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Introduction to Odometry
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Given a two wheeled robot, odometry estimates
position and orientation from left and right wheel
velocities as a function of time.
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A discrete time implementation of these equations is
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d dR L,   are right and left wheel distances covered
between time steps k-1 and k.

State error covariance matrix, Cov S( )k , is useful in:

• localisation data fusion with other sensors

• map building applications, eg Kalman Filter.

Propagation of Cov S( )k  is often implemented
with linearisation (assuming input errors
independent from state errors):
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Cov S f Cov S f
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This popular model is INCONSISTENT!
Here’s why:   Suppose [ ]S k

T

− =1 0 0 0 and Cov(Sk-

1) = 0.  Consider two scenarios:
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Same path, but two half distance steps:
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Applying (@@) twice,
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DCovariance is inconsistent D
The model is not physically based and does not
accumulate errors correctly.

Analogous to lumped model of a transmission line
versus distributed model.
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To overcome the problem, small time steps can be
employed and covariance updated frequently.

=> computationally expensive and analogous to
numerical integration.

This paper develops a physically based approach
and performs closed form odometry error
integration for constant curvature paths.

Odometry error covariance can then be updated only
when required or at the end of path segments.

CC Accuracy improved and computation saved CC
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Robot Design and
Modelling Assumptions

A new robot, called Werrimbi, has been designed
for accurate odometry and ultrasonic sensor array
experiments.
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(Werrimbi - Australian aboriginal for bat.)
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 Features:

• Separate unloaded encoder wheels mounted
on linear bearings - wheel slippage reduced.

• Odometry wheels have narrow edged
contact with floor - reduces wheel
separation uncertainty B.

Modelling Assumptions:

• Due to independent suspension, odometry
errors on left wheel are assumed independent
of the right wheel errors.

• Errors in one segment of travel are
independent of the next segment.

• Errors assumed to be additive zero mean
white noise.
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The error variance of accumulated travel is the sum
of each statistically independent variance per small
length of travel.  This implies error variance is
proportional to distance travelled:

σ σL L L R R Rk d k d2 2 2 2= =

Calibration of systematic odometry errors is
performed using the University of Michigan bench
mark test UMBmark:

Borenstein, J. and Feng, L. “UMBmark - A method
for Measuring, Comparing, and Correcting Dead-
reckoning Errors in Mobile Robots.”, Technical
Report UM-MEAM-94-22, University of Michigan
- also in IEEE Trans R&A Dec 1996.

This derives correction factors for the wheel
separation B and diameters based on mean odometry
errors on 5 CW and 5 CCW traversals of a 4 m
square.
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The New Non-systematic
Error Model

• Robot path treated as consisting of k small
segments. Propagation of error covariance is
performed k times to obtain the error covariance of
the final state.

 

• A closed form solution is presented, as k
approaches infinity, for a general circular arc path.

 

• Special cases of straight line and on-spot turn
paths are obtained by suitably taking limits.
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Over an infinitesimal time increment, the speed
of the wheels can be assumed constant
=> path has constant radius of curvature:
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The expression for covariance propagation can be
recursively expanded
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Let Li , Ri denote the small increments in wheel turn
at the ith segment.
For circular arc motion, L = kLi , R = kRi.
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As k→∞ (and considerable integration!)
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• These equations remove the need to
incrementally update the covariance matrix in
small time steps.

• As closed form expressions, they are applicable
to any circular arc motion with constant radius
of curvature.

Straight Line Path:

Limiting case when  L,R->D and θk-> θ0.
Contrary to popular assumptions, our model
predicts:

• error variance perpendicular to  motion is
proportional D3,

• variance in the direction of motion is only
proportional to D.

Rotation about the centre of wheel axle is another
special case easily handled.
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This odometry error covariance model is consistent
unlike the models presented in the literature.

Error covariance propagation in multiple
parts generates exactly the same result as a
single part.

The model is computationally inexpensive:

Covariance updates can be performed at the
end of paths.

Paths with varying radius of curvature need
to be broken up into shorter paths with
approximately constant curvature.

The model is physically based:

Just two wheel error parameters are required
for calibrating the error model: kL and kR

These parameters are determined by the floor
surface, wheel traction and wheel
imperfections.
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Implementation and
Results

Systematic Errors
Wheel encoder measurements were used to calculate
the perceived final state of the robot.

A sonar array on the robot was to used to estimate
robot position and orientation by sensing reference
walls.
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Key results before and after calibration
Before After

xc.g.,CCW (mm) 97 -26
yc.g.,CCW  (mm) -94 16
xc.g.,CW  (mm) 32 1.5
yc.g.,CW  (mm) 31 11
Emax,syst (mm) 135 30
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Comparison of dead-reckoning accuracy and cost.
The first four sets of figures are obtained from

[Borenstein and Feng]

Vehicle Emax,syst Cost (US$)
TRC LabMate average 27 10K
Cybermotion

K2A
63 <50K

CLAPPER 22 30K
Andros with

Trailer
74 ?

Werrimbi 30 ~4K
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Computation of Non-systematic
Error Parameters

After calibration, Werrimbi:
• sensed two reference walls with sonar
• moved forwards 10 metres
• moved backward 10 metres
• re-sensed the two reference walls

Position estimation from sonar sensing and
odometry reading was compared.

The process was repeated 60 times in a 5 hour
duration.

Errors in x, y and θ are plotted.  Fitted values of
kL=0.00040m1/2, kR=0.00058m1/ are shown with
their error ellipses.

The solid ellipses belong to the real data whereas
the dashed ellipses are generated with the kR and kL

obtained by trial and error.
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.Y errors against X errors
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θ errors against X errors
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θ errors against Y errors
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Conclusions
 An accurate low cost odometry system has been

presented comparable to the best reported system.
 

• A new first order odometry error model has been
derived to consistently propagate error covariance
following an arc, straight line or turn on the spot
path.  More complex paths can be approximated
by these segments.

 

• Considerable computation can be saved using the
model since covariance is not be updated on each
odometry position update.

 

• The model fits into a Kalman filter framework and
its applied to sonar map building in another paper
at this conference.

 

 

 

• The model cannot account for unexpected errors
such as hitting a bump on the floor. External
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referencing or redundant odometry can detect such
errors.
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