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Abstract

This paper! derives and analyses an algorithm for use in a low cost three dimensional
ultrasonic localisation system under construction at Monash University. The system is
intended for autonomous robot navigation in three dimensions, such as in under-water
applications. At least four ultrasonic beacons are required to solve for the position in three
dimensions. The system is an extension of a two dimensional version successfully designed
and constructed by the author [1,2]. '

In this paper the algorithm for determining position is derived from first principles.
The algorithm is suitable for an autonomous robot because the implementation requires no
electrical connection to the vehicle. The error and convergence performance of the
algorithm is presented with computer simulation results. The algorithm converges within a
few iterations and exhibits good solution conditioning.

Keywords: Localisation, autonomous vehicle, three dimensional, ultrasonic, algorithm,

1, Introduction

The work presented in this paper was motivated by the recent successful design and
construction of a two dimensional ultrasonic localisation system [1,2]. The two dimensional
system uses a set of ultrasonic beacons at known positions in a plane in the environment.
The beacons transmit ultrasonic chirps of 40 kHz in a fixed time sequence. On board an
autonomous robot is an eight element ultrasonic receiver which monitors incoming chirps.
From the fixed known time between beacon chirps and the speed of sound, which is
calibrated for in the initialisation phase, arrival time differences of pulses are converted into
distances differences to the beacons. The distance differences from three beacons allow
solution for the robot's position in a plane by the intersection of hyperbolas. By employing
six beacons, the effects of obstacles and reflections can be significantly reduced, with the
bonus of calibration for the speed of sound.

The three dimensional system described in this paper uses similar beacon and
receiver structures to the two dimensional system. However, the algorithm for solving for
position is significantly different, It will be shown that four beacons are required to solve
for a three dimensional position by the intersection hyperboloids. To produce a closed form
solution is impractical, and an iterative technique is proposed which converges rapidly.

The system has applications in underwater maintenance of oil rig structures,
pipelines, ships and deep sea installations. Sonar beacons could be employed underwater,
where the speed of sound is approximately an order of magnitude faster than that of air.

Localisation systems reported in the literature have various disadvantages for
autonomous operation. MELODI [3] is an ultrasonic system using on board angular
detection of three different frequency transmitters in the environment. The system is
susceptible to obstacles blocking beacons; accurate to only 1 part in 80; requires rotating
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arms on the receiver and is expensive. Another system [4] is impractical because it requires
a distributed ultrasonic microphone to receive waves orthogonally from a spark gap
‘ transmitter. An ultrasonic system [5] for tracking robot manipulators provides accuracies of
0.5 mm in 2000 mm at a sample rate of 300 Hz. However, this system requires a high
. speed connection from the robot to the environment for synchronisation. No such link can
be trailed behind an autonomous robot. The Loran-C [6] ship and aircraft navigation
system is similar to the two dimensional system developed by the author, but uses different
beacon patterns and transmission formats.

The paper is organised as follows. Section 2 reviews the ‘beacon and receiver
structure to be employed in the three dimensional localisation systemn. This gives the reader
an appreciation of the data available to the position determination algorithm which is
derived in Section 3. Section 4 gives an error estimate of the position given the
measurement errors. In Section 5 the performance of the algorithm is evaluated and results
presented from computer simulations. Conclusions and future work are presented in
Section 6.

2. Beacon and Receiver Structure

This section describes the design and organisation of the beacons and the receiver on

board the autonomous vehicle. The arrangement described here is designed to operate in air

¢ which is where the first 3D prototype will operate. The air transmitter and receiver

circuitry has been built and tested. An underwater system will require sonar beacons and
- must also allow for the faster speed of propagation of sound underwater. .

Since the robot aims to be autonomous, no wires between the robot and the
environment can be allowed. This requirement complicates the algorithmic design since the
times of transmissions cannot be determined in advance by the receiver. Also, the
autonomy of the robot requires that the position information be produced on the robot and
not in the environment. Thus, the receiver is located on the robot.

The localisation system consists of ultrasonic beacons located in the environment
and an intelligent receiver on board the robot as shown in Fig. 1. The beacons send pulses
in strict time sequence. The first beacon needs to be distinguished initially to allow the
receiver to correctly identify which beacon corrésponds to a received pulse. This is
achieved by sending a double pulse from the first beacon with known pulse widths and

; separation. During initialisation or resynchronisation of the system, these double pulses are
sought out. Note that there is no wire connection or communication, other than ultrasonic
sound, between the beacons and receiver.

BEACON 2

AUTONOMOUS
ROBOT
RECEIVER

BEACON 3

BEACON 4

Fig. 1 Overview of Localisation System.

The beacons' pulse sequence is controlled by a central beacon control module that
sends signals to each beacon on a common 4 wire telephone cable. Each beacon circuit is
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identical, with its sequence number set by DIP switches. Fig. 1 shows 4 beacons, however
this number may be varied up to 16 (prototype hardware limitation). Each beacon contains ~ [
circuitry to sense its turn to transmit and an asynchronous start 40 Khz oscillator to drive an ‘
ultrasonic transmitting device.

The transmitter control module is responsible for generating signals to correctly
sequence the firing of the beacons. In Fig 2, the timing of beacon firing is shown for the 4
beacon configuration to be employed in the prototype. Note that beacon 1 is identified by
the receiver detecting a double pulse. Each pulse corresponds to a chirp of 40 Khz
ultrasonic sound.
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Fig. 2 Beacon Firing Sequence.
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The receiver consists of ultrasonic receiving devices placed evenly on a sphere. The
signals from the devices are amplified and filtered before being analysed by a
microprocessor as shown in Fig. 3. The microprocessor extracts times of arrival and
identity of pulses. Distance is determined from the speed of sound. The position can then
be calculated, as described below, from data which are the distances to beacons plus an
unknown offset.

. Amplifiers HAnalogue [—
Ultrasonic | Filters H to b
Receiver Envelope H Digital |u ;
¢ Array ExtractionHConverter|s 2
{ ;
s
|
b |
Minimicro u -
64180 s g
Microprocessor i
Board n |

Fig. 3 Receiver Block Diagram.
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The receiver array should be approximately spherical so that the same distance
offset applies in any direction. A constant offset in measurements from all beacons has no
effect on the final result, since the solution is based only on differences in distance to the i
beacons. The polarity of each receiver should be the same to prevent errors of half a i

wavelength or 4mm. 1




3. Three Dimensional Position Determinaton Algorithm

In this section we derive a three dimensional position determination algorithm which
can be used with the data available from the hardware described in the previous section.
The distance data obtained from beacons cannot be used directly since it contains an
unknown offset. To eliminate this offset, differences in distances to beacons are used. The
locus of points defined by a constant difference in distance to two beacons in a plane is a
hyperbola. To obtain the three dimensional locus of points, the plane is rotated about a line
connecting the two beacons. The rotation does not change the distances to the beacons.
The resulting surface is a hyperboloid. It has the property that for all points P on its
surface, |[Pb, || — IPb,|| is constant, where Pb, is the displacement vector from the beacon

b, to the point P, and || . || is the Euclidean norm. Given data from two beacons, we know

our solution lies on the hyperboloid defined by the measured difference in distance.
Incorporating the additional information from another beacon, b3, narrows the locus

of solutions to a three dimensional curved line given by the intersection of the hyperboloids
defined by (bl’bZ) and (bl’b3)‘ Note that the hyperboloid defined by (b2,b3) adds no extra

information and therefore must intersect in the same line.
A fourth beacon is required to uniquely specify the position. The hyperboloid
defined by (bl’b 4) intersecting the line defines the position. :

The algorithm derived to solve for the position is iterative. Each iteration is
obtained by linearising the hyperboloids about the last iteration position. This is achieved
by replacing the hyperboloids with their tangent planes.

Fig. 4 Receiver and Beacon Geometry.

Consider two beacons b, and b, as shown in Fig. 4, where P is the estimated
solution point to be updated. The vector PQ12 is the tangent to the hyperbola of constant
difference in distance to b1 and b2 in the plane Pb1b2‘ In [2], it is shown that PQ12 bisects
the angle éble2 giving

+

where Unit [V] = ——V—and u, = Unit [Pb ]
fvy ! !
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The tangent plane to the hyperboloid passing through P has a normal vector, N12’ which is
perpendicular to PQ12 and lies in the plane Pb1b2' The normal to the plane Pblb2 is given
by the vector cross product Pb1 X Pb2. Therefore

N, = Unit[[ul x uz] x PQIZJ 2)

Substituting (1) in (2), removing scalars within Unit operations and rearranging using the
vector identity:

(AXB)XC = B(CeA)—A(Be O

- (where e is the vector dot product) gives:

N

12 Unit[ (uy —u))(l +uye ul)]

Unit(i;2 —u) . 3)

The direction of thé tangent to the line of intersection of two hyperboloids defined by
Pb1b2 and Pb1b3, V123, is the line of intersection of the tangent planes defined by normals

N12 and N13. Looking edge on to both planes, as in Fig. 5, it is clear that

V23 = Unit [NIZ X N13] ' tangent plane to )

Pb]b2 hyperbola

N

V‘23 (into page)

tangent plane to
Pbybg hyperbola

Fig. 5 Edge on View of Intersecting Tangent Planes.

Adding a fourth beacon will define the position. The question is how far should we move
along V123 to satisfy the measured difference in distance to b1 and b 4 If we move Or, then

the change in difference in distance to b1 and b 4 5d1 4 is given by

8djy =8r14 Vigg e (uy-uy )
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Therefore

&d
Sr 14

14 Vigz © (u) ~uy

ad
_ 14 6)

Unit(gyy X 813) * B14

Where 81p = Uy — u,. We can do the same analysis for 8r13 and 8r12. To produce the

distance iteration vector, dr, we can add together the three displacements since each
changes only one of d1 4 d13 or d12 and leaves the other two fixed.

Or = 8ry, Vigg+8r 5 Vyga v 8113V g | ™

Substituting (6), (4) and (3) in (7)"and applying the vector identity
(AxB)eC = BxC)eA = (CxA)*B
gives:
[5”’12(1413 x B1g) + 05 (81y X Brp) + Bl (e, X g13)]

or = (8)
(&1 X B13) * B1q

We need three components 8r12, 8r13 and Srl 4 0 give the three degrees of freedom

necessary to solve for an arbitrary position given a starting point. We add &r to our
estimated position and recalculate a new &r based on our new position. The iterative
procedure terminates when ||8r|| is sufficiently small.

The author has shown that equation (8) can be rewritten in a form that is symmetric
with respect to the indices 1,2,3 and 4. That is, the iterative algorithm is not dependent on
choosing beacon 1 as a reference as may initially appear to be the case in (8).

4. Estimation of Solution Error given Measurement Error

Suppose we have a maximum measurement error of € in each of d1 4 d13 and d12 (where

d.. ij =d, —dJ and d is the distance from the robot to beacon i). The maximum solution

error, E given that our iterative technique converged, is derived again by linearising about
the solution point.

[ (g13 X 314) * (814 X 312) t (g12 X 313) ]
E = & MAX 9)
(817 X 813) * 814

where the maximum is over the * and in terms of the ||.|| operator. These vectors are all
available directly from the last iteration of the posmon estimation algorithm, so require no
extra calculation.
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5. Performance of the Iterative Hyperboloid Intersection Algorithm

In order to study the convergence properties of the algorithm, a hypothetical beacon
pattern was chosen as shown in Fig. 6.

a2z

Fig. 6 Simulation Beacon Pattern.

Convergence is assured in practice provided the iteration points all stay within the positive
octant of the coordinate system. Once the coordinates become negative, the tangent plane
to the hyperboloid points away from the solution causing divergence. The speed of
convergence is illustrated by the plotting the distance from the goal point versus the
iteration number. In Figs. 7-9 random start points were chosen by a uniform distribution
on each axis normalised to 3 units from the goal point. Four goal points are shown with
differing convergence rates. Figs. 7,8,9 show the maximum, minimum, and mean errors of
1000 convergence runs. Five orders of magnitude error improvement can be seen in all
cases after 4 iterations. FEach iteration requires 4 square roots, 13 divisions, 33
multiplications and 47 additions or subtractions, all single precision floating point. Each
iteration takes 300 psec on a T800 20 MHz Transputer, 433 psec on 33 MHz 80386/80387
and 55 msec on 9 MHz Hitachi 64180 8 bit microprocessor.

Fig. 10 shows the performance for random start points and goal points. The goal
points were chosen uniformly within the cube with diagonal (2,2,2),(12,12,12) and start
points in a random direction 3 units from the goal point. The maximum error plot on the
first iteration appears to diverge initially, but this is in fact due to the iteration point moving
out of an ill conditioned position near an axis. :

From the results, it is clear that only a few iterations are necessary to converge. The
starting point in a real system will usually be a good approximation to the position for
slowly moving vehicles.

Table 1 shows the maximum length standardised error vectors for various goal
points. To evaluate actual errors these vectors are scaled by the difference in distance error
€. The largest error vector occurs from a goal point (30,30,30) which is a large distance
from the beacons. The variation in the iteration 5 error in Figs. 7—10 is due to differing
error vectors and rounding errors.
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TABLE 1
Maximum Length Error Vectors:
Goal Error Vector
( 0.20 0.20 0.20) ( -0.78 1.18 -0.78)
( 2.00 2.00 2.00) ( 0.98 -0.72 -0.72)
( 0.10 2.00 2.00) ( 1.50 -0.48 -0.48)
( 0.10 0.10 5.00) ( 1.38 1.38 -0.50)
( 5.00 5.00 5.00) (-0.87 -0.87 -0.87)
( 1.00 10.00 10.00) ( 2.45 -2.24 -2.24)
( 10.00 10.00 10.00) ( -3.15 -3.15 -3.15)
( 20.00 20.00 20.00) (-15.29 -15.29 -15.29)
( 30.00 30.00 30.00) (-37.81 -37.81 -37.81)
( 1.00 20.00 30.00) ( 0.42 -19.93 -32.22)

6. Conclusions and Future Work

An iterative algorithm for a three dimensional localisation scheme has been
presented. Convergence is obtained after only a few iterations. The algorithm also has the
advantage that the final coordinate errors can be estimated in terms of the measurement

¢ errors. ihe system has been designed for autonomous vehicles and requires nu umbilical
cord nor communication systems apart from the ultrasonic transmissions.

The paper describes a four beacon system, however if more beacons are employed
greater immunity to spurious pulses, obstacles and reflections, together with calibration for
the speed of sound, could be obtained as was achieved in a two dimensional system [1,2].
The system is in the process of being implemented in air and future versions are anticipated
for underwater. An underwater system is anticipated to operate faster than an air based
system due to the higher speed of sound.
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