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Abstract

This paper presents the first comprehensive model
for a walking person in range data from a scanner
mounted at leg height. Our model helps to distin-
guish people from other types of moving targets
and provides good tracking robustness. The cen-
tral assumption of the walking model is that at least
one leg always remains stationary. The current im-
plementation tracks a single person in a multiple
hypothesis framework. We extend the multiple hy-
pothesis framework to allow for both association
uncertainty and a switched dynamic model depend-
ing on the currently moving leg. Furthermore, an
occlusion model and non-stationary dynamic state
transition probabilities are used in the evaluation
of hypotheses to further improve tracking robust-
ness. Experimental results demonstrate the robust-
ness and efficiency of the proposed framework.

1 Introduction

This paper addresses the problem of tracking a walking per-
son using measurements from a laser range sensor mounted
on the mobile robot shown in Figure 1. While the robot cur-
rently only acts as a stationary platform, the potential appli-
cations of people tracking in mobile robotics are numerous.
For example, a service robot could follow a person or verify
that the robot is being followed. For mapping and localiza-
tion, people tracking enables the robot to identify persistent
distractions that should be discarded during map construc-
tion, and predict the motion of obstacles for more effective
path planning and obstacle avoidance. Apart from robotics,
range-based people tracking could play an important role in
surveillance applications.

Various approaches to range-based people tracking have
already been demonstrated. In most cases the state of the
person is described by a simple centre of mass, tracked in
successive scans using nearest neighbour matching[Prassler
et al., 1999] or feature-based matching of the range profile
[Fod et al., 2002]. Motion models are limited to Brownian

Figure 1: Range scanner mounted on a mobile robot.

[Brooks and Williams, 2003; Montemerloet al., 2002] and
constant velocity[Cielniak and Duckett, 2003] approxima-
tions. State estimation is usually performed with a Kalman
filter, but more sophisticated methods have also been adopted
to deal with uncertain measurement associations, such as par-
ticle filter [Montemerloet al., 2002] and joint probabilistic
data association[Schulzet al., 2001] based people trackers.

Almost none of the above methods attempt to model the
appearance or motion of a walking person in range data, and
in reality can only be consideredmoving objecttrackers. The
exception is the method presented by Brooks and Williams
[2003], which simply requires two closely spaced blobs to
validate a pair of legs. The absence of explicit models is usu-
ally justified by noting that human behaviour is complex and
unpredictable. Conversely, we propose that walking is highly
regular, and exploit this notion to improve tracking robust-
ness and distinguish people from other moving objects. In
this paper, we develop for the first time a complete kinematic
and dynamic model for a walking person in range data from
a scanner mounted at leg height.

A central feature of our tracker is a switched dynamic
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Figure 2: Association of measurements using validation gate.

model for a left or right moving leg (while the other re-
mains stationary). The tracker must continuously choose the
most likely dynamic model to explain the current observa-
tions, which is achieved by extending the multiple hypothesis
tracking (MHT) framework[Reid, 1979] to cope with uncer-
tain dynamic state transitions in addition to uncertain mea-
surement associations. Occlusions and correlations between
dynamic states are explicitly modelled in the MHT to fur-
ther improve tracking robustness. In related work, particle
filtering has been used to solve dynamic state transitions and
measurement associations for people tracking in vision[Isard
and Blake, 1998]. However, the required number of particles
makes the approach less computationally tractable than MHT.

The following section outlines the framework of our multi-
ple hypothesis people tracker. Section 3 then details the kine-
matic and dynamic models of a walking person in range data,
while Section 4 describes the generation, evaluation and elim-
ination of hypotheses used to estimate the state of the person
in each measurement cycle. Finally, the tracker is applied to
real laser scans and the results are presented in Section 5.

2 Overview of Tracking Framework

Our SICK LMS laser range scanner is mounted at a height of
about 20 cm on a stationary robot, as shown in Figure 1. The
sensor scans a 180 degree slice at a rate of 40 Hz, with an
angular resolution of 0.5 degrees and a range resolution of 1
cm. For thekth update cycle, the measurement set consists of
2D candidate leg positionszk = {zk

i }, i ≤ i ≤ n, measured in
the plane of the laser. To generatezk, the scan is segmented at
range discontinuities and segments are classified as leg candi-
dates if the distance between end-points is roughly equal to a
typical leg diameter. Measurementzk

i is calculated as the cen-
troid of samples in theith candidate leg segment. This mea-
surement process introduces a bias since the scanner samples
only one side of any leg, but the effect is ignored in practice.

To deal with the uncertainty of associations between mea-
surements and the legs of the walking person, multiple hy-
pothesis tracking generates and evaluates all possible associa-
tions in a Bayesian probability framework. Measurements are
considered to arise from one of three sources: the left legL,
right legRor noise (false alarm)F . Figure 2 illustrates the as-
sociation problem for two measurements,z1 andz2, with the
legs at predicted positionspL andpR. Only those measure-
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Figure 3: Three generations of a hypothesis tree.

ments within the error ellipse of each leg (arising from un-
certainty in the state) can form an association; herez2 can be
associated with either leg. Rather than choosing a particular
association, MHT generates hypotheses for all possibilities,
including those in whichz1 andz2 are false alarms. Each hy-
pothesis is then allowed to evolve independently and give rise
to new hypotheses in subsequent measurement cycles. Figure
3 illustrates three generations of a so-calledhypothesis tree.
Theassociation eventθ k,l at leafl denotes a particular set of
associations betweenzk and measurement sources. In people
tracking, uncertainty also arises in the dynamic state: whether
the left/right leg is moving, or the person reversed direction
(see Section 3). Thus, in addition to the measurement associ-
ations the tracker must hypothesize about the dynamic state,
as indicated by thedynamic state eventψk,l in Figure 3.

A particular history of association and dynamic state hy-
potheses leading up to leafl in the hypothesis tree (for exam-
ple, the bold line in Figure 3) is described by thecumulative
hypothesesΘk,l andΨk,l . Furthermore, the history of mea-
surements over all generations is denoted by the cumulative
measurement setZk. Each path through the hypothesis tree
also has an associated extended Kalman filter (EKF) to es-
timate the statexk,l and state covariance Pk,l resulting from
the history of measurements and dynamic states. The basic
task in multiple hypothesis tracking is then to evaluate the
probability of each cumulative hypothesis conditioned on the
cumulative measurements, written asP(Θk,l ,Ψk,l |Zk). The
current state is then chosen as the one corresponding to the
most likely cumulative hypothesis. Generation and evalua-
tion of new hypotheses in each measurement cycle is detailed
in Section 4. MHT provides good tracking robustness by al-
lowing the system to recover from association/dynamic state
errors by choosing an alternative history in each cycle, rather
than the single-tracked history of alternative techniques.

3 Walking Person Model
Our walking model is based on the simple physical assump-
tions that the legs extend in equal and opposite directions
from the torso and at least one leg always remains stationary.
Figure 4 gives a top view of the walking model. As described
earlier, only the location of left and right legs (pL andpR in
Figure 4) are observable from the calf-height slice provided

2



s

p

left leg

right leg

pR

pL

α

2w

Figure 4: Walking model parameters.

p1

p2
α2
α1

Figure 5: Alternative solutions for walking model orientation.

by the range sensor. The parameters of the model are:

• p=(x,y)> = torso centre of mass

• α = walking direction relative tox-axis of sensor

• s = projected leg length, positive for right leg forward

• 2w = width of hips, assumed fixed and known

Given measurementspL = (xL,yL)> andpR = (xR,yR)> for
both legs, the unknown parameters of the model are given by

p =
1
2
(pL +pR) (1)

α = atan

(
yL−yR

xL−xR

)
±asin

(
w√

|pL−pR|

)
(2)

s = ±1
2

√
|pL−pR|2−4w2 (3)

As indicated by equation (2), the leg measurements give rise
to two possible orientations. The physical interpretation of
these solutions are shown by the solid and dashed lines in
Figure 3 (note also that the interpretation ofp1 and p2 as
the left and right legs switch between solutions). During
walking, people often transition between these configurations
when turning around to walk backwards (particularly when a
person is being followed by a robot). Thus, both configura-
tions must be considered when generating hypotheses about
a tracked target (see Section 4.1).

The inverse of the above equations is the measurement
model used by the EKF to predict the position of the legs from
the estimated model parameters. The measurement model is

pL,R = p+R(α) · (±s,∓w)> (4)

where the positive sign is taken forR and the negative forL,
and R(θ) is a 2×2 rotation matrix for angleθ . If zL andzR

are the measured location of both legs, the observation passed
to the EKF is the combined measurementy = (z>L ,z>R)>.

To track a walking person, the parameters in Figure 4
are augmented with the linear velocityv and angular ve-
locity ω, and the complete state vector is thereforex =
(x,y,α,s,v,ω)>. The evolution of the state from time step
k−1 to k is described by one of two possible dynamic mod-
els: the left leg swings while the right leg remains stationary,
or the right leg swings while the left leg remains stationary (a
stationary person can be described by either model with zero
velocity). In either case, the torso is assumed to undergo con-
stant velocity motion. The positionpk at time stepk therefore
evolves from the previous statexk−1 according to

pk = pk−1
L,R +R(ωk−1∆t)[pk−1 +v∆tR(αk−1)x̂−pk−1

L,R ] (5)

where∆t is the sample period,̂x is a unit vector in thex-
direction andpL,R is the location of the stationary leg, given
by equation (4). Equation (5) describes a linear displacement
by v∆t in the directionα, followed by a rotation about the
stationary leg by angleω∆t . To preserve the location of the
stationary leg, the projected leg length must increase or de-
crease byv∆t according to

sk = sk−1±vk−1∆t (6)

where the positive sign describes a stationary left leg, and
negative describes a stationary right leg. The remaining pa-
rameters evolve according to a constant velocity model.

4 Multiple Hypothesis People Tracking
4.1 Hypothesis Generation
The purpose of hypothesis generation is to enumerate all
likely associations of new measurements to the predicted state
for all dynamic models. This section describes hypothesis
generation for a single parent node of the hypothesis tree, and
the process is repeated for all parent nodes.

As discussed above, a walking person switches between
two possible dynamic models depending on the moving leg,
and between the two configurations shown in Figure 3 when
reversing direction. Thus, given the estimated state at the pre-
vious time step, four possible predicted states must be consid-
ered. Let the predicted states be described by state vectorjxk

and covariance matrixjPk, where 1≤ j ≤ 4. The state and
covariance corresponding to the left and right moving legs
( j = 1,2) are predicted using the EKF with the dynamic mod-
els in equations (5)-(6). Then, the alternative configurations
in Figure 3 (j = 3,4) are generated by recalculating the ori-
entation, leg length and velocity as

j+2
α

k = j
α

k +π −2tan(w/ jsk) (7)
j+2sk = −( jsk) (8)
j+2vk = −( jvk) (9)

The next step is to find all associations between predicted
leg positions,jpk

L and jpk
R (from equation (4)), and measure-

ments inzk. Using the validation gate procedure illustrated
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in Figure 2, measurementzk
i is associated with the leg atjpk

ν

(ν = L,R) when the Mahalanobis distance satisfies

(zk
i − jpk

ν)>( jSk
ν)−1(zk

i − jpk
ν) < d2

th (10)

for thresholdd2
th. The 4×4 innovation covariance matrixjSk

of measurement vectoryk = (z>L ,z>R)> is calculated from the
predicted state covariancejPk, measurement model Jacobian
M and measurement error covariance R as

jSk = M jPkM>+R =
(

jSk
L

jSk
LR

jSk
LR

jSk
R

)
(11)

To evaluate equation (10), the 2×2 submatrixjSk
L or jSk

R is
selected fromjSk depending on the leg associated withzk

i .
Measurements that do not fall within any validation gate

are simply discarded, since hypotheses associated with these
measurements would have negligible probability. The result
is a reduced set ofm≤ n validatedmeasurements inzk. A
hypothesis matrixΩk is then constructed in which rowi indi-
cates the possible source ofzk

i in the reduced set. For exam-
ple, the hypothesis matrix for the scenario in Figure 2 is

Ωk =
F L R(
1 0 1
1 1 1

)
(12)

Finally, the association hypothesesθ k,l are generated from
Ωk. To make physical sense, hypothesisθ k,l associates each
measurement with only one source (F , L or R) and allows
each source (exceptF) to produce only one measurement.
Hypotheses are therefore generated by selecting one valid
source from each row ofΩk such that each leg appears no
more than once. For example, Figure 2 gives rise to five as-
sociation hypotheses:(F,F), (F,L), (F,R), (R,F) and(R,L).
The final set of hypotheses(θ k,l ,ψk,l ) is obtained by repeat-
ing the process for each possible dynamic model.

4.2 Probability Evaluation
Let P(Θk,l ,Ψk,l |Zk) represent the probability of the cumula-
tive hypothesis(Θk,l ,Ψk,l ) for leaf l in the hypothesis tree,
conditional on the measurement historyZk. The probability
calculation presented below applies to all leaves, and index
l is henceforth dropped for convenience. Our evaluation of
P(Θk,Ψk|Zk) follows the general framework outlined in[Bar-
Shalom and Fortmann, 1988]. Using Bayes rule, the condi-
tional probability of the hypothesis can be factored as

P(Θk,Ψk|Zk) =
1
c

p(zk|Θk,Ψk,Zk−1)P(θ k|Θk−1,Zk−1)·

P(ψk|Ψk−1,Zk−1)P(Θk−1,Ψk−1|Zk−1) (13)

where the normalization constantc is summed over all leaves.
The terms on the right hand side of equation (13) represent the
measurement likelihood, conditional probability of the cur-
rent measurement association, conditional probability of the

current dynamic model and the prior probability of the parent
hypothesis. Each factor will now be evaluated in turn.

Measurements associated with the left or right leg inθ k are
assumed to be independent with normally distributed error
(as required by the EKF). False alarms inθ k are assumed to
be independent and uniformly distributed across theN range
samples with a probability ofN−1 (an approximation since
false alarms are actually often persistent). The measurement
likelihood can thus be written as the product

p(zk|Θk,Ψk,Zk−1) = N−φ |2πSk|−1e−
1
2(yk−ŷk)>(Sk)−1(yk−ŷk)

(14)
whereφ is the number of false alarms,ŷk is the predicted
measurement vector from equation (4), and Sk is the inno-
vation covariance. When measurements are assigned to both
legs inθ k, equation (14) is evaluated using the measurement
vectory = (z>L ,z>R)> and the 4×4 innovation covariance in
equation (11). Whenθ k involves only one leg, the measure-
ment vector isyk = zk

ν and the innovation covariance is the
submatrix Skν in equation (11), whereν = L or R.

To calculate the conditional probability of the association
event,P(θ k|Θk−1,Zk−1), the detection indicatorsδL andδR

are introduced, whereδi = 1 if the associated leg is detected
in θ k and δi = 0 otherwise. Then, dropping the irrelevant
conditionings, the probability of eventθ k can be written as

P(θ k|Θk−1,Zk−1) = P(θ k|δL,δR,φ)P(δL,δR,φ) (15)

In evaluatingP(θ k|δL,δR,φ), all association events that
give rise to detection indicatorsδL andδR with φ false alarms
are assumed to be equally likely. The number of such events
is the number of permutations of(m−φ) detected legs out of
m measurements (permutations since the legs have identity),
and the probability of each event is

P(θ k|δL,δR,φ) =
[

m!
(m− (m−φ))!

]−1

=
φ !
m!

(16)

False alarms are assumed to arise independently of the legs.
Thus the second term in equation (15) can be factorized as
P(δL,δR,φ) = P(δL,δR)P(φ). We follow the convention of
modelling false alarms as a Poisson process with fixed den-
sity λ over all N laser samples (ie. an average ofλN false
measurements are expected per scan). Thus, the probability
of φ false alarms isP(φ) = [(λN)φ /φ !]e−λN.

In conventional MHT, the detection of established targets
(eventsδL andδR) is assumed to be independent with fixed
probability,PD. This is a good approximation for sparse tar-
gets, but breaks down for a walking person as one leg oc-
cludes the other with almost every step. However, occlusions
can be predicted and should be included in the evaluation of
the hypothesis to improve tracking robustness against false
measurements. For example, consider the case ofpL oc-
cluded bypR in Figure 2: a hypothesis that doesnotassignz2

to pL should have a higher probability than one that does.
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Figure 6 illustrates the model used for predicting occlu-
sions, wherep1 andp2 are the leg measurements predicted by
equation (4) andO is the world origin (location of the range
scanner). Assuming the legs have fixed radiusr, the closer
leg casts the occluding shadow indicated by the dotted lines.
Let d1 = |p1| andd2 = (p>1 p2)p1/|p1| represent the distance
from the laser to the front and rear leg along the central axis
of the occlusion region. The distance of the rear leg from the
axis isd = (|p2|2−d2

2)1/2, and occlusions occur whend falls
below a thresholdDth given by

Dth(p1,p2) = r(d1 +d2)/d1 (17)

Figure 6 shows the rear leg just on the verge of this thresh-
old. The probabilityPD(p1,p2) of detecting the rear leg is as-
sumed to decrease gradually as the occlusion becomes more
severe, as approximated by the piecewise linear model

PD(p1,p2) =
{

PO +(PV −PO)D/Dth if d < Dth

PV if d≥ Dth
(18)

wherePV is the detection probability whenp2 is outside the
occlusion shadow andPO is the detection probability whenp2

lies on the shadow axis (typicallyPV = 0.9 andPO = 0.2). The
detection probability for the front leg atp1 is simplyPD = PV ,
and the probability of the combined eventδ = (δL,δR) is the
product of the detection probability for both legs.

Finally, combining equation (16) with the Poisson distribu-
tion for the false alarms and the detection probability above,
the conditional probability of the association event in equa-
tion (15) can be written as

P(θ k|δ ,φ)P(δ ,φ) =
(λN)φ

m!
e−λN ∏

i=L,R
(PD)δi (1−PD)1−δi

(19)
For tracking filters with switched dynamic models, the con-

ditional probabilityP(ψk|Ψk−1,Zk−1) is usually assumed to
be Markovian[Isard and Blake, 1998]. In this case, the con-
ditional probability reduces toP(ψk|ψk−1), which can be im-
plemented as a two dimensional transition probability table.
This assumption breaks down in the case of walking, which
exhibits periodic state transitions and short-term correlations
between sequential dynamic states. We exploit these prop-
erties to improve tracking robustness (provided the walking

pattern is not too irregular) by modelling the dynamic state
transitions as a non-stationary process. Lett be the time since
the transition to the current dynamic modelψk. Whent is
small the probability of finding the same dynamic state is high
(short-term correlation), but decays ast increases until a tran-
sition to another state is likely. We model this effect as an
exponentially decaying/increasing conditional probability

P(ψk|Ψk−1) =
{

0.25+(PI −0.25)e−t/τ if ψk = ψk−1

0.25− 1
3(PI −0.25)e−t/τ if ψk 6= ψk−1

(20)
whereτ is a time constant modelling the gait period, andPI

determines the initial probability after a transition.
The final term in equation (13) is the prior probability

P(Θk−1,Ψk−1|Zk−1), which is the probability of the parent
hypothesis. Finally, the probability of the new hypothesis
P(Θk,Ψk|Zk) is calculated as the product of the prior with
the conditional probabilities in equations (14), (19) and (20).

4.3 Hypothesis Reduction

In any MHT filter, persistent pruning of the hypothesis tree is
necessary to satisfy real-time constraints. However, care must
also be taken to ensure that sufficient variation remains to ad-
equately approximate the distribution of possible states. Our
tracking filter employs a combination of common hypothe-
sis reduction techniques to achieve these goals, and result in
about 10-50 hypotheses maintained per generation.

N-scan-backpruning[Kurien, 1990] dramatically culls hy-
potheses by discarding entire branches attached to a single
node at the(k−N)th generation of the hypothesis tree. The
probability of each branch is evaluated by tallying the proba-
bilities of descended leaves, and only the most likely branch
is retained. Using this method, the hypothesis tree always
providesN generations of variation and contains only a sin-
gle history above the(k−N)th node. Clearly,N is carefully
chosen to provide sufficient variation while keeping the hy-
pothesis tree manageable, andN = 4 was empirically found
to provide good results for our walking person tracker.

Due to the high number of hypotheses descending from
each node, a second culling stage is applied to remove low
probability leaves. A low probability test is usually imple-
mented as a fixed threshold[Cox and Leonard, 1994], but
this approach was found to be too indiscriminant. Instead, we
cull hypotheses that have a probability less than a fixed frac-
tion (say 0.05) of the best hypothesis, which retains the most
likely hypotheses regardless of the absolute probability.

Finally, the hypothesis tree is likely to contain several hy-
potheses with similar states, particularly when the person is
stationary. Hypotheses are therefore removed if a more likely
hypothesis with the same dynamic model is found within a
validation gate defined by the state covariance. Letxl and
Pl represent the state and covariance of the lower probabil-
ity hypothesis andxh represent the state of the higher prob-
ability hypothesis. Then, the lower probability hypothesis is
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Figure 7: Typical tracking result showing raw range data
(black), leg measurements (green) and estimated state (red).

removed if the Mahalanobis distance between states satisfies

(xl −xh)>P−1
l (xl −xh) < d2

th (21)

whered2
th = 1 is used in practice. The probability of the elim-

inated hypothesis is added to the surviving hypothesis.

4.4 Track Initiation and Termination
The current implementation tracks a single person at a time,
and new targets are initiated and terminated automatically.
When no target currently exists, a new hypothesis tree is ini-
tiated when two leg candidates are separated by less than a
fixed threshold. The initial state is calculated using equations
(1)-(3), along with zero velocity and a large state covariance.
Either solution of equations (2)-(3) may be chosen for the new
target, since the other configuration will be considered in the
next generation. An existing track is terminated if no valid
measurements are found for a threshold number of genera-
tions, or the probability of the best hypothesis is sufficiently
small (ie. the target is unlikely to be a walking person).

5 Results
The multiple hypothesis walking person tracker presented in
this paper has been applied to a number of experimental se-
quences. A sequence of 1000 scans involving two people
standing still, walking, crossing paths, meeting, changing di-
rection and moving in and out of the field of view is shown in
Video 1. In this video sequence, raw range points are shown
in black (depth discontinuities removed), leg candidates are
shown in green and the most likely hypothesis is shown in
red or blue to indicate transitions between dynamic states.
Dynamic model switches are observed to occur frequently as
the tracker switches between alternative histories, particularly
when the tracked person is stationary. Importantly, one or
the other person is successfully tracked during the entire se-
quence, with the MHT only losing track when a person leaves

direction of travel

left leg

right leg

Figure 8: Range profiles of legs for turning event.
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Figure 10: Number of maintained leaves after each scan.

the field of view. Figure 7 gives the tracking result for a typi-
cal scan in this sequence, while the people briefly meet.

Two challenging sequences in this experiment are high-
lighted in Figures 8 and 9. The sequence of laser profiles
in Figure 8 show the path of the legs as the person switches
between the walking configurations in Figure 3 (around scan
number 650). In this case, the left leg crosses over the right
leg as the person turns around to walk backwards. The state
of the walking person is successfully maintain during this ma-
noeuvre as can be seen in Video 1. Figure 9 shows represen-
tative scans before, during and after occlusion of the right leg
by the left. Again, the state of the target is successfully main-
tained despite the presence of a false measurement (the leg of
the second person) in the same neighbourhood.

The number of leaves at each new generation of the hypoth-
esis tree (after applying the pruning in Section 4.3) is shown
in Figure 10, which verifies that the tracker operates reliably
with about 10-50 hypotheses per generation. The required
processing time in this case is 5-25 ms per scan (depending
on the number of hypotheses) on a 3 Ghz Pentium 4 desktop
PC, which is well within the constraints of real-time tracking.

6 Summary and Future Work
This paper has addressed the problem of tracking a person
using range measurements at leg height. Unlike previous
range-based people trackers, our framework explicitly mod-
els walking kinematics and dynamics to evaluate the proba-
bility that the target is truly a walking person. A switched
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(a) Before occlusion event. (b) During occlusion event. (c) After occlusion event.

Figure 9: Successful recovery of tracking after occlusion in the presence of a false alarm.

dynamic model allows for the possibility of a moving left or
right leg (with the other stationary), and for changing config-
uration when turning on the spot. Our tracker employs a mul-
tiple hypothesis framework with several novel features: both
measurement associations and dynamic model transitions are
included in the hypothesis tree, dynamic model transitions are
treated as a non-stationary process, and the effect of occlusion
is modelled in the evaluation of association probabilities. Ex-
perimental results highlight the usefulness of this additional
modelling, and demonstrate the robustness and efficiency of
our tracker in real scenes. It would be interesting in future
work to compare the efficiency of our approach with alterna-
tive multiple hypothesis frameworks such as particle filtering.

While our method efficiently tracks a single person, track-
ing multiple people introduces several new problems. In par-
ticular, multiple people cannot be tracked independently as
interactions arise when one person occludes another or vali-
dation gates overlap. These interactions dramatically increase
the number of hypotheses and additional pruning techniques
are likely to be required, such as splitting and merging inde-
pendent hypothesis trees for different groups of targets.

The ultimate extension of this work will be to identify
tracked individuals, possibly by applying a Bayesian learn-
ing model to the observed dynamic state sequence. Real-time
learning would allow individuals to be robustly re-acquired
after extended occlusions, or identified after grouping to-
gether and subsequently dispersing. Such a system would
have widespread applications in service robotics and surveil-
lance, and is the subject of continuing research.
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