical humanoid systems, and our methods instead em-
phasize active online calibration that can be performed
autonomously and whenever necessary.

The following Section provides an overview of our
experimental upper-torso humanoid platform (Figure 1),
and summarizes the integrated perception and control
methods. Two domestic tasks are implemented to evaluate
the performance of the proposed framework: identifying
and retrieving a yellow box from a cluttered scene without
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Fig. 2. Block diagram of system components.

any prior knowledge of the object, and pouring rice from an
interactively selected cup into a bowl. The implementation
and results are presented in Sections III and IV.

II. PROPOSEDFRAMEWORK

Figure 1 shows our experimental upper-torso humanoid
robot, also known as Metalman. The platform consists
of hardware-synchronized stereo PAL cameras mounted
on a three-axis active head, and two Puma arms with
prosthetic hands. A 5 mW laser stripe scanner is mounted
above the cameras for active 3D sensing, and LED markers
are attached to the hands to facilitate tracking. All image
processing is performed on a dual 2.4 GHz dual Xeon PC,
with extensive use of parallelization through MMX/SSE
instructions and POSIX threads.

Our complete perception and control framework is illus-
trated in Figure 2. Thestereoscopic light stripe scannerand
object classification and modellingblocks work together
to provide Metalman with data-driven, textured, polygonal
models of objects in the workspace. Extracted objects are
classified as cups, bowls, boxes or other simple types
based on geometry, which provides Metalman with the
flexibility to perform ad hoc tasks with previously un-
known objects without a large database of learned models.
The world model is continuously updated by applying
multimodal 3D model-based object trackingto captured
stereo frames, which exploits both texture and geometric
information in the polygon models. Finally, the desired
manipulation is performed by controlling the end-effector
using visual feedback in ahybrid position-based visual ser-
voing framework. During servoing,active visioncontrols
the gaze direction to maximize observation of the object
and end-effector. The following sections describe the main
components of the proposed framework in greater detail.

A. Stereoscopic Light Stripe Scanning

Reliable object classification and 3D modelling requires
dense and accurate colour/range measurements. Passive
stereo is usually associated with human 3D sensing but
relies on the presence of suitable textures, which is difficult
to ensure in uncontrolled conditions. Alternatively, light
stripe ranging offers good accuracy but presents other
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Fig. 3. Stereoscopic stripe scanner.

unique challenges: the sensor must cope with secondary
reflections, cross talk and other spurious measurements
while operating in ambient indoor light. Single-camera
scanners typically identify the stripe as the brightest ob-
served feature, without any mechanism to detect and re-
ject interference. Robust scanners have been proposed in
previous work to address this problem [5], [8], [19], but
remaining issues include assumed scene structure, sensor
noise modelling, error recovery and capturing colour.

To overcome these issues, we proposed the stereoscopic
light stripe scanner shown in Figure 3 [17]. On correspond-
ing stereo scanlines, measurements of a pointX on the light
plane satisfy a linear relationship (in projective space) of
the form Lx = HRx, where the transformation H is related
to the stereo geometry and position of the light plane. The
primary reflection can therefore be identified from a set
of noisy candidate measurements by finding the candidate
stereo pair (Lx,Rx) that minimizes the squared image plane
error E with respect to the ideal projectionRx̂:

E(Rx̂) = d2(Lx,HRx̂)+d2(Rx,Rx̂)

whered2(x1,x2) is the Euclidean distance betweenx1 and
x2. The 3D reconstruction is recovered by back-projecting
the ideal projectionRx̂ onto the light plane.

Unlike other robust light stripe methods, our validation
and reconstruction algorithm is optimal with respect to
sensor noise, and achieves greater precision than a single
camera scanner. We also demonstrate a simple active
method to calibrate the scanner using an arbitrary non-
planar target, which allows the sensor to be calibrated
during normal operation. Finally, interference rejection
allows the scanner to operate in ambient indoor light and
thus capture implicitly registered colour and range.

B. Object Classification and Modelling

Object modelling and classification provides the link
between low-level range sensing and high-level planning.
For maximum flexibility, the robot must be capable of
recognizing cups and other common objects without having
seen them previously. This problem is solved by modelling
classes of objects as collections of geometric primitives
(for example, a cup is a cylinder open at one end) and ap-
plying split-and-merge segmentation to extract data-driven
primitives from the range map. The extracted primitives
are matched with the generic models to locate and classify
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Fig. 4. Object modelling and classification.

objects in the scene [14]. At the core of the segmentation
algorithm is our novelsurface type classifier, first proposed
in [16]. Unlike conventional methods [3], our classifier
identifies the local shape at each point on a surface by
analyzing principal curvatures and convexity, without the
need for fitting arbitrary approximating surface functions.
This approach achieves greater noise robustness and ul-
timately simplifies segmentation. Figures 4(a) and 4(b)
show the colour/range scan and surface type classification
result for a typical scene, with regions of different shape
shown in homogeneous colour. The final segmentation is
shown in Figure 4(c) and the textured, polygonal models
for identified objects are shown in Figure 4(d).

C. Multimodal 3D Model-Based Tracking

Once objects have been identified, the world model
is updated in real-time by tracking objects in captured
stereo frames. Tracking is necessary even for static objects
(typical of domestic scenes) to compensate for camera mo-
tion and detect collisions or unstable grasps. Conventional
model-based tracking algorithms are based on the detection
of a single cue such as edges [18] or image templates
[7]. However, arbitrary objects may contain too many or
too few single-modal features for reliable matching, while
lighting variations and background clutter make detection
unreliable. Thus, tracking of any single cue is likely to
eventually fail in an uncontrolled domestic environment.
To overcome this problem, we proposed a multimodal
tracking algorithm based on the notion that different cues
exhibit independent, complementary failure modes and are
therefore unlikely to fail simultaneously [15]. The tracker
fuses edge, texture and colour cues in a Kalman filter
framework, which allows arbitrary objects to be tracked
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Fig. 5. Scene analysis for grasping task.

in visual conditions that cause single-cue trackers to fail,
including low contrast, lighting variations, and occlusions.

To illustrate the algorithm, Figure 5(a) shows a sub-
image captured while tracking the box. The approximate
pose (predicted from the previous frame) is overlaid in
white. Figure 5(b) shows the output of a colour filter
constructed from texture data, and the pixel centroid (blue
square in Figure 5(a)) serves as the colour cue. Figure 5(c)
shows the output of edge detection, which uses the colour
filter to identify silhouette edges. Edge pixels (white) are
matched to the predicted edges (red outline), and the
resulting measurements are shown in yellow in Figure 5(a).
Finally, texture cues are identified by applying a texture
quality measure [10] to the synthetic rendered image of the
object in Figure 5(d). The extracted templates (outlined in
white) are matched to the captured image using sum-of-
squared intensity difference, and the matched locations are
shown in Figure 5(a). The multimodal measurements are
passed to the Kalman filter equations, which minimize the
observation error using appropriate measurement predic-
tion models to estimate the new pose.

D. Hybrid Position-Based Visual Servoing

If the camera parameters and kinematic model of the
robot are accurately known, manipulations can be per-
formed using open-looplook-then-movekinematic control
(for example, see [1]). However, reliance on accurate
modelling and calibration may be unrealistic for practical
humanoid robots, due to considerations of cost, safety and
long-term operation. The effect of kinematic errors can be
reduced by closing the loop using visual measurements of
the end-effector, in the framework ofvisual servoing[4].



Fig. 6. Arrangement of objects for Experiment 1.

The basic task in visual servoing is to control pose of
the end effector to achieve a desired pose relative to the
object. In conventional endpoint closed-loop position-based
visual servoing, the control error is calculated from the
3D pose of the object and end-effector, reconstructed from
visual measurements. However, conventional methods are
sensitive to camera calibration errors and fail when the end-
effector is obscured (for example, due to a large pose error).
We overcome this problem by proposing a self-calibrated
hybrid position-based framework [13] that fuses visual and
kinematic measurements. Kinematic measurements allow
servoing to continue when the end-effector is obscured and
improves tracking robustness, while visual measurements
provide accurate pose estimation. The hand is tracked using
active LED markers to further improve the robustness of vi-
sual sensing. The hand-eye transformation is continuously
estimated as the bias between the kinematic and visual
pose, while camera calibration errors are compensated
by introducing avisual scaleparameter. The proposed
method offers greatly improved performance compared to
conventional position-based servoing.

III. E XPERIMENT 1: GRASPING AN UNKNOWN OBJECT

In this first experiment, Metalman is given the simple,
common task of finding and retrieving an unknown object
specified only as ayellow box. The initial experimental
arrangement is shown in Figure 6. User interaction is
required to establish the initial gaze direction, but the
remainder of the task is performed autonomously and
requires all of our robust perception and control techniques.

Following the framework outlined above, the robot ini-
tially obtains a 3D colour/range map of the scene and
applies segmentation to construct a list of candidate ob-
jects. Figure 7(a) shows that light stripe scanning causes
significant secondary reflections even in this simple scene,
but are successfully rejected by our robust scanner. The
wireframe overlay in Figure 7(b) shows the extracted
objects. Using the classification results, the cup, ball and
funnel are immediately rejected as objects of interest. For
the remaining two candidates, theyellow box(on the left)
is identified by tallying the number of texture pixels from
the associated polygon model within manually predefined

ranges of hue, saturation and intensity. Figure 7(c) plots
the hue and saturation of texture pixels for the yellow
box (black points) and orange box (white points), with the
colours of interest bounded by the black rectangle. The
yellow box is successfully identified as the candidate with
the highest proportion of yellow pixels.

After identifying the target, a collision-free grasp and
approach set-point are planned (see [14]) and passed to
the visual servo controller. Figure 8 shows selected frames
from the right camera during execution of the grasp. Since
the end-effector is initially outside the field of view, servo-
ing commences using kinematic control at 25 Hz, as shown
in Figure 8(a) (the estimated pose is indicated by the yellow
wireframe overlay). As the end-effector enters the field
of view, the controller switches to kinematic and visual
fusion with online calibration, as shown in Figure 8(b).
During servoing, the box (indicated by the white overlay)
is simultaneously tracked using our multimodal algorithm
at a reduced rate of 2 Hz, so that the computational load
does not compromise the stability of the controller. Figure
8(c) shows the box successfully grasped and lifted.

IV. EXPERIMENT 2: POURING TASK

Using a similar experimental arrangement as above, this
experiment requires Metalman to grasp a cup of rice and
pour the contents into a bowl, both of which are initially
unknown. The cup is manually selected to simulate the type
of interaction necessary when task specifications are am-
biguous. As before, light stripe scanning and segmentation
produce the set of candidate objects shown in Figure 9(a).
The target bowl is identified as the cylinder with the largest
radius. However, two remaining cylinders are identified as
possible cups of rice. To resolve the ambiguity, Metalman
asks the user for additional information by clicking on the
desired cup. While a graphical user interface is appropriate
for tele-operated robots, a practical humanoid may alterna-
tively use verbal or gestural interaction [9], [12].

Once the cup and bowl have been identified, task plan-
ning generates a series of set-points to carry out the grasp-
ing and pouring motion, which are passed to the visual
servo controller. Selected frames from the right camera
during servoing are shown in Figure 9 (see accompanying
video for the complete sequence). As before, the end-
effector is initially outside the field of view, as shown
in Figure 9(b). Thus, servoing initially employs kinematic
control and switches to kinematic/visual fusion when the
end-effector becomes visible. Figure 9(c) shows the end-
effector just before the grasp, and Figure 9(d) shows the
cup successfully grasped and lifted. The cup is visually
tracked (at 2 Hz) until grasped, and then assumed to
remain fixed relative to the hand. The pouring motion
is implemented by positioning the cup above the bowl,
and rotating the wrist while lowering the cup towards the
bowl, as shown in Figures 9(e) and 9(f). The bowl is
successfully tracked throughout the pouring manoeuvre,
despite occlusion and a low contrasting background, to
ensure accurate placement of the cup.
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Fig. 7. Scene analysis for grasping task.

(a) Box tracking and kinematic servoing. (b) Visual servoing to planned grasp. (c) Cup grasped and lifted.

Fig. 8. Selected frames from grasping task (see http://www.irrc.monash.edu.au/gtaylor/chapter7/chapter7.html for complete sequence).

V. SUMMARY AND FUTURE WORK

This paper described the integration of robust vision-
based perception and control techniques to enable a hu-
manoid robot to perform manipulation tasks in an un-
structured domestic environment with minimala priori
knowledge. Stereoscopic light stripe scanning provides the
robot with an accurate 3D range map of the workspace,
despite the presence of secondary reflections, cross-talk
and other sources of noise. Data-driven segmentation and
object modelling allow the robot to classify previously
unknown objects, which provides the level of flexibility
necessary forad hoc tasks. Similarly, multimodal 3D
model-based tracking enables the robot to track objects
with varying appearance while rejecting visual distractions.
Finally, manipulations are performed using a self-calibrated
position-based visual servoing scheme that fuses visual and
kinematic measurements to robustly track the end-effector
despite clutter, occlusions and calibration errors.

Two real-world tasks involving classification and manip-
ulation of previously unknown objects were experimentally
implemented to demonstrate the effectiveness of the pro-
posed framework. The successful completion of both tasks
confirms that our robust perception and control techniques
provide a suitable framework for a practical humanoid
robot. Nevertheless, the experiments were contrived to

simplify scene analysis and task planning. Grasp stability
analysis is important when operating in an unpredictable
environment, but was neglected in the current implementa-
tion. This could have been implemented by tracking objects
during grasping, or by integrating tactile and force sensors.
Similarly, grasp and trajectory planning could account for
obstacles using more sophisticated algorithm.

This work offers a number of interesting directions
for future research. Cooperative servoing of both arms
provides the opportunity for greater flexibility and more so-
phisticated manipulations. Learning techniques may allow
the robot to recognize new classes of objects by associating
collections of geometric primitives with textural or vocal
tokens introduced by the user. By interacting with objects
(for example, viewing hidden surfaces), models could be
refined to improve classification and tracking. Ultimately,
the skills developed in this work could be integrated
with existing results in verbal and gestural interaction,
dextrous manipulation, locomotion and navigation to create
a practical robotic assistant for immediate applications such
as helping the elderly and disabled with domestic chores.
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