Near-Optimal Adaptive Control of a Large Grid Application

Det Buaklee
Greg Tracy Mary Vernon Steve Wright

Computer Science Department
University of Wisconsin - Madison
Talk Outline

- Condor
- Stochastic Optimization, ATR
- ATR Execution Time Analysis
- Model for Minimum Execution Time
- Results: Optimized ATR Performance
Condor

- Provides high throughput computation
- Manages a heterogeneous & dynamic pool
- MW layer supports Master-Worker applications
 - Submitting node is the “master” node
 - Condor dynamically allocates “worker” nodes
 - Worker nodes can drop out during computation (min,max)

<table>
<thead>
<tr>
<th>Application</th>
<th>MW Layer</th>
<th>Condor</th>
<th>PVM/TCP</th>
</tr>
</thead>
</table>

Communication Link
Stochastic Optimization

• Non-trivial ~ 10,000 lines + LP codes

• Optimization of a model with uncertain data
 – Large number of possible scenarios for the data
 – Arises in planning-under-uncertainty applications

• \(x \): vector of variables (unknowns)
 – aim to find the \(x \) that optimizes expected model performance over all the scenarios

• Objective function is an expectation \(Q(x) \)

\[
\min_x c^T x + Q(x) \text{ subject to } A x = b, \ x \geq 0
\]
Properties of Expectation $Q(x)$

- Probabilistic weighted sum over the objective for each individual scenario ω_i, $i=1,2,...N$

$$Q(x) = \sum_{i=1}^{N} p_i Q(x; \omega_i)$$

- N is number of scenarios evaluated
 - Maybe *sampled* from the full set of scenarios
 - Increase N to improve the accuracy
For each Iteration

master

workers

N = 16 = number of scenarios evaluated
G = 4 = number of task groups
T = 8 = number of tasks per iteration
Goals

Given N and a set of workers:

- Compute (near)optimal adaptive values of B, G, T
 - Automated process
 - Fast/simple runtime computation

- Compare adaptive and non-adaptive B, G, and grouping/scheduling of tasks

Approach: LogP/LogGP/LoPC model
ATR in parallel

- Each task i returns value of $\sum_i Q(x; \omega)$, and a subgradient (slope) for this partial sum.
- Sum over tasks to obtain complete function $Q(x)$ and its subgradient.

- At the end of each iteration, set new x to be minimizer of the latest approximation to $Q(x)$.
Execution Time Analysis

Measure LogP/LogGP/LoPC model parameters

- \(L \) (network latency)
- \(o \) (message processing overhead)
- \(G \) (gap per byte - Bandwidth)
- \(P \) (number of Processors)

master execution time
worker execution time
communication time
Execution Time Measurement

<table>
<thead>
<tr>
<th>G</th>
<th>T</th>
<th>Worker Execution Time (sec)</th>
<th>Master Time to Update Model Function (m(x)) (msec)</th>
<th>Master Time to Compute a New Iterate, (x) (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\text{avg})</td>
<td>(\text{max})</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>13.27</td>
<td>0.05</td>
<td>3.33</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>6.25</td>
<td>0.03</td>
<td>2.25</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>3.41</td>
<td>0.05</td>
<td>1.57</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>7.60</td>
<td>0.05</td>
<td>2.42</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>2.06</td>
<td>0.01</td>
<td>1.32</td>
</tr>
</tbody>
</table>

- One master and one worker experiment
- High variability
Worker Execution Times

- For a given planning problem t_w is linear in
 - Number of scenarios evaluated
 - Processor speed

Total worker time = $n(t_w)^{\text{max}}$
Updating $m(x)$ after each task group (G) returns

- **Variability in execution time due to:**
 - Excessive default debug I/O
 - Interference from Condor administrative tasks
- **Eliminating both makes this execution time <1ms**
 i.e., negligible
Hard to make prediction for the next iterate
Same characteristic for all planning problem

SSN network design problem
20term problem
Generating new x at the end of each iteration:

- Number of iterations (n) and time to compute x for each iteration depends on N, T
- Given N, total master processing time (t_M) is fixed!

Optimize: T is large, but not too large
Communication Costs

- Round trip time measurement
- Critical path contains one round trip time per iterate
- Round trip time $<<$ worker execution time
 for message sizes used in ATR (250–1200 bytes)
Effect of Basket Size

- More iterations (n) needed for larger B – approximately linear relationship of B and n
- Optimal B=1
Model Vocabulary

\(N \) number of scenarios in model

\(T \) number of tasks per iteration

\(G \) number of groups of scenarios (units of work)

\(B \) number of vectors \(x \) evaluated in parallel

\(t_M \) total master execution time

\(t_W \) individual worker execution time

\(n \) total number of iterations
Building the Model

Master, Worker, Communication Times

• Total master execution time
 – Variable for N, T, B
 – Include only time to generate new x

• Worker execution time per iteration:
 – Very low variation
 – Consistent from one iteration to another

• Insignificant contributions from:
 – Communication time
 – Master updating $Q(x)$
 – (if T not too large)

$$t_M + n(t_w)_{\text{max}}$$
Model Validation for Homogenous Worker Pool

<table>
<thead>
<tr>
<th>Planning Problem</th>
<th>N</th>
<th>T</th>
<th>Compute New x (sec)</th>
<th>Benchmark Average t_W (sec)</th>
<th>Total Execution Time (min)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>num it. (n)</td>
<td>Total (t_M)</td>
<td></td>
<td>Model</td>
</tr>
<tr>
<td>20-terms</td>
<td>5,000</td>
<td>200</td>
<td>597</td>
<td>2762</td>
<td>2.35</td>
<td>69.4</td>
</tr>
<tr>
<td>ssn</td>
<td>40,000</td>
<td>100</td>
<td>84</td>
<td>297</td>
<td>30.97</td>
<td>48.8</td>
</tr>
<tr>
<td>ssn</td>
<td>20,000</td>
<td>50</td>
<td>108</td>
<td>180</td>
<td>20.91</td>
<td>40.8</td>
</tr>
<tr>
<td>ssn</td>
<td>20,000</td>
<td>100</td>
<td>84</td>
<td>244</td>
<td>20.89</td>
<td>33.5</td>
</tr>
<tr>
<td>ssn</td>
<td>20,000</td>
<td>200</td>
<td>61</td>
<td>295</td>
<td>20.88</td>
<td>26.4</td>
</tr>
<tr>
<td>ssn</td>
<td>20,000</td>
<td>400</td>
<td>44</td>
<td>441</td>
<td>20.96</td>
<td>22.9</td>
</tr>
<tr>
<td>ssn</td>
<td>10,000</td>
<td>100</td>
<td>44</td>
<td>64</td>
<td>6.32</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Model: $t_M + nt_W$
Model Validation for Heterogeneous Worker Pool

Table

<table>
<thead>
<tr>
<th>Computing new X (sec)</th>
<th>Worker Time (sec)</th>
<th>Non Adaptive Execution Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg.</td>
<td>t_w^{min}</td>
</tr>
<tr>
<td>n</td>
<td>t_M</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>50.37</td>
<td>7.04</td>
</tr>
<tr>
<td>70</td>
<td>50.02</td>
<td>7.03</td>
</tr>
<tr>
<td>58</td>
<td>35.8</td>
<td>6.62</td>
</tr>
<tr>
<td>42</td>
<td>60.71</td>
<td>2.86</td>
</tr>
<tr>
<td>38</td>
<td>53.18</td>
<td>2.76</td>
</tr>
<tr>
<td>36</td>
<td>46.77</td>
<td>2.86</td>
</tr>
<tr>
<td>36</td>
<td>61.3</td>
<td>2.11</td>
</tr>
</tbody>
</table>

Model

$$\text{Model: } t_M + n(t_w)^{\text{max}}$$
Optimal Configuration for Homogenous Worker Pool

- **G** should be equal to number of available processors
- **T** should be large up to a point
- **B** should be set to 1

Table: Original ATR Execution Time (T = 100, G = 25)

<table>
<thead>
<tr>
<th>Reduced Debug</th>
<th>Default Debug</th>
<th>Near-Optimize ATR Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>B=3</td>
<td>B=6</td>
<td>B=3</td>
</tr>
<tr>
<td>61 min</td>
<td>92 min</td>
<td>68 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B=6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>149 min</td>
</tr>
</tbody>
</table>

- **3x – 6x faster!**
Heterogeneous task assignment

master node’s worker queue

- **benchmark:** 9 9 10 13 15 20 20 20
- **E_w:**
 - 27 27 20 26 30 40 20 20

master node’s job queue per iteration

- 1 2 3 4 5 6 7 8
Adaptive task assignment

<table>
<thead>
<tr>
<th>Worker Time (t_w) (sec)</th>
<th>Original task assignment</th>
<th>Adaptive task assignment</th>
<th>Estimated Speedup (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Execution Time (min)</td>
<td>Execution time (min)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>Measured</td>
<td>Model</td>
</tr>
<tr>
<td>avg</td>
<td>min</td>
<td>max</td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td>4.02</td>
<td>1.69</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>7.76</td>
<td>2.58</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>1.20</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>2.84</td>
<td>0.83</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>20.33</td>
<td>8.06</td>
<td>98.6</td>
</tr>
</tbody>
</table>

- Heterogeneous & dynamic worker pool
- Better utilization of worker node
Conclusion

• Analysis of Grid Application Execution Time
• Construct, Validate a Simple Performance Model
• Create an Adaptive Control scheme guided by our Performance Model
• Optimal adaptive parameter gives large speedup (3x-6x) over original ATR code
• Adaptive task assignment gives 15-55% speedup over original policy, for optimal parameter values
Future Work

- Apply the model to larger data sets
- Apply the model to more complex objectives such as controlling processor utilization
- Apply this model to other grid applications
Acknowledgments

- Jeff Linderoth (ATR)
- Jichuan Chang (MW)
- condor-admin@cs.wisc.edu
Question!?
Stochastic Optimization Example

- First month data: Demand 10 units, Price $1.00/unit, Storage cost $0.05/unit
- Possible second month scenarios:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Prob.</th>
<th>Demand</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.50</td>
<td>10.0</td>
<td>1.00</td>
</tr>
<tr>
<td>Warm</td>
<td>0.30</td>
<td>08.0</td>
<td>0.85</td>
</tr>
<tr>
<td>Cold</td>
<td>0.15</td>
<td>14.0</td>
<td>1.50</td>
</tr>
<tr>
<td>Very cold</td>
<td>0.05</td>
<td>27.0</td>
<td>1.80</td>
</tr>
</tbody>
</table>
ATR

- “Asynchronous Trust-Region” algorithm for minimizing $Q(x)$ subject to the constraints
- Iterative fork-join synchronization structure
- Unpredictable number of iteration to converge
- Adjustable task parameter
- 15,000 lines of code
Even More Parallelism!

- Possibly generate new x before all $Q(x; \omega_i)$ return!
- Now only have partial info about $Q(x)$, so expect lower quality estimates of x
- Example:

$$Q(x)$$

![Diagram showing master and workers with $Q(x_1; \omega_3)$ and $Q(x_1; \omega_2)$]
ATR Vocabulary

N number of scenarios in the model (possible values for the uncertain data)
 e.g., \(N = 5,000 \) or \(N = 40,000 \)

G number of groups of scenarios (units of work)
 e.g., \(G = 50 \) or \(G = 100 \)

T number of tasks in iteration
 e.g., \(T = 200 \) or \(T = 1,000 \)

B number of variables \(x \) evaluated in parallel
 e.g., \(B = 5 \)
Adaptive Control Algorithm

- Sorting the worker list based on benchmarks
 - Benchmark = execution time of a sample task group on this worker
 - Indicates the expected time needed for this worker to complete one task group

- For each worker \(w \), define
 \[
 E_w = (\# \text{ currently assigned tasks}_w + 1) \times \text{benchmark}_w
 \]

- New task will be assigned to the worker with lowest \(E_w \)