
Topological Mapping Inspired by Techniques in

DNA Sequence Alignment

Alan M. Zhang, Lindsay Kleeman and R. Andrew Russell

Intelligent Robotics Research Centre

Department of Electrical and Computer Systems Engineering

Monash University, Clayton, Victoria 3800, Australia

{alan.zhang, lindsay.kleeman, andy.russell}@eng.monash.edu.au

Abstract— This paper introduces a method of building topo-
logical maps using sequences of images and the approximate
string matching algorithm, which is commonly used in DNA
sequence alignment applications. Contrary to many existing
dense image based topological localisation techniques that operate
in known maps, our method builds topological maps in un-
known environments. And unlike traditional topological mapping
methods that require the robot to explicitly recognise topological
path junctions during exploration, our method requires no such
explicit “junction detectors”. It receives as input only a sequence
of unlabeled images. The validity of the approach has been
demonstrated in both indoor and outdoor environments. The
largest outdoor map created measures 70 by 40 meters with 3
nested loops. The system has shown robustness towards large
amounts of sensor aliasing and noise caused by errors in the
path following behaviours.

I. INTRODUCTION

Existing mobile robot mapping paradigms can be divided

into metric, topological or a combination of the two. The

topological paradigm has the advantage that it only needs

to recover the topology, not to reconstruct the geometry of

the environment. Therefore, it has the potential to be the

more flexible paradigm. This paper presents a topological

mapping approach that takes as input a sequence of unlabeled

images captured at regular intervals as the robot moves, and

recovers the topology of the environment. To understand the

innovations of the presented approach over existing ones, we

first examine the common assumptions made by topological

mapping systems. The novelty of our approach comes from

the relaxation or removal of some of these assumptions. A

general condition that is typically assumed for topological

mapping is the existence of a set of behaviours that constrain

the movement of the robot to only one degree of freedom. For

example, a road following behaviour when there is a footpath

and a wall following behaviour in the corridors or in an open

room. This assumption is also made in this paper. When a

robot executes such behaviours, the trajectory it follows is

referred to as a path. These behaviours can be collectively

called path following behaviours. Paths intersect each other at

path junctions. Existing topological mapping systems typically

require some mechanism that is functionally equivalent to a

“junction detector” which signals when the robot has reached

a path junction [1]. However, these path junctions can be

difficult to define, especially in outdoor environments. In

our approach, no such “junction detector” is assumed. As

far as the mapping system is concerned, the experience of

the environment consists entirely of a temporal sequence of

images. The state of the art in image matching has shown

some quite robust results. However, no method is completely

reliable. So depending on the environment, a certain amount

of sensor aliasing will occur. In this paper, a pessimistic view

is adopted where a large amount of aliasing is assumed. The

assumptions are summarised below:

Assumptions:

• Existence of movement behaviours that constrain the

location of the robot onto paths.

Common assumptions that are relaxed or removed:

• No “junction detector” is required. Path junctions will be

inferred from the observations.

• A large amount of sensor aliasing is allowed.

Under these assumptions the problem of building a topological

map can be illustrated using Fig. 1. The robot starts off

at position 1, executes its path following behaviour, visits

positions 2-5 and stopping at 6. It captures images at regular

intervals along the way. The mapping system is then presented

with this sequence of images. During sections 2-3 and 4-5

the robot goes through the same part of the environment thus

having the same sequence of perceptions. Positions 2, 3, 4

and 5 are path junctions but are not indicated as such to the

mapping system. The mapping algorithm needs to discover

that the subsequence of images captured in section 2-3 is

very similar to the subsequence captured in section 4-5. If

the subsequences are long enough and similar enough, then

there is a high confidence that they are the same part of the

environment. Positions 2 and 4 can then be inferred to be a

path junction without the need to be explicitly detected using

a “junction detector”. The same applies to positions 3 and

5. The method used in this paper to discover the matching

subsequences is the well known local alignment approximate

string matching algorithm. It has been used extensively for

DNA/RNA sequence alignment analysis. It is so widely used in

the field of computational molecular biology that it is usually

simply referred to as “the dynamic programming algorithm”.

Here we adapt it to operate on a sequence of images.

This paper is organised as follows: Section II discusses

related research in the area; Section III describes the hardware

1-4244-0259-X/06/$20.00 ©2006 IEEE

Fig. 1. Topological mapping scenario considered in this paper. The movement
of the robot is constrained by path following behaviours. The robot moves
from position 1 through 6. Images are captured at regular intervals.

setup; the components of the map building system is presented

in Section IV; experimental results demonstrating the validity

of the approach are presented in Section V; and conclusions

are drawn in Section VI.

II. RELATED RESEARCH

Our approach can be regarded as topological map building

using the dense image matching paradigm. The majority of

literature in this area are concerned with topological localisa-

tion. Some of the more recent works include [2], [3], [4], [5],

just to name a few. These works are aimed at improving the

robustness of the image matching methods for localisation in

known maps. Quite often the ground truth locations of where

the training images were taken is known. During operation,

the robot is localised to the training image position that most

closely matches the current perception. On the other hand, our

approach is about building a topological map in an unknown

environment.

The system in [6] closes loops in topological maps using

localisation. The idea is to continually try to localise the robot

in the part of the map that has been built. If the localisation

confidence is low then new observations are added as new parts

of the map. If the confidence is high then a loop is detected. A

procedure then finds where the loop was first closed by back

tracking to the position when the confidence first started to

increase. This heuristic is not guaranteed to produce the most

likely map.

The map building technique in [7] is to modeled the map

as a Partially Observable Markov Decision Process (POMDP)

and trained using the expectation-maximization technique.

The difficulty with map representation using Hidden Markov

Model (HMM) or POMDP is in deciding the topology and

number of states. Generally these can not be determined

a priori for an unknown environment. The typical work around

is to discretise the environment with a grid, such that both the

topology and number of states can be specified a priori. This

limits the flexibility of the HMM/POMDP model and does not

scale well to large environments. The approach in this paper

determines the topology of the map by looking for sufficiently

long sequences of matching images.

The approaches of [8] and [9] are closest to ours. However,

both perform localisation inside a known map instead of

mapping the unknown environment.

III. HARDWARE

The hardware setup consists of a Pioneer 3DX robot for

mobility, a webcam/panoramic-mirror assembly mounted atop

a mast at a height of 1.5m for panoramic imaging, and a laptop

for robot control and data recording. The panoramic-mirror is

of the type as described in [10] with a gain of 7. It is suspended

above the camera using a perspex cylinder. Wheel encoders

provide odometry measurements.

IV. TOPOLOGICAL MAPPING ALGORITHM

During the data collection phase, the robot follows paths

and captures a sequence of images at regular intervals. These

images are then used as input to the mapping system. The

sequence of images is treated as a string where each image

is a character. A string matching algorithm finds matching

subsequences in the string. To facilitate string matching, the

images are first compared pairwise to generate a similarity

matrix. After matching subsequences are found, a labeling

process completes the building of a topologically correct map.

But to more easily visualise the topological map, odometry is

incorporated as a last step. Image comparison and similarity

matrix generation is presented in Section IV-A. Section IV-

B describes the string matching algorithm. Label assignment

and incorporation of odometry for visualisation are presented

in Sections IV-C and IV-D.

A. Similarity Distance and Similarity Matrix

In this work images are compared using joint histograms

[11], [12]. This is a very poor image comparison method.

Many other methods achieve better discrimination and are

more tolerance to illumination variations and partial occlu-

sions, eg. [13], [14]. But the histogram method was delib-

erately chosen because it is poor, in order to demonstrate

the ability of the system in tolerating large amount of sensor

aliasing.

The comparison method calculates a number of local fea-

tures for each pixel: edge density, gradient magnitude, tex-

turedness and rank, together with the colour channels R, G

and B to form a 7 dimensional feature vector. Refer to [11]

for details on the local features. A 7D histogram is then

constructed for each image. The number of bins in each

dimension are as suggested in [11]: 4 for edge density, 5 for

edge magnitude, 4 for texturedness, 4 for rank and 4 for each

of the colour channels. The χ2 bin-by-bin distance measure

shown below is used to compare image histograms:

D(I, J) =
∑ (fI(k) − fJ(k))2

fI(k) + fJ (k)
(1)

where D(I, J) is the distance measure between images I

and J , and fI(k) and fJ(k) are the corresponding his-

togram entries. This distance measure is then converted in

to a similarity measure via a simple linear transformation:

Fig. 2. Similarity matrix, with detected and pruned matching subsequences
superimposed. Matching pairs of images are shown as white pixels. The red
and blue lines are the detected matching subsequences. Only the red lines
remain after pruning and are subsequently used to construct the topological
map.

S(I, J) = 1 − κ ∗ D(I, J), where κ is set experimentally. A

similarity matrix is then constructed by calculating S(I, J) for

every pair of images. Because (1) is symmetric, i.e. D(I, J) =
D(J, I), the similarity matrix is also symmetric. A similarity

matrix calculated from real data is shown in Fig. 2, where

brighter cells represent pairs of images with higher similarity.

This dataset was gathered in an office environment. Note the

large amount of sensor aliasing.

Using this measure simulates the worst case performance.

Any improvement in image comparison can only increase the

performance of the system. Although in this paper vision is

used as the only sensor, any other type of sensor can be used to

generate the similarity matrix, so long as there exists a method

to compare pairs of readings.

B. Local Alignment Approximate String Matching

As mentioned previously the sequence of images can be

treated as a string. When the robot revisits the same path

the sequence of perceptions will be repeated. This means

there will be repeated substrings if the robot revisits the same

path. But because of noise, the repeat will not be exact. Such

approximately matching substrings can be discovered robustly

using the well known and widely applied local alignment

approximate string matching algorithm [15], [16]. In the

subsequent sections “sequences of images” and “strings” are

used interchangably depending on context. By the same token

characters refer to individual images. The string matching

algorithm is described below.

The notation used here follows the convention in [15].

Fig. 3. Weighted grid graph for matching strings A and B. A weight is
given to each edge but only relevant weights are shown. Each path in the
graph encodes an alignment between strings. The alignment generated by
traversing the red path is shown, along with the alignment’s score.

Suppose that two strings A and B are to be matched. In the

topological mapping context, A and B are both assigned the

same input image sequence. But for the sake of clarity the

labels A and B are kept. Their lengths are |A| = m and

|B| = n. The string matching problem is to find an optimal

alignment (pairing of characters in the two strings) between a

substring A′ of A = A1 . . . Am and B′ of B = B1 . . . Bn.

This problem can be modeled using a weighted grid graph.

An (m,n) weighted grid graph G = (V,E) is a directed

(acyclic) weighted graph that contains (m + 1) × (n + 1)
vertices with rows 0. . . m and columns 0. . . n. Vertex (i, j)
has a directed edge to (i + 1, j), (i + 1, j + 1), and (i, j + 1),
except when the endpoints are outside the boundaries of the

grid. Fig. 3 shows such a weighted grid graph for matching

strings A = {a, b, e, d} and B = {e, c, d, a}.

An alignment of Ac
i = Ai+1 . . . Ac with Bc′

i′ = Bi′+1 . . .

Bc′ then corresponds to a path from (i, i′) to (c, c′) in the

graph. Following a horizontal edge corresponds to skipping

over a character in B and incurs a penalty that is reflected in a

negative weighting given to horizontal edges. A vertical edge

represents skipping over a character in A and also incurs a

penalty. The diagonal edge 〈(k, l), (k + 1, l + 1)〉 corresponds

to matching characters Ak+1 and Bl+1 and the edge weight

is positive if the characters match, negative otherwise. Fig. 3

shows the character alignment represented by the red path,

along with the score of that alignment. Skipping a character is

represented in the alignment by matching that character to a

“gap”, denoted by a dash. Therefore a good alignment of Ac
i

with Bc′

i′ is indicated by the high score of its corresponding

path in the grid graph. Let score(Ar
j , B

t
l) denote the score

of the best alignment between substrings Ar
j = Aj+1 . . . Ar

and Bt
l = Bl+1 . . . Bt. The best such scores can be found

using a dynamic programming approach. Each entry in the

dynamic programming table T corresponds to a vertex in

the grid graph. The cell T [r, t] would hold the maximum in

{score(Ar
j , B

t
l) | j ∈ [0, r], l ∈ [0, t]}. With relation to grid

graphs, T [r, t] holds the highest score of all possible paths that

end at the vertex (r, t). Because a maximum of only 3 edges

go into a vertex, any path that ends at vertex (r, t) will have

to go through one of its 3 neighbours. Therefore, T [r, t] can

be calculated from T [r − 1, t], T [r − 1, t− 1] and T [r, t− 1].
Hence the DP table T can be filled with a raster scan. The

initialisation and recurrence relationships are shown below:

Initialisation:

T [r, 0] = 0, r ∈ [0,m] (2)

T [0, t] = 0, t ∈ [0, n] (3)

Recurrence:

T [r, t] = max















0,

T [r − 1, t − 1] + S(Ar, Bt),
T [r − 1, t] + w(Ar, –),
T [r, t − 1] + w(– , Bt)















r ∈ [1,m]
t ∈ [1, n]

(4)

where S(Ar, Bt) is the similarity measure calculated in Sec-

tion IV-A that corresponds to matching characters Ar and

Bt. So if the images match, S(Ar, Bt) will add a positive

reward to the cumulative score, otherwise, the score is added

with a negative penalty; w(Ar, –) and w(– , Bt) are the

penalties assigned to skipping a character in string A and B

respectively, i.e. matching against a gap. The first argument

in (4) is zero to ensure that if none of the suffixes of Ar
0

and Bt
0 can be aligned with a strictly positive score, T [r, t]

would be set to score(Ar
r, B

t
t) = 0. The scores in T are

now a robust measure of similarity between substrings that

takes into account alignment errors like skipped or mismatched

characters. By placing a suitable threshold on the scores it is

possible to determine whether the robot is revisiting a part of

the environment, i.e. closing the loop.

A modification is made to the standard algorithm described

above, in which an upper bound is imposed on the cumulative

score. If the cumulative score is allowed to grow unbounded,

then two pairs of very high scoring substrings that are sepa-

rated by a wide non-matching segment would be joined into

one pair of matching substrings. This occurs because even

though the non-matching segment provides enough evidence

to indicate that the robot is exploring a new part of the

environment, the high cumulative score “spills over” into the

non-matching segment and does not reduce to below 0 when

it reaches the other pair of matching substring.

The next step is to determine the beginning and end

positions of the matching substrings. These positions can be

inferred to be path junctions, thereby removing the need for

an explicit “junction detector”. Bearing in mind that there

are possibly more than one pair of matching substrings (i.e.

more than one loop or same part of the environment traversed

multiple times), the problem is one of identifying all substring

pairs that are locally optimal. This problem has been analysed

in [17], [18] and also described in [15]. The method presented

in [15] has been adopted in this paper. Due to lack of space,

please refer to [15] for the details of the algorithm. Gusfield

[16] also presents excellent discussions on the subject of string

matching.

The substrings that match in the reverse order can be

discovered by appropriate modifications to the dynamic pro-

gramming recurrence relationships and running the above

algorithm on the strings in a second pass.

Fig. 2 illustrates the result of string matching. Each blue

or red line segment is a locally optimal path through the

grid graph representing a pair of locally optimal matching

substrings. The lines in the direction of top-right to bottom-

left are substrings matched in reverse order, i.e. the robot is

traversing the same path but in the reverse direction.

C. Pruning and Dense Label Assignment

Having identified the matching subsequences, we are ready

to infer the topological map. The approach taken is to assign

each image a label. Later in Section IV-D, these labels

help to better visualise the data. Given a pair of matching

substrings, the unique pairing of images within the substrings

is provided by the string matching algorithm. Lets denote these

pairings using their image indices: {1, 10}, {3, 11}, {11, 25},

{25, 45}, etc. Where {1, 10} means the 1st image is matched

with the 10th image in the sequence. We take a rather simple

approach to labeling by assuming that the relationships in

the aligned pairs are transitive. So in the example sequence,

images 3, 11, 25 and 45 are all assigned the same label.

However, the problem that arises is inconsistency caused

by noise. Consider the following 3 subsequence alignments,

where image indices are paired vertically:

Alignment 1:

{

1 2 3 4 5
11 12 13 14 15

}

Alignment 2:

{

11 12 13 14 15
21 22 23 24 25

}

Alignment 3:

{

1 2 3 4 5
22 23 24 25 26

}

From these alignments we can infer that 5 = 15, 15 = 25, 25 =

4, 4 = 14, 14 = 24, 24 = 3 and so on. It means that eventually

all images in the subsequences will be assigned the same label.

The ideal solution to this problem is to perform what is known

as multiple string alignment. The string matching algorithm

presented in this paper is a pair-wise method. An extension of

this dynamic programming method to handle multiple strings

is possible, but a 3 strings alignment requires a 3 dimensional

dynamic programming table, and a 4 dimensional table for 4

strings. The computational complexity explodes beyond what

is reasonable very quickly. Methods based on heuristics are

therefore commonly used instead for multiple alignment. How-

ever, more robust methods of resolving inconsistent alignments

will be left to future work. In this paper we describe a simple

heuristic that resolves these inconsistencies. The heuristic is to

prune the set of alignments such that for each column in the

dynamic programming table, only the alignment of the longest

−5 0 5 10 15 20 25 30 35 40 45
−15

−10

−5

0

5

(a)

0 5 10 15 20 25 30 35 40 45
−5

0

5

10

15

(b)

Fig. 4. Experiment No. 1: Indoors. A total of 869 images captured at
25cm intervals. Units on the axes are in meters. (a) Cumulative odometry.
(b) Topological map visualised by incorporating odometry. Red dots are the
estimated locations where images were taken.

matching subsequence is retained. The red lines in Fig. 2

represent the matching subsequences that remain after pruning.

The blue lines were pruned out. The transitive method of

labeling is then applied on the pruned matching subsequences.

At this stage a topologically correct map has been created,

where the images having the same label come from the same

part of the environment. But this purely topological map is

difficult for humans to interpret. Odometry information is

therefore integrated into the map for better visualisation.

D. Incorporating Odometry for Visualisation

Since each image is allocated a label, the data association

step in Simultaneous Localisation and Mapping (SLAM) has

already been done. An extended Kalman filter algorithm is

used to build a metric representation of the environment.

Predictions of the robot’s pose come from odometry only.

Observable features are the locations where images were

taken. Since the histogram based image similarity measure

does not provide relative bearing estimates, the features are

encoded with (x, y) position information only. Because the

histogram method does not provide estimates of any other kind

of geometric relationship between pairs of images either, the

predicted position of an observed image is simply the current

estimated position of the robot. Observation errors are assumed

to be symmetrical two dimensional Gaussians. The use of

odometry with the Kalman filter is merely an aid for a human

to check the validity of the topological map in the results and

is not intended as an exact geometric representation. So the

metric map created may not be geometrically correct.

−30 −20 −10 0 10 20 30 40 50

0

10

20

30

40

50

(a)

−10 0 10 20 30 40 50 60 70
−5

0

5

10

15

20

25

30

35

40

45

(b)

Fig. 5. Experiment No. 2: With indoors and outdoors sections. A total of
800 images captured at 50cm intervals. Robot traveled a total of 404 meters.
Units on the axes are in meters. (a) Cumulative Odometry (b) Topological
map visualised by incorporating odometry

V. RESULTS

Experiments in both indoor and outdoor environments were

carried out. Because the path following behaviours have not

yet been implemented, the robot was manually controlled with

a joystick in all experiments to simulate behaviours such as

corridor following. Images and odometry were logged and

processed offline.

Experiment No. 1 was performed in an office/corridor envi-

ronment. The area covered was approximately 45 meters by 12

meters. Images were captures at 25cm intervals. Cumulative

odometry is shown in Fig. 4(a). The resulting topological

map with odometry incorporated for visualisation is shown in

Fig. 4(b). Each red dot represents the estimated location where

an image was taken. The robot started from position (0, 0)

then moved towards the right of the map along a corridor,

looped around a stair well, then traveled back along the same

corridor in the opposite direction. In doing so, it experiences

the sequence of images in reverse order while traveling back

along the corridor. The algorithm successfully identified these

reversely matched subsequences thereby closing the loop.

Fig. 5 shows results of the second experiment consisting

of both indoor and outdoor sections with 3 nested loops. The

top half of the loop on the right side of the map was inside

a corridor while the rest of the map were outdoors. Images

were taken at 50cm intervals. The map is approximately 70

by 40 meters. The total distance traveled by the robot was 404

meters. All loops were closed successfully.

Experiment No. 3 shown in Fig. 6 demonstrates the system’s

robustness towards errors in the path following behaviour. In

order to simulate poor path following behaviour, the robot

was deliberately made to follow a zig-zag pattern during a

second traversal of the same part of the environment. The zig-

zag pattern meant that the images were captured at different

locations to that of the first traversal, hence different in appear-

ance. There were also more images in the zig-zag sequence

because images were captured at fixed distance intervals and

the zig-zag pattern covers more distance. Nevertheless, the

string matching algorithm was robust enough to find matching

subsequences. The two loops in this experiment are the same

two loops on the left of Fig. 5(b). As shown in Fig. 6(b), the

topology of the environment was correctly deduced. Note that

the poor odometry information in these experiments resulted in

TABLE I

EXECUTION TIME OF EXPERIMENTS

Experiment No. of Histogram Similarity Map

No. Images Calculation Matrix Construction

1 869 25.2 sec 13.1 sec 105 ms

2 800 23.2 sec 9.7 sec 81 ms

3 787 22.8 sec 10.0 sec 100 ms

−10 −5 0 5 10 15 20 25 30 35 40 45
−5

0

5

10

15

20

25

30

35

40

45

50

(a)

−15 −10 −5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

40

(b)

Fig. 6. Experiment No. 3: Outdoor experiment demonstrating tolerance to
errors in path following behaviour. The robot was deliberately driven in a
zig-zag patter when it traverses the same part of the environment a second
time. A total of 787 images were captured at 50cm intervals. Units on the
axes are in meters. (a) Cumulative Odometry (b) Topological map visualised
by incorporating odometry

deformed metric maps. However, we stress that the aim of the

current work is to build topologically correct maps. Odometry

is used only for a human to check the validity of the results.

Table I shows the execution time for the experiments. The

platform was a PC with a 2.6GHz Pentium 4 CPU and 512MB

of RAM. All images were 320 by 240 pixels. The fourth

column shows the time it took to generate the similarity matrix.

The ‘Map Construction’ column is the total combined time

of string matching, pruning and dense label assignment. It is

evident from the table that image comparison accounted for

most of the computation. The mapping algorithm itself is very

efficient.

VI. CONCLUSION

A novel approach to building topological maps in unknown

environments has been proposed. The approach requires only

an unlabeled sequence of images taken at regular intervals as

the robot travels. To achieve loop closing it uses an approxi-

mate string matching algorithm to robustly discover repeated

subsequences in the entire sequence of images. Our method

has the potential of facilitating the fusion of an arbituary set

of sensors of very different sensing abilities, as long as there

exists a similarity measure between sets of sensor readings.

Its feasibility has been demonstrated with data gathered by

a mobile robot with a panoramic vision system. The largest

outdoor map created was 70 by 40 meters with 3 nested loops.

The system has shown robustness towards large amounts of

sensor aliasing and noise due to errors in path following

behaviours.

ACKNOWLEDGMENT

The authors would like to thank the ARC Centre for

Perceptive and Intelligent Machines in Complex Environments

(pimce.edu.au) for their financial support.

REFERENCES

[1] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations,” Journal of

Robotics and Autonomous Systems, vol. 8, pp. 47–63, 1991.
[2] M. Artac, M. Jogan, and A. Leonardis, “Mobile robot localization

using an incremental eigenspace model,” in 2002 IEEE International

Conference on Robotics and Automation, Washington, DC, May, 2002.
[3] H. Andreasson and T. Duckett, “Topological localization for mobile

robots using omni-directional vision and local features,” in 5th IFAC

Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 2004.
[4] J. Wolf, W. Burgard, and H. Burkhardt, “Robust vision-based local-

ization for mobile robots using an image retrieval system based on
invariant features,” in 2002 IEEE International Conference on Robotics

and Automation, Washington, DC, May, 2002.
[5] D. M. Bradley, R. Patel, N. Vandapel, and S. Thayer, “Real-time

image-based topological localization in large outdoor environments,” in
Proceedings of the International Conference on Intelligent Robots and

Systems, 2005.
[6] N. Tomatis, I. Nourbakhsh, and R. Siegwart, “Hybrid simultaneous

localization and map building: a natural integration of topological and
metric,” in IEEE International Conference on Robotics and Automation

ICRA’02, 2002.
[7] S. Koenig, R. Goodwin, and R. Simmons, “Robot navigation with

markov models: A framework for path planning and learning with
limited computational resources,” in International Workshop, Reasoning

with Uncertainty in Robotics, Amsterdam, Netherlands, 1995.
[8] T. Nishimura, S. Nozaki, and R. Oka, “Spotting-based global positioning

with non-monotonic continuous DP for mobile robots using image se-
quences,” in Proc. IEEE International Conference on Intelligent Robots

and Systems, 1999.
[9] J. Y. Zheng and S. Tsuji, “Panoramic representation of scenes for route

understanding,” in Proceesings of the 10th International Conference on

Pattern Recognition, vol. 1, 1990, pp. 161–167.
[10] J. S. Chahl and M. V. Srinivasan, “Panoramic vision system for

imaging, ranging and navigation in three dimensions,” in Proceedings

of the International Conference on Field and Service Robotics FSA’99,
Pennsylvania, USA, 1999.

[11] G. Pass and R. Zabih, “Comparing images using joint histograms,” ACM

Journal of Multimedia Systems, vol. 7, no. 3, pp. 234–240, 1999.
[12] C. Zhou, Y. Wei, and T. Tan, “Mobile robot self-localization based

on global visual appearance features,” in Proc. IEEE International

Conference on Robotics and Automation (ICRA’03), Taipei, Taiwan,
2003.

[13] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the International Conference on Computer Vision,
September, 1999.

[14] C. Schmid and R. Mohr, “Local grayvalue invariants for image
retrieval,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 19, no. 5, pp. 530–535, 1997. [Online]. Available:
citeseer.ist.psu.edu/schmid97local.html

[15] J. P. Schmidt, “All highest scoring paths in weighted grid graphs and
their application to finding all approximate repeats in strings,” SIAM J.

Comput., vol. 27, no. 4, pp. 972–992, 1998.
[16] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Computer

Science and Computational Biology. New York, NY, USA: Cambridge
University Press, 1997.

[17] B. W. Erickson and P. H. Sellers, “Recognition of patterns in genetic
sequences,” in Time Warps, String Edits, and Macromolecules: The

theory and Practice of Sequence Comparison, D. Sankoff and J. B.
Kruskal, Eds. Reading, MA: Addison-Wesley, 1983, pp. 55–91.

[18] M. S. Waterman and M. Eggert, “A new algorithm for best subsequence
alignment with application to tRNA-rRNA comparisons,” Journal of

Molecular Biology, vol. 197, pp. 723–728, 1987.

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	IROS06PageNumber:
	0:
	9110319021362825: 2754
	07529226249152055: 2755
	9525535165622366: 2756
	1705009635282702: 2757
	6573392938365921: 2758
	615843488526512: 2759

	TL1:
	0:
	24193016586926813: Proceedings of the 2006 IEEE/RSJ

	TL2:
	0:
	22457072004684803: International Conference on Intelligent Robots and Systems

	TL3:
	0:
	870654871133349: October 9 - 15, 2006, Beijing, China

