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Abstract : — |

This paper presents the first comprehensive model
for a walking person in range data from a scanner
mounted at leg height. Our model helps to distin-
guish people from other types of moving targets
and provides good tracking robustness. The cen-
tral assumption of the walking model is that at least
one leg always remains stationary. The current im-
plementation tracks a single person in a multiple
hypothesis framework. We extend the multiple hy-
pothesis framework to allow for both association
uncertainty and a switched dynamic model depend-
ing on the currently moving leg. Furthermore, an
occlusion model and non-stationary dynamic state
transition probabilities are used in the evaluation
of hypotheses to further improve tracking robust- ) .
ness. Experimental results demonstrate the robust- Figure 1: Range scanner mounted on a mobile robot.

ness and efficiency of the proposed framework.

_ [Brooks and Williams, 2003; Montemerigt al, 2004 and
1 Introduction constant velocityCielniak and Duckett, 20Q3approxima-

This paper addresses the problem of tracking a walking pert_?ons. State estimat_io_n is usually performed with a Kalman
son using measurements from a laser range sensor mounti¢er, but more sophisticated methods have also been adopted
on the mobile robot shown in Figure 1. While the robot cur-t0 deal with uncertain measurement associations, such as par-
rently only acts as a stationary platform, the potential appliicle filter [qutemerloet al, 2003 and joint probabilistic
cations of people tracking in mobile robotics are numerousdata associatiofSchulzet al, 200] based people trackers.
For example, a service robot could follow a person or verify Almost none of the above methods attempt to model the
that the robot is being followed. For mapping and localiza-appearance or motion of a walking person in range data, and
tion, people tracking enables the robot to identify persistentn reality can only be consideredoving objectrackers. The
distractions that should be discarded during map construgXception is the method presented by Brooks and Williams
tion, and predict the motion of obstacles for more effectivel2003, which simply requires two closely spaced blobs to
path planning and obstacle avoidance. Apart from roboticsyalidate a pair of legs. The absence of explicit models is usu-
range-based people tracking could play an important role irlly justified by noting that human behaviour is complex and
surveillance applications. unpredictable. Conversely, we propose that walking is highly
Various approaches to range-based people tracking havégular, and exploit this notion to improve tracking robust-
already been demonstrated. In most cases the state of thess and distinguish people from other moving objects. In
person is described by a simple centre of mass, tracked ithis paper, we develop for the first time a complete kinematic
successive scans using nearest neighbour mat¢Riagsler ~and dynamic model for a walking person in range data from
et al, 1999 or feature-based matching of the range profiled scanner mounted at leg height.
[Fodet al, 2004. Motion models are limited to Brownian A central feature of our tracker is a switched dynamic
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Figure 2: Association of measurements using validation gate.
Figure 3: Three generations of a hypothesis tree.

model for a left or right moving leg (while the other re-

mains_stationary). _The tracker must _continuously choose thg,ants within the error ellipse of each leg (arising from un-
most likely dynamic model to explain the current observa-certainty in the state) can form an association; fzerean be
tions, which is achieved by extending the multiple hypothesis,gqqciated with either leg. Rather than choosing a particular
tracking (MHT) frameworKReid, 1979 to cope with uncer-  4ssqciation, MHT generates hypotheses for all possibilities,
tain dynamic state transitions in addition to uncertain meaj, | ding those in whiclzy andz are false alarms. Each hy-
surement associations. Occlusions and correlations betwegyhesis is then allowed to evolve independently and give rise
dynamic states are explicitly modelled in the MHT to fur- 4 hey hypotheses in subsequent measurement cycles. Figure
ther improve tracking robustness. In related work, particles jjustrates three generations of a so-calsgothesis tree
filtering has been used to solve dynamic state transitions ang o association everg at leafl denotes a particular set of
measurement associations for people tracking in viiEaTd  5sqociations betweed and measurement sources. In people
and Blake, 1998 However, the reqL_Jlred number of particles tracking, uncertainty also arises in the dynamic state: whether
makes the approach less computationally tractable than MHyq |efyright leg is moving, or the person reversed direction
The following section outlines the framework of our multi- (gee Section 3). Thus, in addition to the measurement associ-
ple hypothesis people tracker. Section 3 then details the kingsiions the tracker must hypothesize about the dynamic state,
matic and dynamic models of a walking person in range datays indicated by thdynamic state eveng®! in Figure 3.
while Section 4 describes the generation, evaluation and elim- p particular history of association and dynamic state hy-
ination of hypotheses used to estimate the state of the Pers@theses leading up to lekin the hypothesis tree (for exam-

in each measurement cycle. Finally, the tracker is applied t?)le, the bold line in Figure 3) is described by themulative
real laser scans and the results are presented in Section 5. hypothese®*! andWk!. Furthermore, the history of mea-

) ) surements over all generations is denoted by the cumulative
2 Overview of Tracking Framework measurement s&X. Each path through the hypothesis tree

Our SICK LMS laser range scanner is mounted at a height 0q:lllso has an asskolmated extended _Kalman filter _(EKF) to es-
about 20 cm on a stationary robot, as shown in Figure 1. Thimate the state*! and state covariance“Presulting from
sensor scans a 180 degree slice at a rate of 40 Hz, with 4i€ history of measurements and dynamic states. The basic
angular resolution of 0.5 degrees and a range resolution of #SK in multiple hypothesis tracking is then to evaluate the
cm. For thekth update cycle, the measurement set consists quobabn.lty of each cumulative hypothe3|s conditioned on the
2D candidate leg position& — {zX}, i <i < n, measured in Cumulative measurements, written REOK! Wkl Zk), The

the plane of the laser. To generalfethe scan is segmented at current state is then chosen as Fhe one corr'espondlng to the
range discontinuities and segments are classified as leg canfOst likely cumulative hypothesis. Generation and evalua-
dates if the distance between end-points is roughly equal to &N 0f new hypotheses in each measurement cycle is detailed
typical leg diameter. Measuremegitis calculated as the cen- N Section 4. MHT provides good tracking robustness by al-
troid of samples in théth candidate leg segment. This mea- lowing the system to recover from association/dynamic state

surement process introduces a bias since the scanner sampfs&r's by choosing an alternative history in each cycle, rather
only one side of any leg, but the effect is ignored in practice.tha” the single-tracked history of alternative techniques.

To deal with the uncertainty of associations between mea: .

surements and the legs of the walking person, multiple hy-3 Walking Person Model

pothesis tracking generates and evaluates all possible assoctadr walking model is based on the simple physical assump-
tions in a Bayesian probability framework. Measurements aréions that the legs extend in equal and opposite directions
considered to arise from one of three sources: the leftJeg from the torso and at least one leg always remains stationary.
right legRor noise (false alarnfj. Figure 2 illustrates the as- Figure 4 gives a top view of the walking model. As described
sociation problem for two measuremergsandz,, with the  earlier, only the location of left and right legs (andpg in

legs at predicted positiong. andpgr. Only those measure- Figure 4) are observable from the calf-height slice provided



pL To track a walking person, the parameters in Figure 4
are augmented with the linear velocityand angular ve-
locity o, and the complete state vector is therefare-
(x,y,a,S,V,w) . The evolution of the state from time step
k— 1 tokis described by one of two possible dynamic mod-
els: the left leg swings while the right leg remains stationary,
or the right leg swings while the left leg remains stationary (a
stationary person can be described by either model with zero
. . velocity). In either case, the torso is assumed to undergo con-
Figure 4: Walking model parameters. stant velocity motion. The positiguk at time stepk therefore
evolves from the previous stat¥ ! according to

right leg
Pr

N pk=plR +R(0" 8 [P T+ VAR(e* X —pfR] (5)
/, < N , '
¢ Y where4y; is the sample periodk is a unit vector in thex-
p1® direction ando, r is the location of the stationary leg, given

) ) ) ) . by equation (4). Equation (5) describes a linear displacement
Figure 5: Alternative solutions for walking model orientation. by VA; in the directiona, followed by a rotation about the
stationary leg by angle/;. To preserve the location of the
stationary leg, the projected leg length must increase or de-

by the range sensor. The parameters of the model are: X
crease by/; according to

e p=(x,y)" =torso centre of mass

o o = walking direction relative ta-axis of sensor =TTV (6)
e s=projected leg length, positive for right leg forward  where the positive sign describes a stationary left leg, and
e 2w = width of hips, assumed fixed and known negative describes a stationary right leg. The remaining pa-

Given measurements = (x_,y.)" andpr = (xg,yg) " for rameters evolve according to a constant velocity model.

both legs, the unknown parameters of the model are given b}i Multiple Hypothesis People Tracking

p = }(DL +PR) (1) 4.1 Hypothesis Generation
2 . o
The purpose of hypothesis generation is to enumerate all
a = atan(yL - YR) + asin ) likely associations of new measurements to the predicted state
XL —XR v/ IpL — PRl for all dynamic models. This section describes hypothesis
1 5 > generation for a single parent node of the hypothesis tree, and
S = *35y [PL — PR|® — 4w (3)  the process is repeated for all parent nodes.

As discussed above, a walking person switches between

As indicated by equation (2), the leg measurements give risg, possible dynamic models depending on the moving leg,

to two possible orientations. The physical interpretation Ofand between the two configurations shown in Figure 3 when

these solutions are shown by the solid and dashed lines if e ging direction. Thus, given the estimated state at the pre-
Figure 3 (notg also that the Interpretation Fﬁ.f andp; as . vious time step, four possible predicted states must be consid-
the left and right legs switch between solutions). Duringereq | et the predicted states be described by state viektor
walking, people often transition between these configuration§ 4 covariance matrik®. where 1< j < 4. The state and
when tu.rning_ around to walk backwards (particularly w.hen 8~gvariance corresponding to the left and right moving legs
person is being foll_owed by a robot). Thus, both conflgura—(j — 1,2) are predicted using the EKF with the dynamic mod-
tions must be considered when generating hypotheses abo&g in equations (5)-(6). Then, the alternative configurations

atracked target (see Section4.1). in Figure 3 ( = 3,4) are generated by recalculating the ori-
The inverse of the above equations is the measuremeRt,iation leg length and velocity as

model used by the EKF to predict the position of the legs from

the estimated model parameters. The measurement model is 2ok = Jgk4 7 —2tanw/1s) (7)
j+2 — (]

pLR=P+R(@) (57w @ = =08 ®)

o . Rk = (W) ©)
where the positive sign is taken fBrand the negative fdr,
and R0) is a 2x 2 rotation matrix for angl®. If z_ andzg The next step is to find all associations between predicted
are the measured location of both legs, the observation passést) positions,lp'ﬁ andlp‘é (from equation (4)), and measure-
to the EKF is the combined measuremgnt (z/,z%)". ments inZ. Using the validation gate procedure illustrated



in Figure 2, measuremelzg‘t is associated with the leg &b current dynamic model and the prior probability of the parent

(v =L,R) when the Mahalanobis distance satisfies hypothesis. Each factor will now be evaluated in turn.
Kk ikl ik 5 Measurements associated with the left or right legimre
(@ —Tp) TSy (@ —Tpy) < o (10)  assumed to be independent with normally distributed error

(as required by the EKF). False alarmsgfiare assumed to

be independent and uniformly distributed acrossNhmnge
samples with a probability oli—* (an approximation since
false alarms are actually often persistent). The measurement
likelihood can thus be written as the product

for thresholdd?,. The 4x 4 innovation covariance matrbg*
of measurement vectyt = (z/,z%) " is calculated from the
predicted state covarianéBX, measurement model Jacobian

M and measurement error covariance R as

. . jq iq
— T — N - N
I =MIPMT +R= ( i, s ER ) (11) ek wk zk-1) = N~ |27 sk| L 20/ -5 (8 K5

(14)
To evaluate equation (10), thex2 submatrix@ﬁ or J'sl;{ is where¢ is the number of false alarm§X is the predicted
selected from S depending on the leg associated vath measurement vector from equation (4), arfdisSthe inno-

Measurements that do not fall within any validation gatevation covariance. When measurements are assigned to both
are simply discarded, since hypotheses associated with thelggs in6¥, equation (14) is evaluated using the measurement
measurements would have negligible probability. The resulvectory = (z/,z%)" and the 4« 4 innovation covariance in
is a reduced set ah < n validatedmeasurements i. A equation (11). Whe®¥ involves only one leg, the measure-

hypothesis matri® is then constructed in which roiindi- ~ Ment vector isy* = z& and the innovation covariance is the
cates the possible sourcezﬁfin the reduced set. For exam- Submatrix $ in equation (11), where =L orR.
ple, the hypothesis matrix for the scenario in Figure 2 is To calculate the conditional probability of the association
event,P(6K|@%1, Zk-1), the detection indicator§_ and &r
F L R are introduced, wher§ = 1 if the associated leg is detected
Q<= < 101 > (12)  in 6% and & = 0 otherwise. Then, dropping the irrelevant
111 conditionings, the probability of evedt can be written as
Finally, the association hypothes@§' are generated from P(6X|@ 1, Z% 1) = P(6¥|8., 6r, 0)P(SL, 8r, 0)  (15)
QK. To make physical sense, hypothegi€ associates each
measurement with only one sourde, (L or R) and allows In evaluatingP(6%|8.,6r,¢), all association events that

each source (exceﬁt) to produce On|y one measurement. give rise to detection indicatof anddgr with () false alarms

Hypotheses are therefore generated by selecting one val@f€ assumed to be equally likely. The number of such events

source from each row aR¥ such that each leg appears no is the number of permutations @h— ¢) detected legs out of

more than once. For example, Figure 2 gives rise to five agh measurements (permutations since the legs have identity),

sociation hypothesesF,F), (F,L), (F,R), (R F)and(R,L).  and the probability of each event is

The final set of hypothesg®*'!, y*!) is obtained by repeat- .

ing the process for each possible dynamic model. k _ m! ¢!
P(6%|6L, 0r, ¢) = (M= (m=¢))! (16)

m
False alarms are assumed to arise independently of the legs.
Thus the second term in equation (15) can be factorized as

4.2 Probability Evaluation

Let P(@%!, wkl|ZX) represent the probability of the cumula-
tive hypothesig @, Wk!) for leaf | in the hypothesis tree, :
conditional on the measurement hista: The probability (9L 0r.¢) = P(dL,r)P(¢). We follow the convention of
calculation presented below applies to all leaves, and indeQ?Ode”'”g false alarms as a Poisson process with fixed den-
| is henceforth dropped for convenience. Our evaluation of!Y # Over allN laser samples (ie. an averageidf false
P(OK, WK|ZK) follows the general framework outlined [Bar- measurements are expected per scan). Thus, the probability

; _ —AN

Shalom and Fortmann, 1988Using Bayes rule, the condi- ©f ¢ false alarms i®(¢) = [(’IN)¢/¢_!]G : _

tional probability of the hypothesis can be factored as In conventional MHT, the detection of established targets
(eventsd,. and 8R) is assumed to be independent with fixed

P(G)", qu\Zk) _ }p(zk\ek,W",Zkfl)P(ek|ekfl,Zk*1)- probability, By. This is a good approximation for sparse tar-
c gets, but breaks down for a walking person as one leg oc-
Py W1 Z-1pek-t wk-1izk-1y (13)  cludes the other with almost every step. However, occlusions
can be predicted and should be included in the evaluation of
where the normalization constarnis summed over all leaves. the hypothesis to improve tracking robustness against false
The terms on the right hand side of equation (13) represent thmeasurements. For example, consider the casg afc-
measurement likelihood, conditional probability of the cur-cluded bypr in Figure 2: a hypothesis that doest assigrnz;
rent measurement association, conditional probability of théo p. should have a higher probability than one that does.



pattern is not too irregular) by modelling the dynamic state
transitions as a non-stationary process.tlts the time since
the transition to the current dynamic modgf. Whent is
small the probability of finding the same dynamic state is high
(short-term correlation), but decaystascreases until a tran-
sition to another state is likely. We model this effect as an
exponentially decaying/increasing conditional probability

- 0.25+ (A —0.25)e /7 if yk=yk !

0.25— (R —0.25)e7Y/7 if yk £ yk-1
(20)
wheret is a time constant modelling the gait period, dhd
Figure 6 illustrates the model used for predicting occlu-determines the initial probability after a transition.

sions, wherg; andp; are the leg measurements predicted by The final term in equation (13) is the prior probability
equation (4) an is the world origin (location of the range P(@%1,Wk1|Zk~1) which is the probability of the parent
scanner). Assuming the legs have fixed radiuthe closer hypothesis. Finally, the probability of the new hypothesis
leg casts the occluding shadow indicated by the dotted line®(©%, W¥|Z¥) is calculated as the product of the prior with
Letd; = |p1| andd, = (pIpz)p1/|p1| represent the distance the conditional probabilities in equations (14), (19) and (20).
from the laser to the front and rear leg along the central axis . .
of the occlusion region. The distance of the rear leg from thé+-3  Hypothesis Reduction
axis isd = (|p2|? —d3)¥/2, and occlusions occur wheitalls  In any MHT filter, persistent pruning of the hypothesis tree is
below a threshol®y, given by necessary to satisfy real-time constraints. However, care must

Den ) = 1(dy + o) /d 17) also be taken to ensure that sufficient variation remains to ad-

thP1,P2 1T H2)/HL equately approximate the distribution of possible states. Our

Figure 6 shows the rear leg just on the verge of this threshtracking filter employs a combination of common hypothe-
old. The probability (p1, p2) of detecting the rear leg is as- Sis reduction techniques to achieve these goals, and result in
sumed to decrease gradually as the occlusion becomes magout 10-50 hypotheses maintained per generation.

Pyt = {
Figure 6: Occlusion model parameters.

severe, as approximated by the piecewise linear model N-scan-baclpruning[Kurien, 1990 dramatically culls hy-
) potheses by discarding entire branches attached to a single
Pb(p1,p2) = { Po+ (R, —Po)D/Din  if d <Dy (18)  node at thetk — N)th generation of the hypothesis tree. The
R/ if d > Dn probability of each branch is evaluated by tallying the proba-

whereR; is the detection probability whepy, is outside the .bilities.of descepded I.eaves, and only the most likely branch
occlusion shadow ariéb, is the detection probability wheap 1S retained. Using this method, the hypothesis tree always
lies on the shadow axis (typicaly = 0.9 andPo = 0.2). The prowdesN generations of variation and conta_lns only a sin-
detection probability for the front leg gt is simplyP, =R,,  9l€ history above th¢k —N)th node. ClearlyN is carefully

and the probability of the combined event= (&, 5g) is the ~ chosen to provide sufficient variation while keeping the hy-
product of the detection probability for both legs. pothes!s tree manageable, add-= 4 was empirically found

Finally, combining equation (16) with the Poisson distribu- {0 Provide good results for our walking person tracker.

tion for the false alarms and the detection probability above, Due to the high number of hypotheses descending from
the conditional probability of the association event in equa£ach node, a second culling stage is applied to remove low

tion (15) can be written as probability leaves. A low probability test is usually imple-
mented as a fixed threshol@ox and Leonard, 1994 but
P(9k|57 0)P(5,0) = (AN)® e N (PD)‘Si (1 PD)175i this approach was found to be too indiscriminant. Instead, we
m! iR cull hypotheses that have a probability less than a fixed frac-

(19) tion (say 0.05) of the best hypothesis, which retains the most
For tracking filters with switched dynamic models, the con-likely hypotheses regardless of the absolute probability.
ditional probabilityP(yX|W<—1, Zk-1) is usually assumed to Finally, the hypothesis tree is likely to contain several hy-
be Markovian[lsard and Blake, 1998 In this case, the con- potheses with similar states, particularly when the person is
ditional probability reduces tB(y*|w*~1), which can be im-  stationary. Hypotheses are therefore removed if a more likely
plemented as a two dimensional transition probability tablehypothesis with the same dynamic model is found within a
This assumption breaks down in the case of walking, whichvalidation gate defined by the state covariance. >.ednd
exhibits periodic state transitions and short-term correlation®, represent the state and covariance of the lower probabil-
between sequential dynamic states. We exploit these projity hypothesis ancy, represent the state of the higher prob-
erties to improve tracking robustness (provided the walkingability hypothesis. Then, the lower probability hypothesis is
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whered? = 1 is used in practice. The probability of the elim- _ o
inated hypothesis is added to the surviving hypothesis. Figure 10: Number of maintained leaves after each scan.

4.4 Track Initiation and Termination

The current implementation tracks a single person at a timdhe field of view. Figure 7 gives the tracking result for a typi-
and new targets are initiated and terminated automatically?@! scan in this sequence, while the people briefly meet.
When no target currently exists, a new hypothesis tree is ini- TW0 challenging sequences in this experiment are high-
tiated when two leg candidates are separated by less thanli@hted in Figures 8 and 9. The sequence of laser profiles
fixed threshold. The initial state is calculated using equationd? Figure 8 show the path of the legs as the person switches
(1)-(3), along with zero velocity and a large state covarianceP&tween the walking configurations in Figure 3 (around scan
Either solution of equations (2)-(3) may be chosen for the nevumber 650). In this case, the left leg crosses over the right
target, since the other configuration will be considered in thd€d as the person turns around to walk backwards. The state
next generation. An existing track is terminated if no valid ©f the walking personis successfully maintain during this ma-
measurements are found for a threshold number of gener©€uvre as can be seen in Video 1. Figure 9 shows represen-
tions, or the probability of the best hypothesis is sufficientlytative scans before, during and after occlusion of the right leg

small (ie. the target is unlikely to be a walking person). by the left. Again, the state of the target is successfully main-
tained despite the presence of a false measurement (the leg of
5 Results the second person) in the same neighbourhood.

The multiple hypothesis walking person tracker presented in The number of leaves at each new generation of the hypoth-

this paper has been applied to a number of experimental sg—SiS tree (after applying the pruning in Section 4.3) is shown

quences. A sequence of 1000 scans involving two peopl'en Figure 10, which verifies that the tracker operates reliably
standing still, walking, crossing paths, meeting, changing di-vvr':)r('::SbS(.)xt %&gqnhﬁgt:ae:ees.sp; rzger::ragfg‘caﬁhzgegﬁgid
rection and moving in and out of the field of view is shown in P ng t ! ! : P (depending

Video 1. In this video sequence, raw range points are show n the f.‘“".‘ber of h_ypptheses) ona 3 Ghz Penyum 4 dgsktop
in black (depth discontinuities removed), leg candidates aré C, which is well within the constraints of real-time tracking.
shown in green and the most likely hypothesis is shown i
red or bluge to indicate transitions {)et)xeen dynamic state26 Summary and Future Work

Dynamic model switches are observed to occur frequently ashis paper has addressed the problem of tracking a person
the tracker switches between alternative histories, particularlysing range measurements at leg height. Unlike previous
when the tracked person is stationary. Importantly, one orange-based people trackers, our framework explicitly mod-
the other person is successfully tracked during the entire sesls walking kinematics and dynamics to evaluate the proba-
guence, with the MHT only losing track when a person leavesility that the target is truly a walking person. A switched
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(a) Before occlusion event. (b) During occlusion event. (c) After occlusion event.

Figure 9: Successful recovery of tracking after occlusion in the presence of a false alarm.

dynamic model allows for the possibility of a moving left or  In Proc. 2003 Australasian Conf. on Robotics and Automa-
right leg (with the other stationary), and for changing config-  tion, pages 1-7, 2003.

uration when turning on the spot. Our tracker employs a m“'{CieIniak and Duckett, 2003G. Cielniak and T. Duckett.

tiple hypothesis framework with several novel features: both - person identification by mobile robots in indoor environ-
measurement associations and dynamic model transitions are ments. Inist Int. Workshop on Robotic Sensimpges

included in the hypothesis tree, dynamic model transitions are 1_g 2003,

treated as a non-stationary process, and the effect of occlusi
is modelled in the evaluation of association probabilities. Exiaz)l(ir?gifyonn;nrﬁé {a?f]?/?:oimcé?t( Sgiig‘]]‘a\].b;f/grs]:;% rmflgg)le

perimental results highlight the usefulness of this additional " e . j
modelling, and demonstrate the robustness and efficiency of %gzthe&s approachartificial Intelligence 66:311-344,

our tracker in real scenes. It would be interesting in future
work to compare the efficiency of our approach with alternalFodetal, 2002 A. Fod, A. Howard, and M. J. Mataric. A
tive multiple hypothesis frameworks such as particle filtering. ~laser-based people tracker. fmoc. 2002 IEEE Int. Conf.
While our method efficiently tracks a single person, track- ©n Robotics Automatigpages 3024-3029, 2002.

ing multiple people introduces several new problems. In parfisard and Blake, 1998M. Isard and A. Blake. A mixed-
ticular, multiple people cannot be tracked independently as state CONDENSATION tracker with automatic model-
interactions arise when one person occludes another or vali- switching. InSixth International Conference on Computer
dation gates overlap. These interactions dramatically increase Vision pages 107-112, 1998.

the number of hypotheses and additional pruning techniqueg rien, 1999 T. Kurien. Issues in the design of practical
are likely to be required, such as splitting and merging inde- multitarget tracking algorithms. In Y. Bar-Shalom, edi-

pendent hypothesis trees for different groups of targets. tor, Multitarget-Multisensor Tracking: Advanced Applica-
The ultimate extension of this work will be to identify tions pages 43-83. Artech House, 1990.

tracked individuals, possibly by applying a Bayesian learn-
ing model to the observed dynamic state sequence. Real-tirr%ﬂonteme_rloet al, 2002_ M Monte_merl(_), S, T_h“‘r?* and
learning would allow individuals to be robustly re-acquired W. Wh|ttakgr. Condltlongl p-art|cle filters with sm_1u|ta—
after extended occlusions, or identified after grouping to- neous mobile robot localization and pgople—tracklng: In
gether and subsequently dispersing. Such a system would Proc. 2002 IEEE Int. Conf. on Robotics Automation
have widespread applications in service robotics and surveil- pages 695-701, 2002.

lance, and is the subject of continuing research. [Prassleet al, 1999 E. Prassler, J. Scholz, and A. Elfes.
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