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Introduction 
Objectives: 

1. Provide a basic understanding of Kalman Filtering and 
assumptions behind its implementation. 

2. Limit (but cannot avoid) mathematical treatment to broaden 
appeal. 

3. Provide some practicalities and examples of implementation. 

4. Provide C++ software overview. 
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What is a Kalman Filter and What Can It Do? 
A Kalman filter is an optimal estimator - ie infers parameters of interest from 
indirect, inaccurate and uncertain observations.  It is recursive so that new 
measurements can be processed as they arrive.  (cf batch processing where all 
data must be present). 

Optimal in what sense?  
If all noise is Gaussian, the Kalman filter minimises the mean square error of 
the estimated parameters. 
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What if the noise is NOT Gaussian? 
Given only the mean and standard deviation of noise, the Kalman filter is the 
best linear estimator.  Non-linear estimators may be better. 

Why is Kalman Filtering so popular? 
• Good results in practice due to optimality and structure. 

• Convenient form for online real time processing. 

• Easy to formulate and implement given a basic understanding. 

• Measurement equations need not be inverted. 
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Word examples: 
• Determination of planet orbit parameters from limited earth observations. 

• Tracking targets - eg aircraft, missiles using RADAR. 

• Robot Localisation and Map building from range sensors/ beacons. 

Why use the word “Filter”? 
The process of finding the “best estimate” from noisy data amounts to 
“filtering out” the noise. 

However a Kalman filter also doesn’t just clean up the data measurements, but 
also projects these measurements onto the state estimate. 
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What is a Covariance Matrix? 
The covariance of two random variables x1 and x2 is 
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where p is the joint probability density function of x1 and x2. 
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The covariance of a column vector x=[x1 .. xn]’  is defined as 
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and is a symmetric n by n matrix and is positive definite unless there is a linear 
dependence among the components of x. 

The (i,j)th element of Pxx is   σ x xi j

2
 

Interpreting a covariance matrix: 

 diagonal elements are the variances, off-diagonal encode correlations. 
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Diagonalising a Covariance Matrix 
cov(x) is symmetric => can be diagonalised using an orthonormal basis. 

By changing coordinates (pure rotation) to these unity orthogonal vectors we 
achieve decoupling of error contributions. 

The basis vectors are the eigenvectors and form the axes of error ellipses. 

The lengths of the axes are the square root of the eigenvalues and correspond 
to standard deviations of the independent noise contribution in the direction of 
the eigenvector. 

Example:  Error ellipses for mobile robot odometry derived from covariance 
matrices: 
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10000 Monte-Carlo runs for k k mL R= = −10 3 1
2 , B=0.5 m 

 
 

 Means Covariance Matrix Stand dev/ Corr Matrix 
Theor-
etical 

results 

0 
0 
0 

 3.032e-5 -4.763e-5 -2.817e-5 
-4.763e-5  8.974e-5  4.700e-5 
-2.817e-5  4.700e-5  3.4849e-5 

0.005506 -0.913208 -0.8667 
-0.9132  0.009473 0.8404 
-0.8667  0.8404   0.005903 

Run 1 
10000 

samples 

-1.997e-5 
 5.321e-5 
 3.184e-5 

 2.980e-5 -4.651e-5 2.761e-5 
-4.651e-5  8.708e-5 4.585e-5 
-2.761e-5  4.585e-5 3.437e-5 

 0.005459 -0.9130 -0.8627 
-0.9130  0.009332  0.8380 
 0.8627  0.8380  0.005862 
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Formulating a Kalman Filter 
Problem 

We require discrete time linear dynamic system description by vector 
difference equation with additive white noise that models unpredictable 
disturbances. 

STATE DEFINITION - the state of a deterministic dynamic system is the 
smallest vector that summarises the past of the system in full. 

Knowledge of the state allows theoretically prediction of the future (and prior) 
dynamics and outputs of the deterministic system in the absence of noise. 
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STATE SPACE REPRESENTATION 
State equation: 
x F x G u v( ) ( ) ( ) ( ) ( ) ( ) , ,...k k k k k k k+ = + + =1 0 1  
where x(k) is the  nx  dimensional state vector, u(k) is the nu dimensional known 
input vector, v(k) is (unknown) zero mean white process noise with covariance 

 E k k k[ ( ) ( )' ] ( )v v Q=  
Measurement equation: 

 z H x w( ) ( ) ( ) ( ) ,....k k k k k= + =1  
w(k) is  unknown zero mean white measurement  noise with known covariance 

 E k k k[ ( ) ( )' ] ( )w w R=  
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FALLING BODY EXAMPLE 
Consider an object falling under a constant gravitational field.  Let y(t) denote 
the height of the object, then
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As a discrete time system with time increment of   t-t0=1 
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y k y k y k g( ) ( ) ( )
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+ = + −1
2  

the height y(k+1) depends on the previous velocity and height at time k. 

We can define the state as  

 x(k)  [y(k)  y(k)]'
.

≡  

and then the state equation becomes 
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Assuming we observe or measure the height of the ball directly.  The 
measurement equation is: 

z x
H x

(k) = [1  0] (k) + w(k)
= +( ) ( )k w k  

The variance of w(k) needs to be known for implementing a Kalman filter.   

Given the initial state and covariance, we have sufficient information to find 
the optimal state estimate using the Kalman filter equations. 
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Kalman Filter Equations 
The Kalman filter maintains the estimates of the state: 

 
( | ) ( ) ( ), ( ),...
( | ) ( ) ( ), ( ),...
x x
x x

k k k z k z k
k k k z k z k

− −
+ − + −

estimateof given measurements
estimateof given measurements  

1
1 1 1  

and the error covariance matrix of the state estimate 

 
P x
P x

( | ) ( ) ( ), ( ),...
( | ) ( ) ( ), ( ),...
k k k z k z k
k k k z k z k

− −
+ − + −

covarianceof given
estimateof given

1
1 1 1  

We shall partition the Kalman filter recursive processing into several simple 
stages with a physical interpretation: 
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State Estimation 
0. Known are ( | ), ( ), ( | )x u Pk k k k k  and the new measurement z(k+1). 

1. State Prediction  ( | ) ( ) ( | ) ( ) ( )x F x G uk k k k k k k+ = +1  

2. Measurement Prediction:   ( | ) ( ) ( | )z H xk k k k k+ = +1 1  

3. Measurement Residual: v z z( ) ( ) ( | )k k k k+ = + − +1 1 1  

4. Updated State Estimate: ( | ) ( | ) ( ) ( )x x W vk k k k k k+ + = + + + +1 1 1 1 1  

where W(k+1) is called the Kalman Gain defined next in the state 
covariance estimation. 

Time update 
 

measurement 
update 
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State Covariance Estimation 
1. State prediction covariance: P F P F Q( | ) ( ) ( | ) ( )' ( )k k k k k k k+ = +1  

2. Measurement prediction covariance: 

 S H P H R( ) ( ) ( | ) ( )' ( )k k k k k k+ = + + + + +1 1 1 1 1  

3. Filter Gain W P H S 1( ) ( | ) ( )' ( )k k k k k+ = + + + −1 1 1 1  

4. Updated state covariance 

 P P W S W( | ) ( | ) ( ) ( ) ( )'k k k k k k k+ + = + − + + +1 1 1 1 1 1  
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Page 219 Bar-Shalom ANATOMY OF KALMAN FILTER 

 State at tk 
   x(k) 
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Matrix Riccati Equation 
The covariance calculations are independent of state (not so for EKF later) 

 => can be performed offline and are given by: 

[ ]P F P P H H P H R
H P

F Q( | ) ( ) ( | ) ( | ) ( )' ( ) ( | ) ( )' ( )
. ( ) ( | )

( )' ( )k k k k k k k k k k k k k
k k k

k k+ =
− − − − +

−












+

−

1 1 1 1
1

1

This is the Riccati equation and can be obtained from the Kalman filter 
equations above. 

The solution of the Riccati equation in a time invariant system converges to 
steady state (finite) covariance if the pair {F, H} is completely observable (ie 
the state is visible from the measurements alone). 
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{F, H} is completely observable if and only if the observability matrix 

Q

F
FH

FH nx

0

1

=
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...
 

has full rank of nx. 

The convergent solution to the Riccati equation yields the steady state gain for 
the Kalman Filter. 



 22 

FALLING BODY KALMAN 
FILTER (continued) 

Assume an initial true state of position = 100 and velocity = 0, g=1. 

We choose an initial estimate state estimate ( )x 0  and initial state covariance 
P( )0  based on mainly intuition.  The state noise covariance Q is all zeros. 

The measurement noise covariance R is estimated from knowledge of 
predicted observation errors, chosen as 1 here. 

F, G, H are known the Kalman filter equations can be applied: 
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 True values  Estimates Errors in Estimate 

 Position Velocity Meas. Position velocity Position velocity 

t=kT x1 x2 z(k)  ( )x k1   ( )x k2  P11(k) P22(k) 

0 100.0 0  95.0 1.0 10.0 1.0 

1 99.5 -1.0 100.0 99.63 0.38 0.92 0.92 

2 98.0 -2.0 97.9 98.43 -1.16 0.67 0.58 

3 95.5 -3.0 94.4 95.21 -2.91 0.66 0.30 

4 92.0 -4.0 92.7 92.35 -3.70 0.61 0.15 

5 87.5 -5.0 87.3 87.68 -4.84 0.55 0.08 
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Kalman Filter Extensions 
• Validation gates - rejecting outlier measurements 

• Serialisation of independent measurement processing 

• Numerical rounding issues - avoiding asymmetric covariance 
matrices 

• Non-linear Problems - linearising for the Kalman filter. 
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Validation Gate 
Recall the measurement prediction covariance: 

 S H P H R( ) ( ) ( | ) ( )' ( )k k k k k k+ = + + + + +1 1 1 1 1  

 and the measurement prediction:   ( | ) ( ) ( | )z H xk k k k k+ = +1 1  

and measurement residual: v z z( ) ( ) ( | )k k k k+ = + − +1 1 1  

A validation gate can be set up around measurements as follows: 

 e k k k g2 21 1 1= + + + ≤−v S v'1( ) ( ) ( )  

where g2 is chosen to for a confidence level. Normalised error e2 varies as a 
Chi-Squared distribution with number of measurements degrees of freedom. 

measurement 
update 
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Sequential Measurement Processing 
If the measurement noise vector components are uncorrelated then state update 
can be carried out one measurement at a time. 

Thus matrix inversions are replaced by scalar inversions. 

Procedure:  state prediction as before 

  scalar measurements are processed sequentially (in any order) 

  using scalar measurement equations. 
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Numerical Rounding Problems 
The covariance update  

P P W S W( | ) ( | ) ( ) ( ) ( )'k k k k k k k+ + = + − + + +1 1 1 1 1 1  

involves subtraction and can results in loss of symmetry and positive 
definiteness due to rounding errors. 

Joseph’s form covariance update avoids this at expense of computation 
burden: 

[ ] [ ]P I W H P W H
W R W

( | ) ( ) ( ) ( | ) ( ) ( ) '
( ) ( ) ( )'

k k k k k k I k k
k k k

+ + = − + + + − + +

+ + + +

1 1 1 1 1 1 1
1 1 1  

Only subtraction is “squared” and preserves symmetry. 
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Extended Kalman Filter (EKF) 
Many practical systems have non-linear state update or measurement 
equations.  The Kalman filter can be applied to a linearised version of these 
equations with loss of optimality: 
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EKF - p 387 Bar-Shalom 
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Iterated Extended Kalman Filter (IEKF) 
The EKF linearised the state and measurement equations about the predicted 
state as an operating point.  This prediction is often inaccurate in practice. 

The estimate can be refined by re-evaluating the filter around the new 
estimated state operating point.  This refinement procedure can be iterated 
until little extra improvement is obtained - called the IEKF. 
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Further Reading 
Bar-Shalom and Xiao-Rong Li, Estimation and Tracking: Principles, 
Techniques and Software, Artech House Boston, 1993. 

Jazwinski, A. H. . Stochastic Processes and Filtering Theory. New York, 
Academic Press, 1970. 
 

Bozic, S M, Digital and Kalman Filtering, Edward Arnold, London 1979. 

Maybeck, P. S. “The Kalman filter: An introduction to concepts.” Autonomous 
Robot Vehicles. I. J. Cox and G. T. Wilfong. New York, Springer-Verlag: 
194-204, 1990. 
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Odometry Error Covariance Estimation for Two 
Wheel Robot Vehicles (Technical Report MECSE-95-1, 1995) 

A closed form error covariance matrix is developed for 
 (i) straight lines and  
 (ii) constant curvature arcs  
 (iii) turning about the centre of axle of the robot. 
Other paths can be composed of short segments of constant curvature arcs. 
 
Assumes wheel distance measurement errors are zero mean white noise.  
 
Previous work incrementally updates covariance matrix in small times steps. 
 
Our approach integrates noise over the entire path for a closed form error 
covariance - more efficient and accurate 
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Scanned Monocular Sonar Sensing 
Small ARC project 1995 - aims: 

• To investigate a scanned monocular ultrasonic sensor capable of high speed 
multiple object range and bearing estimation. 

 
• Deploy the sensor in these robotic applications: 
• obstacle avoidance, 
• doorway traversal and docking operations,  
• localisation and mapping. 
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