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Abstract - An advanced sonar sensor produces accurate 

range and bearing measurements, classifies targets and 
rejects interference with one sensing cycle.  Two advanced 
sonar systems are used to simultaneously localise and map 
an indoor environment using a mobile robot.  This paper 
presents the approach and results from on-the-fly map 
building using a Kalman filter and a new odometry error 
model that incorporates variations in effective wheel 
separation and angle measurements.  This model is suited to 
pneumatic tyre odometry errors where the wheel separation 
has been found to vary unpredictably with floor surface and 
path curvature.  The paper also presents techniques for 
detecting sonar feature clutter  and selecting strong 
candidates for ultrasonic landmarks.  The paper illustrates 
that sonar SLAM data association problems are significantly 
simplified when advanced sonar sensors are employed 
compared to Polaroid ranging modules. 

1. Introduction 
Considerable research effort has been expended in 

producing sonar maps for localisation and navigation of 
indoor environments [1,2,3,4].  Almost all research has 
utilised sonar Polaroid Ranging Modules (PRM) or 
equivalent that provide range to the first sonar target.  The 
PRM has presented significant obstacles to producing 
reliable maps due to the lack of target classification and 
bearing information.  Classifying a feature as a point or 
line type allows prediction of measurements, allows 
simpler data association and is desirable for a coherent 
map.   The lack of reliable bearing information makes data 
association and accurate feature location difficult.  This 
paper presents an alternative approach to sonar map 
building and localisation where a high quality and 
accurate sonar sensor is deployed.  The sonar systems are 
named “advanced sonar” to distinguish them from the 
PRM.  

This paper presents new results of simultaneous 
localisation and map building (SLAM) employing on-the-
fly advanced sonar measurements and two wheeled 
odometry.  Previous work [4,6] using an earlier version of 
the sonar sensor required a stationary robot for sonar 
classification, which meant that measurements were taken 
at intervals of approximately one metre.  Here the sonar 
sensors fire as the robot moves which results in more 
detailed maps.  A new odometry model is introduced that 
extends previous work [7] and includes the effects of 

random perturbations in the effective wheel separation 
and is appropriate for robots with pneumatic wheels as in 
this work.  Moreover a new approach is presented for 
automatic calibration of odometry, speed of sound and 
sonar positions on the robot. 

The paper presents the specification of the advanced 
sonar and robot in section 2, the directed sensing strategy 
in section 3 and details of the SLAM approach in section 
4.  This section also includes the new odometry error 
model that extends [7].  An automated calibration 
procedure is briefly described in section 5 and results are 
discussed in section 6. 

2 Advanced sonar specification and 
SLAMbot Configuration 

 
Figure 1 – SLAMbot with front and rear panning 

advanced sonar DSP based sensors. 
 
The robot named SLAMbot is shown in Figure 1 and 

performs on-the-fly map building and localisation. 
SLAMbot is has front and rear advanced DSP sonar 
systems, two drive wheels with encoders that resolve to 
0.5 mm and a wheel separation of 640 mm.  The advanced 
sonar systems [8,9,4] report range, bearing and echo 
amplitudes out to 5 metres range with an error standard 
deviation of 0.2 mm and 0.1 degrees for strong reflectors 
such as walls.  These errors depend on an accurate 
calibration of the speed of sound and calm air conditions.  
The sonar also classifies targets whilst the robot is moving 
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4.1 Robot state vector with a single measurement cycle of approximately 35 
msec using nearly simultaneous firing of two transmitters.  
Classification types are planes, right-angled concave 
corners and edge reflectors.  The sonar systems can 
smoothly rotate whilst sensing.  The pan encoders resolve  
to 0.18 degrees.  Interference between the sonar systems 
and from external sources is rejected using a double pulse 
scheme [9,10].  Sonar measurements are time stamped by 
the sensor to 1 msec resolution and the sensor clock is 
regularly synchronised to the host Linux computer clock 
to within 2 msecs using real time high priority threads. 

The robot state represents the angle and position of the 
robot and the speed of sound as follows: 

 
[ ]Tcyxθ=x  (1) 

 
The position is referenced to the centre of the drive 

wheel axis.  The speed of sound is estimated on-the-fly 
since it increases by about 0.5% per degree Celsius and is 
affected to a lesser extent by humidity and carbon dioxide 
levels.  Over the duration of a SLAM mission the speed of 
sound can vary significantly. 3 Wipe directed sensing strategy 

A simple directed sensing strategy is employed during 
mapping experiments.  Each sonar sensor continuously 
pans forwards and backwards across its full angle range of  
225 degrees at 60 deg/sec similar to a windscreen wiper.  
For the purposes of SLAM, the robot motion is controlled 
manually with a joystick. 

4.2 Feature Representation 
Three types of features are identified by the advanced 

sonar sensors – planes, concave corners and edges.  The 
latter two types are represented by a two dimensional 
point (xp, yp).  The plane feature is represented by a line 
with an angle φ and the minimum distance d to the global 
coordinate system origin as shown in Figure 2.  A point 
on the line (φ, d) satisfies the parametric equation: 

3.1 Measurement Selection and Clutter 
For each sonar cycle only one measurement is retained 

for reasons of simplicity and robustness. The maximum 
amplitude measurement is used since selects good 
ultrasonic landmarks.  After each scan, sonar 
measurements are clustered based on target position 
compensated by odometry.  A new measurement within a 
small difference to any one in a cluster under construction 
is included in the cluster. The maximum amplitude 
measurement of the cluster is then presented to the SLAM 
Extended Kalman filter.  There are two reasons that every 
measurement is not processed by the Kalman filter: (i) 
sonar errors are highly correlated in time and space [10] 
and so little new information would be obtained from the 
same target and (ii) the processing time per measurement 
for SLAM cannot keep up with the sensor data rate. 
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where t is the signed distance from the nearest point on 

the line to the origin. The representation (φ, d) of a line 
has the alternative of (φ+π,- d) that results in the same 
parametric equations except t reverses sign.  Here the two 
lines are considered different since they correspond to 
sensing from different sides of the line.  The angle of the 
line always corresponds to the sonar sensing direction.  If 
the line were sensed from the other side to the coordinate 
origin, a negative distance parameter would be recorded.  
Previous sonar mapping work [14] used the line 
representation (a, b) to represent a line with equation 
ax+by=a2+b2 as shown in Figure 2.  This representation 
may become ill-conditioned when a lines passes nearby 
the origin. 

Cluster statistics are kept to allow rejection of cluttered 
clusters that can cause incorrect associations in the 
Kalman filter.  The statistics are the deviation in ranges 
and bearings referenced to the robot position at the start of 
the scan.  The most common target type to encounter 
clutter is the edge, and is rejected when the range and 
bearing deviations exceed 2.5 mm per metre range or 0.2 
degrees per metre range.  

tmax  
 
 
 
 
 4 SLAM implementation 
 

A Kalman filter based SLAM implementation is 
employed based on the description by Davison [11] where 
all map features are updated on each measurement step. 
There are many approaches reported [5,4,11,12,13] that 
speed up the update of the features and their covariances 
based on approximations and local map decompositions. 
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Figure 2 – Line representation 
 
The extent of a line is represented by maximum and 

minimum t parameters tmax and tmin from equation (2).  
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New sonar measurements are only fused with the line if 
their t parameter lies in the interval [tmax+ext, tmin-ext] 
where 0.4 metres has been chosen for ext. 

Similarly point features represent an extent based on 
“viewing” angles which are restricted to less than a 90 
degrees range per feature to account for the properties of 
corners and edges in practice.  In particular the occurrence 
of corridor wall mouldings shown in Figure 3 are 
classified by the sonar as an edge.  The moulding 
protrudes a centimetre from the wall which is not 
sufficient to allow the formation of a virtual image of the 
sonar transducers.  Nevertheless these features are strong 
acoustic reflectors.  By restricting a single feature to 90 
degrees viewing angle, the left and right “edges” in Figure 
3 are prevented from fusing in the SLAM algorithm.  To 
help with maintenance of map features, the number of 
sensor measurements associated with a feature is recorded 
along with the times of these measurements.  This can be 
referenced to an array of times linked to robot poses. 

 
 

 
Figure 3 – Plan view of a wall mouldings classified as a 
sonar edge. 

4.3 Odometry error model 
The robot odometry estimate of robot pose at time step 

k+1 is determined using the following [7] equations: 
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where at time step k,  θ(k) is the robot heading angle, 

and x(k) and y(k) are the x and y coordinates of the centre 
of the robot wheel axis.   The error model adopted here 
assumes the error sources are additive white noise on the 
wheel separation, B, and the left and right wheel length 
measurements, LL and LR.  This work extends previous 
work [7] that considers noise on LL and LR alone.  The 
robot employed in the current work has wide inflatable 
tyres that provide good traction at the expense of wheel 
separation variation.  Calibration experiments have shown 

that the effective wheel separation varies with floor 
surface and path curvature in an unpredictable manner.  
Using a first order Taylor expansion of equations (3,4) the 
iterative equation can be derived in terms of the Jacobians 
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The covariance of the error in the robot pose at step 

k+1 is now derived in terms of step k: 
 

4434421

4444444 34444444 21

errornew

T

npropagatioariance

TT

T
T

T
T

T

k

kkkk

y(ky(kE

k(k)E

kkEk

y
fQ

y
f

x
fP

x
fP

x
f

x
fPP

y
f

y
f

x
fIxx

x
fI

xxP

∂
∂

∂
∂

+

∂
∂

∂
∂

+
∂
∂

+
∂
∂

+=

∂
∂

∂
∂

+









∂
∂

+







∂
∂

+=

++≡+

)(

)()()()(

)∆).∆

)(∆.∆

)1(∆).1(∆)1(

cov

 (9) 

 
where E is expectation and Q(k) is the error covariance of 
y(k), the wheel measurements and separation.  Note that 
in equation (9) the errors in robot pose, x, at time k and 
the new errors in odometry parameters y at time k are 
assumed to be independent.  The 4 terms involving P(k) in 
the equation (9) can be reduced to the following equations 
that are efficient to implement: 

 



L. Kleeman, “Advanced Sonar and Odometry Error Modeling for Simultaneous Localisation and Map Building” Proceedings of the 
IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas 2003, pp 699-704. 

)()1('
)(..)()1(')1('
)(..)()1(')1('

)()(..2)()1('

)(..)(..

)(..)()1(')1('
)()(..2)()1('

1111

11122112

11133113

11
22

122222

11
2

31

12233223

11
22

313333

kpkp
kpsLkpkpkp
kpcLkpkpkp

kpsLkpsLkpkp

kpcsLkpsL

kpcLkpkpkp
kpcLkpcLkpkp

=+
−=+=+
+=+=+
+−=+

−−

+=+=+
++=+

 (10) 

 
where P= [pij] and c=cos(θ) and s=sin(θ).   Note that if 
the above equations are implemented in the order shown, 
the covariance entries can be update in situ.  The primes 
(‘) indicate that the remaining term involving Q(k) in 
equation (9) needs to be included before the final 
covariance P is obtained.  The errors in LR, LL and B are 
assumed to be independent: 
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Expanding the final term in equation (9) results in the 

covariance update equations: 
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How are values determined for the variance 

?  For a given distance or angle change, 
the final covariance should be independent of the number 

of steps to traverse a path.  To find a value for , 
consider the p

222 and, BLR σσσ

2
Bσ

11 (ie angle variance) additive term in the 
above equation when .  This term must be 
proportional to the absolute value of the angle change D in 
order to produce a consistent sum for different step sizes.  
Therefore a proportionality constant k is introduced to 
give: 
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Let A be the angle error standard deviation introduced by 
noise on the wheel separation parameter B for a full 2π 
revolution of the robot in one step, then  
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Values for and must be proportional to L at each 
step so that the total contribution of error along the path is 
dependent only on the path not the number of steps.  To 
accumulate a standard deviation error E from 1 metre of 
travel, 

LLRR LEandLE 2222 == σσ  (15) 
 
Despite the apparent complexity of the covariance update 
equations (12), they are straightforward to implement and 
the C++ code to update the odometry pose and covariance 
runs in under 5 usec on a 850 MHz Pentium.  This 
represents about 0.5 % computational loading since the 
odometry estimate and error covariance is updated every 
10 msec. 

4.4 Sonar error covariance model 
The sonar error model estimates the covariance of 

errors in sonar range and bearing measurements.  The 
error model depends on the feature type.  Measurement of 
edges are less reliable than plane and corner feature types, 
due to two factors:  (i) reduced echo amplitude and (ii) 
clutter is more common.  Therefore a more conservative 
error model is adopted for edge features. The range and 
bearing measurements are assumed to be independent 
[15].  The sonar error model needs to take into 
consideration vibrations and swaying of the robotic 
platform that are not seen by odometry.  These errors can 
be significant compared to the stationary robot errors and 
the sonar model adopted is necessarily conservative: 
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where scale is maximum{1,range(in metres)} for edges 
and 1 for corners and planes. 

4.5 Measurement to Feature Association 
New measurements can either generate a new map 

feature or be fused to existing map features.  In the latter 
case the measurement improves the robot pose and the 
accuracy of the feature pose and possibly increases the 
extent of the feature. In the Kalman filter all error 
covariance and cross covariance matrices are affected by 
the fusion of a measurement and the processing 
complexity of the operation increases with n2 unless the 
map is divided into submaps [5,4,13]. 

The decision of which feature, if any, a measurement 
should be fused with is called the association problem.  
Incorrect associations can cause gross errors in the map 
and even divergence of SLAM.  Failure to associate a 
measurement with its genuine feature results in 
suboptimal robot localisation and feature errors and 
possibly the duplication or shadowing of future map 
features displaced in position and angle.  Association must 
satisfy: 
1. The feature and measurement classifications agree (ie 

plane, corner or edge) 
2. The length of a line is extended by less than 0.4 

metres. 
3. For a point feature, the viewing angle to the centre of 

previous viewing angles is less than 30 degrees. 
4. The measurement satisfies a standard  validation gate 

condition for a Kalman filter [14] for one and only 
one feature. 

If one of the conditions 1, 2 or 3 are not satisfied and 
the measurement does not fall into any validation gate, a 
new feature is initiated.  If the measurement falls into 
more than one feature’s validation gate, the measurement 
is ignored. 

 

5 Calibration of Odometry and Sonar 
The pneumatic tyres require odometry calibration to be 

performed frequently. Calibration of the sonar position in 
the robot coordinate frame and the speed of sound is a by-
product of this technique.  Sonar and odometry 
measurements are collected for a robot maneuver that 
allows both sonar sensors to observe a dozen uncluttered 
features over a few minutes with the robot moving 
forward turning and retracing its path several times as 
shown in Figure 4.  In order to determine the speed of 
sound and provide a distance reference for odometry, the 
distance between two parallel planes is measured and used 
as a constraint during minimisation of a cost function.  
The cost function is the sum of square differences 
between expected measurements and real measurements 
based on average feature positions and odometry.  Special 
care is taken in choosing the form of the parameters and 

their order to decouple the minimisation of cost between 
parameters.  For example c is optimised first since this 
affects sonar features perpendicular to robot motion, and 
then (RR+RL)/c which affects features in line with robot 
motion only. Other parameters of odometry and sonar 
follow: 
 

 
 

Figure 4 – The robot map data used for calibration of 
odometry, speed of sound and sonar pose on the robot. 

6 Results 
Figures 4 and 5 show the results of SLAM experiments 

where the robot was travelling at less than 0.1 m/s in order 
to produce dense maps.  These maps can be processed in 
real time since less than 200 features typically are present.  
Measurement innovations produced by the Kalman filter 
are usually less than a 0.01 m and 0.01 radians except  
when features not seen for a considerable time are 
encountered.  In figure 5, phantom features are observed 
outside the physical corridor due to multi-path echoes.  
These do not present a problem for SLAM unless the map 
is used for navigation.  In that case techniques exist to 
allow detection of these features [6]. 

7 Conclusions and Future Work 
Two advanced sonar systems combined with a new 

odometry error model have been shown to produce high 
quality sonar feature maps with a Kalman filter SLAM 
approach. This work highlights the benefits of accurate 
and appropriate sensor information that circumvents 
higher level sophisticated hypothesis formation over 
extended time periods that is necessary to associate and 
classify with conventional Polaroid ranging module sonar 
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[3]. The advanced sonar allows reliable measurement 
association with map features.  Nevertheless the 
association can fail when odometry errors exceed 
expectations or linearisation errors accumulate as reported 
in [2] and future work will concentrate on improving 
association and recovering from failure of SLAM.  The 
related problems of loop closure and laser sonar fusion 
will also be investigated. 
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Figure 5 – Map and measurements for a corridor where 

the robot travels up 9 metres turns and travels back to the 
start point.  Map features are labelled with a sequence 
number and number of associations.  Measurement are 
indicated by a line from the robot position to the 
measurement point. 
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