Complex Nonlinear Time-Critical Calculations, Disasters, and DDDAS

Craig C. Douglas
University of Kentucky and Yale University
douglas-craig@cs.yale.edu
http://www.dddas.org

with a lot of help from my friends
Steve Ashby, Janice Coen, Tony Drummond,
Richard Ewing, Omar Ghattas,
Jan Mandel, and Robert Sharpley
Shasta-Trinity National Forest 1999 Fire
(only 142,000 acres)
Data to Drive Application

Where is the fire?

- Use remote sensing data to locate fires, update positions, and find new spot fires.
 - Satellite: thermal wavelengths
 - Airborne
 - AIMR (NCAR operated): Airborne Imaging Microwave Radiometer – clouds cannot hide a fire from one of these.
 - EDRIS (USFS/NASA operated): Visible, near IR, and IR downward scanning – shows fire with respect to topography
 - IR Video cam: look through smoke to find fire clearly.
Data to Drive Application (cont.)

◆ What is the fuel?

- Geographic Information System (GIS) fuel characterization data to specify spatial distribution of fuel.
- Landsat Thematic Mapper (TM) bands -> NDVI (Normalized Difference Vegetation Index) - related to the quantity of active green biomass.
- AIMR - already used for fire mapping. Testing use as a biomass mapper: difference in vertical and horizontal polarizations gives emissivity, vegetation geometry and biomass.
What is the terrain like in that area? What small-scale features are there?

- New topography sets give world topography at 30 arcsec (~1 km), US at 3 arcsec (~100 m).
- Better local sources might be available.

What are the changing weather conditions?

- Large-scale data (current analyses or forecasts) used for initial conditions and for updating boundary conditions.
How a DDDAS Might Work (Research Mode)

- Use simulations: first use all available data for past (and eventually current) experimental fires to direct collection at crucial times and places.
- Attempt to prove that the prediction of large fire behavior can be far more effective than the traditional method of tracking and intuition.
How a DDDAS Might Work
(Operational Mode)

◆ Human or a sensor (possibly on a satellite) determines a fire has started near locality X.
◆ Need to determine severity and possible expansion.
◆ Produce a 48 hour prediction and post it on a public, known web site.
 – While running model at large-scale over a region…
 – Use latest satellite data (or dispatch reconn aircraft with scanners and/or Thermacam) to locate fire boundary.
◆ Determine communication methods for firefighters.
How a DDDAS Might Work (Operational Mode; cont.)

🔹 Have application
 - Seek out fuel classification data and recent greenness data.
 - Collect recent large-scale data (analyses and forecast) for atmosphere-fire model initial and boundary conditions.
 - Initialize and spawn smaller-scale domains, telescoping down to the fire area.
 - Ignite a fire in the model at observed location.
 - Simulate the next Y hours of fire behavior.
 - Dispatch forecast to Web site.
Leaky Underground Storage Tanks

Need to develop monitoring and clean up methods
Bioremediation Strategies

INJECTION

MACROSCALE

MESOSCALE

MICROSCALE

RECOVERY

FLOW

GROWTH MECHANISMS
- Attachment
- Detachment
- Reproduction
- Adsorption
- Desorption
- Filtration
- Interaction

INPUT
- Substrate
- Suspended Cells
- Oxygen

MECHANISMS
- Attachment
- Detachment
- Reproduction
- Adsorption
- Desorption
- Filtration
- Interaction
Savannah River Site

- Difficult topography
- Highly Heterogeneous Soils
- Saturated and Unsaturated Flows
- Reactions with disparate time scale
- Transient/Mixed Boundary Conditions
Saturated/Unsaturated GCT 1.2 Simulation of the Pressure Field beneath the Old Burial Ground at the Savannah River Site
Need for Simulation

- **Develop Better Understanding of Nonlinear Behavior**
 - Computational Laboratory ↔ Experiments
 - Understand Sensitivities of Parameters
 - Isolate Phenomena then Combine
- **Scale-Up Information and Understanding**
 - Microscale → Laboratory → Field
- **Obtain Bounding Calculations**
- **Develop Predictive Capabilities**
 - Optimization and Control
Modeling Process

- PHYSICAL PROCESS
- PHYSICAL MODELLING
- MATHEMATICAL MODELLING
- OUTPUT VISUALIZATION
- DISCRETE MODEL
- NUMERICAL MODEL
Identification (Inverse) Problem

- **Determine Suitable Mathematical Model**
- **Estimate Parameters Within Mathematical Model**
Large Scale Interactive Applications on Remote Supercomputers

- Model Development and Formulation
- Coupled Codes with Complex Boundary Conditions
- Numerical Discretization and Parallel Algorithm Development
- MPP Code Development
- Field Testing and Production Runs
- User Environments and Visualization Tools

Need for Interactive tracking and steering and possibly elimination of Human in the Loop
Remote Graphics Workstation
Graphics Pre-Processing

- 3D grid creation and editing
- Material properties
- Initial conditions
- Time dependent boundary conditions
- Multiple views
Graphics Post-Processing

- Multiple vector/scalar fields
- Time animation
- Multiple slices/Iso-surfaces
- Stereo rendering, lighting models
- Overlay images for orientation
- Volume rendering

Hierarchical Representations
Dynamic Data-Driven Application Systems

Context:

Dynamic → Immediacy, Urgency, Time-Dependency
Data-Driven → Feedback loop between applications, algorithms, and data (measured and computed)
Algorithms → (focused context) differential-algebraic equations simulation

Assumptions:

Need time-critical, adaptive, robust algorithms
Adaptive Dynamic Algorithms

- Optimization/ Inverse Problems
- Incorporate Uncertainty
- Data Assimilation (interpolation)
 - Feedback for experimental design
 - Global influence of perturbations
- Sensor embedded algorithms
- Algorithm automatically restarts as new data arrives
 - Pipelining, systemic computation
 - Warm-started algorithms
Adaptive Dynamic Algorithms (cont.)

- Multiresolution capabilities
 - down-scaling / up-scaling
 - model reduction
- Quick, interactive visualization
- Data Mining / Analysis
 - on input as well as output
- Adaptive gridding
- Parallel Algorithms
Issues of Perturbations from On-Line Data Inputs

◆ Solve:

\[F(x + \Delta x(t)) = 0 \leftrightarrow \text{Choice of new approximation for } x \]

– Do not need a precise solve of equation at each step
 ◆ Incomplete solves of a sequence of related models
 ◆ Effects of perturbations (either data or model)
 ◆ Convergence questions?
– Premium on quick approximate direction choices
 ◆ Lower-rank updates
 ◆ Continuation methods
– Interchanges between algorithms and simulations
◆ Fault-tolerant algorithms
Incorporating Statistical Errors

- Are data perturbations within statistical tolerance?
- Sensitivity analysis
- Filters based upon sensitivity analysis
- Data assimilation
- Bayesian methods
- Monte-Carlo methods
- Outliers (data cleaning)
- Error bars for uncertainty in the data

Difficult for coupled, non-linear systems
Knowledge Based Systems

- Intelligent Interfaces
 - Intuitive (no manuals needed)
 - Platform Independent
 - Hidden Algorithmic Details
 - Advanced Graphical Object Representation
 - Visualization

- Multiple Scales
 - Knowledge detail
 - Adaptive
System Support

- Parallel/Distributed Platforms (including I/O)
- Embedded systems (e.g., programmable logical arrays)
- Quality of Service
 - Fault tolerant computational environment
 - Fault tolerant networking
 - Data vouching
- Prioritization of resources based upon time criticality
 - Resource Brokerage (e.g., National Security)