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Abstract— This paper presents a novel method for 2D laser
scan matching called Polar Scan Matching (PSM). The method
belongs to the family of point to point matching approaches.
Our method avoids searching for point associations by simply
matching points with the same bearing. This association rule
enables the construction of an algorithm faster than the iterative
closest point (ICP).

Firstly the PSM approach is tested with simulated laser
scans. Then the accuracy of our matching algorithm is evaluated
from real laser scans from known relative positions to establish
a ground truth. Furthermore, to demonstrate the practical
usability of the new PSM approach, experimental results from a
Kalman filter implementation of simultaneous localization and
mapping (SLAM) are provided.

Index Terms— scan matching, polar coordinates, laser, SLAM

I. INTRODUCTION

Localization and map making is an important function of
mobile robots. One possible task to assist with this function-
ality is to use laser scan matching. In laser scan matching, the
position and orientation or pose of the current scan is sought
with respect to a reference laser scan by adjusting the pose
of the current scan until the best overlap with the reference
scan is achieved. In the literature there are methods for 2D
and 3D scan matching. This paper is oriented towards 2D
scan matching only, therefore in this paper scan matching is
restricted to 2D laser scan matching.

Scan matching approaches can be local [12] or global [15].
Scan matching approaches also can be categorized based on
their association method such as feature to feature, point to
feature and point to point. In feature to feature matching
approaches, features such as line segments [8], corners or
range extrema [11] are extracted from laser scans, and then
matched. Such approaches interpret laser scans and require
the presence of chosen features in the environment. In point
to feature approaches, such as one of the earliest by Cox [5],
the points of a scan are matched to features such as lines.
The line features can be part of a predefined map. Features
can be more abstract as in [3], where features are Gaussian
distributions with their mean and variance calculated from
scan points falling into cells of a grid. Point to point matching
approaches such as the approach presented in this paper,
do not require the environment to be structured or contain
predefined features.

Examples of point to point matching approaches are the
following: iterative closest point (ICP), iterative matching
range point (IMRP) and the popular iterative dual corre-
spondence (IDC). In the Besl and Mac Kay [2] proposed
ICP, where for each point of the current scan, the point
with the smallest Euclidean distance in the reference scan is
selected. IMPR was proposed by Lu and Milios [12], where
corresponding points are selected by choosing a point which
has the matching range from the origin. IDC, also proposed
by Lu and Milios [12] combines ICP and IMRP by using the
ICP to calculate translation and IMPR to calculate rotation.
The mentioned point to point methods can find the correct
pose of the current scan in one step provided the correct
associations are chosen. Since the correct associations are
unknown, several iterations are performed. Matching may
not always converge to the correct pose, since they can
get stuck in a local minima. Due to the applied association
rules, matching points have to be searched across 2 scans,
resulting in O(n2) complexity, where n is the number of scan
points. All three approaches operate in a Cartesian coordinate
frame and therefore do not take advantage of the native polar
coordinate system of a laser scan.

There are other scan matching approaches such as the
method of Weiss and Puttkamer [16]. Here for both reference
and current scans, an angle-histogram of the orientation of
line segments connecting consecutive points is generated. The
orientation of the current scan with respect to the reference
scan is obtained by finding the phase with the maximum cross
correlation of the 2 angle histograms. The translation is found
similarly by calculating x and y histograms, and calculating
cross correlations. In scan matching, not all approaches use
only that information in a scan, which describes where objects
are. Thrun et al [14] in their scan matching method utilize the
idea, that free space in a scan is unlikely to be occupied in
future scans.

In scan matching another important task, apart from finding
the current scans pose, is the estimation of the quality of
the match. Lu and Milios [12] calculates the uncertainty of
the match results by assuming white Gaussian noise in the
x,y coordinates of scan points. This implicitly assumes that
correct associations are made that results in optimistic error
estimates, especially in corridors. Bengtsson and Baerveldt
in [1] developed more realistic approaches. In their first



approach the pose covariance matrix is estimated from the
Hessian of the scan matching error function. In their second
approach, the covariance matrix is estimated off-line by
simulating current scans and matching them to the reference
scan.

Mapping with scan matching has been done for example
by minimizing an energy function [13], using a combination
of maximum likelihood with posterior estimation [14], using
local registration and global correlation [8] and using Fast-
SLAM [9]. A Kalman filter implementation can be found
in [4].

In this paper we present a novel scan matching approach
called Polar Scan Matching (PSM) which works in the laser
scanner’s polar coordinate system, therefore taking advantage
of the structure of the laser measurements. Laser range mea-
surements of current and reference scans are associated with
each other using the matching bearing rule, which eliminates
the search for corresponding points.

The rest of the paper is organized as follows; first our PSM
algorithm is described followed by a Kalman filter SLAM
implementation utilizing our scan matching approach. Details
of experimental results follow that include simulation, ground
truth measurements and an implementation of SLAM. Finally
conclusions and future work are presented.

A more detailed description of PSM can be found
in [6]. The source code of PSM can be downloaded from
www.irrc.monash.edu.au/adiosi.

II. POLAR SCAN MATCHING

The laser scan matching method described next aligns the
current scan with respect to the reference scan so that the
sum of square range residuals is minimized. It is assumed
that an initial pose of the current scan is given, expressed
in the coordinate frame of the reference scan. The coor-
dinate frame of a laser scan is centered at the point of
rotation of the mirror of a laser scanner. The X axis or
zero angle coinciding with the direction of the first reported
range measurement. The current scan is described as C =
(xc, yc, θc, {rci, φci}

n
i=1), where xc, yc, θc describe position

and orientation, {rci, φci}
n
i=1 describe n range measurements

rci at bearings φci, expressed in the current scans coordinate
system. {rci, φci}

n
i=1 are ordered by the bearings in ascending

order as they are received from a SICK laser scanner. The
reference scan is described as R = {rri, φri}

n
i=1. The scan

matching works as follows: after preprocessing the scans, scan
projection followed by translation estimation is alternated
with scan projection followed by orientation estimation. More
details on these steps are given in the following sections.

A. Scan Preprocessing

Prior to matching, the current and the reference scans are
preprocessed. First, as in [8] a median filter with a window of
5 is applied to the range measurements to remove objects that
are likely to move, such as table and chair legs. Then range
readings are segmented to prevent interpolation between 2
disjoint objects and to enable the tracking of moving objects.

Fig. 1. Left: projection of measured points taken at C to location R. Right:
points projected to R shown in polar coordinates. Dashed lines represent
bearings which the scanner would have sampled.

In the segmentation, simple rules are used such as a range
reading is in the same segment as its previous neighbor if
they are closer than a threshold, or if the range reading is
closer than a threshold to the extrapolation of the previous
2 readings. Range readings further than a threshold (in the
results we used 10m) are not used, therefore such readings
break segments. A point in a segment consisting of just one
point is tagged and ignored in the scan matching process.
The tracking and marking of moving objects are important
for robustness, since they can have a negative effect on scan
matching. We have not implemented the tracking of moving
objects yet, but we plan to do so in the future.

B. Scan Projection

An important step in scan matching is finding out how the
current scan would look if it were taken from the reference
position. For example in Fig. 1, the current scan was taken
at location C and the reference scan was taken at position
R. The range and bearings of the points from point R (see
Fig. 1b) are calculated:

r
′

ci =
√

(rci cos(θc + φci) + xc)2 + (rci sin(θc + φci) + yc)2 (1)

φ
′

ci = atan2(rci sin(θc + φci) + yc, rci cos(θc + φci) + xc) (2)

Fig. 1b’s dashed vertical lines represent sampling bearings
(φri) of the laser at position R. Since our association rule is
to match bearings of points, next ranges r′′ci at the reference
scan bearings φri are calculated using interpolation. The aim
is to estimate what the laser scanner would measure from
pose R. This step consists of checking (r′ci, φci)

′ (i.e. 1,2,..10
in Fig. 1b) of each segment if there are one or more sample
bearings between 2 consecutive points (i.e. between 1 and
2 there is one, between 6 and 7 there are 2). By linear
interpolation a range value is calculated for each sample
bearing. If a range value is smaller than an already stored
range value at the same bearing, then the stored range is
overwritten with the new one to handle occlusion. As in [12]
a new range value is tagged as invisible if the bearings of the
2 segment points are in decreasing order.



C. Translation Estimation

After scan projection, for each bearing φri there is at most
one r′′ci from the projected current scan and a corresponding
rri from the reference scan. The aim is to find (xc, yc) which
minimizes

∑

wi(rri − r′′ci)
2, where wi is a weight used to

reduce weighting1 of bad matches. To minimize the weighted
sum of square residuals we applied linear regression to the
linearized eq. 1:

∆ri ≈
∂r′′ci

∂xc

∆xc +
∂r′′ci

∂yc

∆yc (3)

= cos(φri)∆xc + sin(φri)∆yc (4)

If range differences between projected current range and
reference range readings are modeled as

(r′′
c
− rr) = H

[

∆xc

∆yc

]

+ v (5)

where v is the noise vector and

H =
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, (6)

then position correction ∆xc, ∆yc of the current scan is then
calculated by minimizing the sum of weighted range residuals
∑

wi(rri−r′′ci)
2 using the well known equation for weighted

least squares [10]:
[

∆xc

∆yc

]

= (HT
WH)−1

H
T
W(r′′

c
− rr) (7)

where r
′′

c
, rr are vectors containing r′′ci and rri and W is

a diagonal matrix of weights. The elements of the W are
calculated according to the recommendations of Dudek and
Jenkin in [7]:

wi = 1 −
dm

i

dm
i + cm

(8)

where di = r′′ci − rri is the error between projected current
scan range measurements and reference scan range measure-
ments and c is a constant. Equation (8) describes a sigmoid
function with weight 1 at di = 0 and a small weight for
large di. Parameter c determines where the sigmoid changes
from 1 to 0, and m determines how quickly the sigmoid
function changes from 1 to 0. In [7] (8) was used to weight
the distance of a laser scan point to a line in a point-to-feature
scan matching method.

To reduce the effects of association errors in the imple-
mentation of equation (7), only those visible measurements
are taken into consideration which are not tagged (see II-
A). Also the errors between reference and current scan range
measurements have to be smaller than a preset threshold to
be included.

Please note that the equation used in other point-to-point
scan matching methods which operate in XY coordinate
systems such as ICP or IDC find the correct translation

1Note that there is also an implicit weighting of closer objects, since they
cover a larger angle.

and rotation of the current scan in one step if the correct
associations are given. Our PSM approach, due to the use
of linearization, requires multiple iterations. Since the correct
associations are in general not known multiple iterations are
necessary for the other methods as well. Also note that
our PSM approach for translation estimation works most
accurately if the correct orientation of the current scan is
known. Estimating the orientation of the current scan is
described next.

A negative property of this translation position estimation
approach is apparent when matching scans which were taken
of long featureless corridors - the position error along the
corridor can drift.

D. Orientation Estimation

Change of orientation of the current scan is represented in
a polar coordinate system by a left or right shift of the range
measurements. Therefore assuming that the correct location of
the current scan is known and the reference and current scans
contain measurements of the same static objects, the correct
orientation of the current scan can be found by shifting the
projected current scan (r′′ci, φri) until it covers the reference
scan. A ±20◦ shift was implemented at 1◦ intervals of the
projected current scan, and for each shift angle the average
absolute range residual is calculated. Orientation correction
is estimated by fitting a parabola to the 3 closest points to
the smallest average absolute range residual. The estimated
orientation change is then added to θc.

E. Heuristical Error Estimation

If correct associations are assumed, then the covariance
estimate for the translation is [10]:

C = σ2
r (HT H)−1, (9)

where σ2
r is estimated range error variance. Unfortunately

even if the current and reference scan were taken of the same
scene, there can always be moving objects, or objects which
appear differently from different location (e.g. vertically non
uniform objects observed from a slightly tilted laser scanner).
For this reason, for rooms we use a simple approximation
of the covariance matrix by scaling a diagonal matrix with
the average square range residual. A lower bound on the
covariance matrix is also applied. It is assumed that smaller
range residuals are the result of better association and better
scan matching result.

A non-diagonal covariance matrix is scaled for corridors
which expresses the larger along-corridor error. Classification
of scans into corridors is done by calculating the variance
of orientations of line segments obtained by connecting
neighboring points. If this variance is smaller than a threshold,
then the scan is classified as a corridor. The orientation of
the corridor necessary for the covariance matrix generation
is estimated by calculating an angle histogram [16] from
the line segment orientations. The angle perpendicular to the
location of the maximum of the histogram will correspond to
the corridor orientation.



Fig. 2. Current and reference scan prior matching.

III. SLAM WITH SCAN MATCHING

A simple implementation of Kalman filter SLAM was
programmed in C++ to evaluate the practical usability of
our scan matching method. As in [4] laser scanner poses are
used as landmarks. With each landmark the associated laser
scan is also stored. Each time the robot gets to a position
which is further than 1 meter from the closest landmark, a
new landmark is created. Each time the robot gets closer
than 50 cm and 15◦ to a landmark not updated in the
previous step, an update of the landmark is attempted. Note
that consecutive scans are not matched. This is because the
short term odometry of our robot is much more accurate
when traveling on flat floor than our scan matching. The
time registration between odometry and laser scans is handled
by a custom designed FPGA hardware time stamping circuit
whereby encoders are directly sampled and time stamped
every 10 msec and data packets from the laser are time-
stamped with the same timer.

When updating a landmark, the observation is obtained
by scan matching. The laser measurement is passed to scan
matching as the reference scan, and the scan stored with the
landmark is passed as the current scan. The result of scan
matching is the position of the landmark expressed in the
laser’s coordinate system at the robot’s current position.

IV. EXPERIMENTAL RESULTS

The results of 3 experiments are presented. In the first
experiment simulated laser scans are matched and evaluated.
The remaining experiments use a SICK LMS 200 laser range
finder at a 1◦ bearing resolution in indoor environments. In
the second experiment, laser scan measurements are matched
at 10 different scenes by positioning the laser manually in
known relative poses and the results are compared with
the known relative poses. In the third experiment the scan
matching algorithm is evaluated in a SLAM experiment.
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Fig. 3. Evolution of x,y and orientation error.

A. Simulation

Figure 2 shows two simulated scans of a room. The scans
were taken of the same location, but the x and y position
of the current scan was altered by 100 cm. Orientation was
altered by 15◦. Figure 3 shows the evolution of errors. Unlike
in IDC, position estimation step followed by an orientation
estimation step are counted as 2 iterations. The final error was
the following: ∆x = 0.4 cm, ∆y = 0.005 cm, ∆θ = 0.15◦.

B. Experiment with Ground Truth

To determine how the polar scan matching algorithm copes
with different types of environments, an experiment with
ground truth information was conducted. On 4 corners of a
60x90cm plastic sheet 4 Sick LMS 200 laser scanner outlines
were drawn with different orientations. This sheet was then
placed into different scenes ranging from rooms with different
degrees of clutter to corridors. At each scene, laser scans were
recorded from all 4 corners of the sheet, and matched against
each other with initial positions and orientations deliberately
set to 0 in the iterative procedure. This introduces an initial
error of up to 80cm displacement and up to 27◦ error in
orientation in the first iteration. During the experiments the
environment remained static.

A matched current and reference scan from each scene is
displayed in Fig. 4. The displayed scans have all undergone
median filtering. At each scene 6 scan matches were per-
formed. Absolute residuals between ground truth and match
results together with the number of iterations and runtime on
a Celeron 900MHz laptop are shown in Table I. In Table I
“ERROR” denotes a situation, when the polar scan matching
implementation stopped due to the lack of corresponding
points and divergence was declared.

Scene 0 is a room with a small degree of clutter. Current
and reference scans were quite similar, and the matching
results are good. Scene 1 is in a more cluttered room where
laser scans from different locations look different as you can
see in Fig. 4. The reason why the current scan differs from
the reference scan so much is not clear. Perhaps the objects
in the room were not uniform in the vertical direction and



Fig. 4. Fourth scan match result for each scene in the experiment with ground truth.

0 (0.9, 1.5, 0.3)
14, 2.6

(0.7, 0.4, 1.3)
16, 2.9

(1.1, 0.2, 0.1)
18, 3.3

(1.5, 0.4, 2.4)
20, 3.6

(0.6, 7.4, 0.2)
12, 2.2

(3.6, 0.1, 1.3)
12, 2.3

1 (5.1, 17.3, 5.5)
20, 3.7

(7.7, 13.1, 5.8)
28, 5.1

(0.4, 24.8, 8.3)
30, 5.5

(1.0, 1.5, 0.4)
27, 4.8

(0.3, 5.0, 0.6)
24, 4.3

(2.4, 0.5, 0.6)
12, 2.2

2 (0.4, 0.3, 0.3)
8, 1.5

(0.2, 0.6, 0.1)
24, 4.5

(0.5, 1.0, 0.3)
20, 3.6

(0.2, 0.9, 0.3)
20, 3.6

(0.2, 4.8, 0.3)
28, 4.9

(1.0, 2.7, 0.3)
12, 2.2

3 (9.7, 5.0, 0.2)
18, 3.3

(51.8, 25.3, 0.2)
12, 2.2

(22.1, 11.1, 0.3)
20, 3.6

(90.8, 19.4, 0.0)
30, 5.2

(24.3, 11.2, 0.1)
16, 2.9

(55.3, 46.3, 0.1)
30, 5.3

4 ERROR (4.2, 47.9, 1.3)
20, 3.7

(0.9, 4.3, 0.0)
30, 5.2

(61.6, 160.3, 4.7)
30, 5.2

(73.8, 210.5, 1.5)
30, 5.0

(1.0, 6.1, 0.1)
30, 5.2

5 (0.6, 20.3, 0.4)
24, 4.4

(0.2, 24.0, 0.4)
30, 5.4

(1.3, 10.7, 0.4)
30, 5.5

(12.6, 49.3, 0.5)
30, 5.4

(3.6, 6.6, 0.9)
21, 3.8

(1.6, 4.6, 1.5)
19, 3.4

6 (1.4, 30.7, 0.3)
18, 3.3

(2.0, 63.0, 0.1)
16, 2.9

(2.7, 79.1, 0.2)
16, 2.9

(23.0, 85.2, 0.4)
30, 5.2

(21.8, 86.6, 0.3)
16, 3.0

(0.8, 4.7, 0.0)
9, 1.7

7 (0.2, 0.1, 0.0)
26, 4.6

(1.5, 0.2, 0.2)
16, 2.9

(0.1, 0.3, 0.1)
20, 3.6

(0.8, 2.6, 0.3)
18, 3.2

(0.9, 4.9, 0.1)
16, 2.9

(0.0, 0.6, 0.3)
15, 2.7

8 (0.7, 0.0, 0.0)
11, 2.0

(1.3, 2.1, 0.1)
22, 4.0

(0.1, 0.4, 0.3)
19, 3.3

(0.6, 0.6, 1.9)
22, 3.9

(0.0, 5.6, 0.9)
23, 4.1

(0.6, 0.4, 0.1)
12, 2.3

9 (3.7, 1.7, 0.8)
10, 1.9

(2.0, 0.4, 0.4)
18, 3.4

(1.4, 0.9, 0.2)
18, 3.3

(2.8, 3.0, 0.5)
18, 3.3

(1.6, 9.5, 0.7)
12, 2.2

(1.1, 1.6, 0.2)
13, 2.4

TABLE I
ABSOLUTE ERRORS IN X[CM],Y[CM],θ[◦],NUMBER OF ITERATIONS AND RUNTIME [MS] OF THE EXPERIMENT WITH GROUND TRUTH.

the laser beam is not a small spot or the laser was slightly
tilted. Half of the results from scene 1 (see Table I, row 1) are
not good, but they are still usable for example in a Kalman
filter with an appropriate error estimate. In scene 2 the sheet
was placed in front of a door to a corridor. The results are
excellent. Scene 3 is a corridor without features. While the
orientation error and the error in the cross corridor direction
are small, the along corridor error is large. With a proper
error model (small orientation and cross corridor error, large
along corridor error) the results are still useful when used
with a Kalman filter. Scenes 4,5 and 6 are similar to 3 except
there are phantom readings appearing as the corridor end,
even though the real corridor end was 30 meters away. The
reason for the phantom readings is that the laser beam is
tilted slightly and readings from the floor are obtained. In
scene 4 scan matching diverged once. Scene 7 is situated on
the border of a room and a corridor. The results are excellent.
The results for scenes 8 and 9 which were situated in a room
are excellent.

In summary PSM performed well in room like environ-
ments. In corridors, the orientation and cross corridor position
was good, but the along corridor error was generally large.
Due to the representation of the two parallel walls of a
corridor in polar coordinates, the match result is likely to drift
in the direction of the corridor. The statistics for all the scenes
except 4,5,6 are the following (values for ICP are in brackets):
average number of iterations 19 (31), execution time 3.3ms
(12.66ms), orientation error 0.86◦ (4.1◦), displacement error
3.8cm (15.3cm).

C. SLAM

The raw data set used in the Kalman filter SLAM is shown
in Fig. 5. The structures in the middle of the rooms are office
cubicles. The robot is equipped with one SICK LMS 200 and
odometry and started from the corridor intersection. It visited
the left room, and after one loop, it proceeded through the
corridor to the right room where it performs a large and a
small loop. During the traversal of the environment, 2 people



Fig. 5. Raw data prior SLAM.

Fig. 6. Result of SLAM with polar scan matching.

walked in the view of the laser scanner, and one double door
and one automatic door opened and shut.

The SLAM results shown in Fig. 6 are significantly better
than those from odometry only (fig. 5). Consecutive laser
scans were not matched against each other, since over short
distances odometry was more accurate than scan matching.

In a C++ implementation of scan matching and SLAM, the
12 minutes worth of data consisting of 27 × 103 scans and
72×103 odometry readings) took about 1.5 minute to process
on a 900MHz Celeron laptop. The average time of the 290
scan matches was 3.1ms.

V. CONCLUSION

In this paper we demonstrate that it is possible to perform
scan matching by using the laser measurements in their
native, polar form. Our novel polar scan matching (PSM)
approach belongs to the class of point to point matching
algorithms. PSM takes advantage of the structure of laser
scanner measurements by functioning in the laser scanner’s
polar coordinate system. The direct use of range and bearing
measurements coupled with a matching bearing association
rule and a weighted range residual minimization, resulted in
a fast scan matching algorithm.

The simulation of matching scans in a room demonstrates
that the current scans pose error decreases quickly to a small

value. Scan matching experiments were also performed with
a SICK LMS 200 in a variety of environments. Comparison
of the results with ground truth revealed that the performance
of our scan matching method in real environments is good.
When matching corridors we have also observed a drift in the
direction of the corridor. The usability of our scan matching
approach was tested by performing Kalman filter SLAM with
scan matching in a static environment.

A more through description of PSM, together with
more experimental results and comparisons is presented
in [6]. The source code of PSM can be downloaded at
www.irrc.monash.edu.au/adiosi.

In the future the implementation of moving object tracking
and tagging is planned for improving robustness. Also the
modification of PSM for 3D scan matching will be consid-
ered.
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