Bluetooth

- A cable replacement technology
- 1 Mb/s symbol rate
- Range 10+ meters
- Single chip radio + baseband
 - at low power & low price point ($5)

Why not use Wireless LANs?
- power
- cost

802.11

- Replacement for Ethernet
- Supported data rates
 - Current: 11, 5.5, 2, 1 Mbps
 - Future: 20+ Mbps in 2.4 GHz and up to 54 Mbps in 5.7 GHz band
- Range
 - Indoor 20 - 25 meters
 - Outdoor: 50 – 100 meters
- Transmit power up to 100 mW
- Cost:
 - Chipsets $ 35 – 50
 - AP $200 - $1000
 - PCMCIA cards $100 - $150
Emerging Landscape

802.11

- New developments are blurring the distinction
- 802.11b for PDAs
- Bluetooth for LAN access

Bluetooth

- Designed for cable replacement

- Which option is technically superior?
- What market forces are at play?
- What can be said about the future?

Questions I hope to answer

- What are the key design differences between Bluetooth and 802.11?
 - At PHY, MAC, and System level
- How do Bluetooth and 802.11 compare?
 - Cost, Range of communication, performance
- Why is Bluetooth supposed to be low cost and low power? Can 802.11 achieve the same price and performance target?
- Is Bluetooth more secure than 802.11?
- Reality Vs. hype
- Can the two systems co-exist?
Tutorial Overview

2:00 – 3:00 pm Introduction, Bluetooth applications, basic radio concepts, Bluetooth RF
3:00 - 3:45 pm Bluetooth Baseband
3:45 - 4:15 pm LMP, Security, Scatternets
4:15 - 4:30 pm *Break*
4:30 - 5:30 pm 802.11 specifications overview, PHY & MAC
5:30 - 6:00 pm Bluetooth & 802.11 comparison, Conclusion

New Applications
Synchronization

User benefits
- Automatic synchronization of calendars, address books, business cards
- Push button synchronization
- Proximity operation

Cordless Headset

User benefits
- Multiple device access
- Cordless phone benefits
- Hands free operation
Usage scenarios examples

- Data Access Points
- Synchronization
- Headset
- Conference Table
- Cordless Computer
- Business Card Exchange
- Instant Postcard
- Computer Speakerphone

Bluetooth Specifications
Bluetooth Specifications

- A hardware/software/protocol description
- An application framework

Interoperability & Profiles

- Represents default solution for a usage model
- Vertical slice through the protocol stack
- Basis for interoperability and logo requirements
- Each Bluetooth device supports one or more profiles

Single chip with RS-232, USB, or PC card interface
EM Spectrum

Propagation characteristics are different in each frequency band

<table>
<thead>
<tr>
<th>LF</th>
<th>MF</th>
<th>HF</th>
<th>VHF</th>
<th>UHF</th>
<th>SHF</th>
<th>EHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>30kHz</td>
<td>300kHz</td>
<td>3MHz</td>
<td>30MHz</td>
<td>300MHz</td>
<td>3GHz</td>
<td>30GHz</td>
</tr>
<tr>
<td>10km</td>
<td>1km</td>
<td>100m</td>
<td>10m</td>
<td>1m</td>
<td>10cm</td>
<td>1cm</td>
</tr>
</tbody>
</table>

ν (frequency) = c / λ (wavelength)

ν = 1 kHz, 1 MHz, 1 GHz, 1 THz, 1 PHz, 1 EHz

λ = 30kHz, 300kHz, 3MHz, 30MHz, 300MHz, 3GHz, 30GHz, 300GHz
Unlicensed Radio Spectrum

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Wavelength</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>902 Mhz - 928 Mhz</td>
<td>33 cm</td>
<td>cordless phones, baby monitors, Wireless LANs</td>
</tr>
<tr>
<td>2.4 Ghz - 2.4835 Ghz</td>
<td>12 cm</td>
<td>802.11, Bluetooth</td>
</tr>
<tr>
<td>5.725 Ghz - 5.785 Ghz</td>
<td>5 cm</td>
<td>Microwave oven, unused</td>
</tr>
</tbody>
</table>

Bluetooth radio link

- Frequency hopping spread spectrum
 - 2.402 GHz + k MHz, k=0, ..., 78
 - 1,600 hops per second
- GFSK modulation
 - 1 Mb/s symbol rate
- Transmit power
 - 0 dbm (up to 20 dbm with power control)
Design considerations

- High bandwidth
- Conserve battery power
- Cost < $10

Bluetooth Radio

- Low Cost
 - Single chip radio (minimize external components)
 - Today’s technology
 - Time division duplex

- Low Power
 - Standby modes: Sniff, Hold, Park
 - Low voltage RF
Receiver sensitivity & range of comm.

- **BT (Bluetooth):**
 - Receiver sensitivity: 1 mW
 - Range: 30 mW
- **802.11:**
 - Receiver sensitivity: 1 mW
 - Range: 100 mW

- **C/I > 21 dB**

Radio: cost, power, range tradeoff

- Diagram showing hexagonal patterns indicative of signal coverage and power distribution.
Review of basic concepts

Understanding wireless communication

- How does signal propagate?
- How much attenuation take place?
- How does signal look like at the receiver?
Radio Propagation

Three basic propagation mechanisms

- **Reflection**
 \[\lambda << D \]

- **Diffraction**
 \[\lambda \approx D \]

- **Scattering**
 \[\lambda >> D \]

- At 2.4 Ghz, leaves, lamp-posts can cause scattering

dB (relative measure)

- $100B \quad 10^{11}$
 \[10,000 \text{ times} \]
 \[40 \text{ dB} \]

- $10M \quad 10^{7}$
 \[1,000 \text{ times} \]
 \[30 \text{ dB} \]

- $10K \quad 10^{4}$
 \[10,000 \text{ times} \]
 \[100B \quad 10^{11} \]

- Net worth
- $dB = 10 \log (\text{times})$

-\[10,000 \times 1,000 \text{ times} \]
 \[= 10,000,000 \text{ times} \]

-\[40 \text{ dB} + 30 \text{ dB} \]
 \[= 70 \text{ dB} \]

Path loss in dB

\[dB = 10 \log \left(\frac{P_1}{P_2} \right) \]

Path loss from source to d2 = 70dB

dBm (absolute measure of power)

\[dBm = 10 \log \left(\frac{P_1}{1mW} \right) \]

+10,000 times

-1,000 times

= 0 dBm

= -30 dBm
Radio propagation: path loss

path loss in 2.4 Ghz band

\[
\begin{align*}
\text{near field} &: \quad r \leq 8m \\
\text{far field} &: \quad r > 8m \\
& \sim r^2 \quad \text{near field} \\
& \sim r^{3.3} \quad \text{far field}
\end{align*}
\]

\[
\begin{align*}
\text{path loss} &= 10 \log \left(\frac{4\pi r^2}{\lambda} \right) \quad r \leq 8m \\
&= 58.3 + 10 \log \left(\frac{r^{3.3}}{8} \right) \quad r > 8m
\end{align*}
\]

Radio Propagation: Fading and multipath

Fading: rapid fluctuation of the amplitude of a radio signal over a short period of time or travel distance

Effects of multipath
- Fading
- Varying doppler shifts on different multipath signals
- Time dispersion (causing inter symbol interference)
Baseband

- **RF**
- **Baseband**
- **Audio**
- **Link Manager**
- **L2CAP**
- **Data**
- **Control**
- **SDP**
- **RFCOMM**
- **IP**
- **Applications**

Bluetooth Physical link

- **Point to point link**
 - master - slave relationship
 - radios can function as masters or slaves

- **Piconet**
 - Master can connect to 7 slaves
 - Each piconet has max capacity (1 Mbps)
 - hopping pattern is determined by the master
Connection Setup

- Inquiry - scan protocol
 - to learn about the clock offset and device address of other nodes in proximity

Inquiry on time axis

```
Slave1  f1  f2
Master
Slave2
```

Inquiry hopping sequence
Piconet formation

- Page - scan protocol
 - to establish links with nodes in proximity

![Diagram of piconet formation]

Addressing

- Bluetooth device address (BD_ADDR)
 - 48 bit IEEE MAC address

- Active Member address (AM_ADDR)
 - 3 bits active slave address
 - all zero broadcast address

- Parked Member address (PM_ADDR)
 - 8 bit parked slave address
Piconet channel

FH/TDD

\[f_1 \quad f_2 \quad f_3 \quad f_4 \quad f_5 \quad f_6 \]

\[m \quad s_1 \quad s_2 \]

625 µsec

1600 hops/sec

Multi slot packets

FH/TDD

\[f_1 \quad f_4 \quad f_5 \quad f_6 \]

\[m \quad s_1 \quad s_2 \]

625 µsec

Data rate depends on type of packet
Physical Link Types

- **Synchronous Connection Oriented (SCO) Link**
 - slot reservation at fixed intervals
- **Asynchronous Connection-less (ACL) Link**
 - Polling access method

![Diagram showing SCO and ACL links]

Packet Types

- **Control packets**
 - ID*
 - Null
 - Poll
 - FHS
 - DM1

- **Data/voice packets**
 - Voice
 - HV1
 - HV2
 - HV3
 - Data
 - DM1
 - DM2
 - DM3
 - DM5
 - DH1
 - DH3
 - DH5

![Diagram showing packet types]
Packet Format

- 72 bits
- 54 bits
- 0 - 2744 bits

Access code | Header | Payload

Voice

No CRC
No retries
FEC (optional)

ARQ
FEC (optional)

625 µs
master
slave

Access Code

- 72 bits

Access code | Header | Payload

Purpose
- Synchronization
- DC offset compensation
- Identification
- Signaling

Types
- Channel Access Code (CAC)
- Device Access Code (DAC)
- Inquiry Access Code (IAC)
Packet Header

54 bits

Access code | Header | Payload

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressing (3)</td>
</tr>
<tr>
<td>Packet type (4)</td>
</tr>
<tr>
<td>Flow control (1)</td>
</tr>
<tr>
<td>1-bit ARQ (1)</td>
</tr>
<tr>
<td>Sequencing (1)</td>
</tr>
<tr>
<td>HEC (8)</td>
</tr>
</tbody>
</table>

total 18 bits

Encode with 1/3 FEC to get 54 bits

Data Packet Types

Symmetric	Asymmetric
DM1 | 108.8 | 108.8 | 108.8 |
DM3 | 258.1 | 387.2 | 54.4 |
DM5 | 286.7 | 477.8 | 36.3 |

Symmetric	Asymmetric
DH1 | 172.8 | 172.8 | 172.8 |
DH3 | 390.4 | 585.6 | 86.4 |
DH5 | 433.9 | 723.2 | 57.6 |
Inter piconet communication

- Cordless headset
- Mouse
- Cell phone
- Cordless headset
- Cell phone
- Cell phone
- Cordless headset

Scatternet

- Network diagram with overlapping circles and devices connected.
Scatternet, scenario 2

How to schedule presence in two piconets?
Forwarding delay?
Missed traffic?

Baseband: Summary

- TDD, frequency hopping physical layer
- Device inquiry and paging
- Two types of links SCO and ACL links
- Multiple packet types (multiple data rates with and without FEC)
Link Manager Protocol

- Setup and management of Baseband connections
- Piconet Management
- Link Configuration
- Security

Piconet Management

- Attach and detach slaves
- Master-slave switch
- Establishing SCO links
- Handling of low power modes (Sniff, Hold, Park)
Low power mode (hold)

- **Hold offset**
- **Slave**
- **Hold duration**
- **Master**

Low power mode (Sniff)

- **Sniff offset**
- **Sniff duration**
- **Slave**
- **Sniff period**
- **Master**
 - Traffic reduced to periodic sniff slots
Low power mode (Park)

- Power saving + keep more than 7 slaves in a piconet
- Give up active member address, yet maintain synchronization
- Communication via broadcast LMP messages

Link Configuration

- Quality of service
 - Polling interval
 - Broadcast repetition
- Power control
- Packet type negotiation
- Multi-slot packets
Connection establishment & Security

- **Goals**
 - Authenticated access
 - Only accept connections from trusted devices
 - Privacy of communication
 - Prevent eavesdropping

- **Constraints**
 - Processing and memory limitations
 - $10 headsets, joysticks
 - Cannot rely on PKI
 - Simple user experience

Authentication

- Authentication is based on link key (128 bit shared secret between two devices)
- How can link keys be distributed securely?
Pairing (key distribution)

- Pairing is a process of establishing a trusted secret channel between two devices (construction of initialization key K_{init}).
- K_{init} is then used to distribute unit keys or combination keys.

```
PIN + Claimant address
Random number
Kinit
Verifier
```

```
PIN + Claimant address
Random number
Kinit
Claimant
```

Encryption

- Encryption Key (8 – 128 bits)
- Derived from the Link key.

```
Encryption mode
Key size
Start encryption
Encrypted traffic
Stop encryption
```

```
Encryption mode
Key size
Start encryption
Encrypted traffic
Stop encryption
```

P. Bhagwat 57

P. Bhagwat 58
Link Manager Protocol Summary

- Piconet management
- Link configuration
 - Low power modes
 - QoS
 - Packet type selection
- Security: authentication and encryption

L2CAP

L2CAP provides
- Protocol multiplexing
- Segmentation and Re-assembly
- Quality of service negotiation
Bluetooth Service Discovery Protocol

- **Applications**
- **SDP**
- **IP**
- **RFCOMM**
- **Data**
- **L2CAP**
- **Link Manager**
- **Baseband**
- **RF**

Serial Port Emulation using RFCOMM

- **Applications**
- **SDP**
- **IP**
- **RFCOMM**
- **Data**
- **L2CAP**
- **Link Manager**
- **Baseband**
- **RF**

Serial Port emulation on top of a packet oriented link
- Similar to HDLC
- For supporting legacy apps
LAN access point profile

Why use PPP?
- Security
 - Authentication
 - Access control
- Efficiency
 - header and data compression
 - Auto-configuration
 - Lower barrier for deployment

IP over Bluetooth v 1.1: BNEP

Bluetooth Network Encapsulation Protocol (BNEP) provides emulation of Ethernet over L2CAP
- BNEP defines
 - a frame format which includes IEEE 48-bit MAC addresses
 - A method for encapsulating BNEP frames using L2CAP
 - Option to compress header fields to conserve space
 - Control messages to activate filtering of messages at Access Point
802.11 specifications overview

802.11 Specifications

- Specification of layers below LLC
- Associated management/control interfaces
802.11 Specifications

![Diagram of 802.11 Specifications]

- **MAC sublayer**
 - MAC framing (clause 7)
 - MAC operation (clause 9)
 - WEP (clause 8)
 - State Machines (Annex C)

- **MAC Management**
 - Protocols (clause 11)
 - State Machines (Annex C)
 - MIBs (Annex D)

- **PHY Layer**
 - FH (clause 14)
 - DSSS (clause 15)
 - Infrared (clause 16)
 - OFDM (clause 17)
 - High rate DSSS (clause 18)

- **PHY Management**
 - MIBs (Annex D)

802.11 Specifications

![Diagram of 802.11 Specifications]

- **MAC sublayer**
 - MAC Service Interface (clause 6)

- **MAC Management**
 - MAC Mgmt Service Interface (clause 10)

- **PHY Layer**
 - PHY Service Interface (clause 12)

- **PHY Management**
 - PHY Mgmt Service Interface (clause 13)
802.11 System Architecture

Basic Service Set (BSS): a set of stations which communicate with one another

- Independent Basic Service Set (IBSS)
 - only direct communication possible
 - no relay function
- Infrastructure Basic Service Set (BSS)
 - AP provides
 - connection to wired network
 - relay function
 - stations not allowed to communicate directly

Extended Service Set

ESS: a set of BSSs interconnected by a distribution system (DS)

- ESS and all of its stations appear to be a single MAC layer
- AP communicate among themselves to forward traffic
- Station mobility within an ESS is invisible to the higher layers
802.11 PHY

- **Applications**
 - LLC
 - WEP
 - MAC Mgmt
 - PHY
 - MIB

- **MAC**
 - PHY
 - DSSS
 - FH
 - IR
 - OFDM

- **MAC Protocol Data Unit (MPDU)**
 - Physical Layer Convergence Procedure (PLCP) header

- **PHY**
 - High rate (DSSS) PHY
 - 11, 5.5 Mbps
 - 802.11b
 - 20+ Mbps
 - 802.11g

 - Frequency Hopping Spread Spectrum (FHSS) PHY
 - 1, 2 Mbps

 - Direct Sequence Spread Spectrum (DSSS) PHY
 - 11, 5.5 Mbps
 - 802.11b

 - Higher rate (DSSS) PHY
 - 20+ Mbps

 - Infrared (IR) PHY
 - 1.2 Mbps

 - Orthogonal Frequency Division Multiplexing (OFDM) PHY
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbps
 - 802.11a

- **PLCP header**

Sender

Receiver

- **MAC Protocol Data Unit (MPDU)**

- **PMD layer**

- **PMD layer**

- **2.4 GHz**

- **5.7 GHz**
DSSS PHY

- Baseband signal is spread using Barker word (10 dB processing gain)
- Spread signal occupies approximately 22 Mhz bandwidth
- Receiver recovers the signal by applying the same Barker word
- DSSS provides good immunity against narrowband interferer
- CDMA (multiple access) capability is not possible

DSSS PHY

- Direct sequence spread spectrum
 - Each channel is 22 Mhz wide
- Symbol rate
 - 1 Mb/s with DBPSK modulation
 - 2 Mbps with DQPSK modulation
 - 11, 5.5 Mb/ps with CCK modulation
- Max transmit power
 - 100 Mw
802.11 MAC

- Carrier sensing (CSMA)
 - Rules:
 - carrier ==> do not transmit
 - no carrier ==> OK to transmit
 - But the above rules do not always apply to wireless.
 - Solution: RTS/CTS

- Collision detection (CD)
 - Does not work over wireless
 - Therefore, use collision avoidance (CA)
 - random backoff
 - priority ack protocol
802.11 MAC protocol: CSMA/CA

- Use CSMA with collision Avoidance
 - Based on carrier sense function in PHY called Clear Channel Assessment (CCA)
- Reduce collision probability where mostly needed
- Efficient backoff algorithm stable at high loads
- Possible to implement different fixed priority levels

802.11 MAC : Contention window

For DSSS PHY
Slot time = 20 µs

P. Bhagwat
CSMA/CA + ACK protocol

- Defer access based on carrier sense
- Direct access when medium is sensed free longer than DIFS
- Receiver of directed frames to return an ACK immediately when CRC is correct
 - When no ACK received then retransmit frame after a random backoff

Problems with carrier sensing

Exposed terminal problem

Z is transmitting to W

Y will not transmit to X even though it cannot interfere

Presence of carrier \Rightarrow hold off transmission
Problems with carrier sensing

Hidden terminal problem

W finds that medium is free and it transmits a packet to Z

\[
\text{no carrier } \Rightarrow \text{ OK to transmit}
\]

Solving Hidden Node problem with RTS/CTS

- listen RTS
- wait long enough for the requested station to respond with CTS
- if (timeout) then ready to transmit

listen RTS \(\Rightarrow\) transmitter is close to me
listen CTS \(\Rightarrow\) receiver is close to me

Note: RTS/CTS does not solve exposed terminal problem. In the example above, X can send RTS, but CTS from the responder will collide with Y's data.
MAC Management: Beacon & Probes

- A station can first scan the network and discover the presence of BSS in a given area
- Scanning
 - Passive
 - listen for beacons on each channel
 - Active
 - send probe and wait for response on each channel
- Beacon and probe response packets contain:
 - AP timing information,
 - Beacon period,
 - AP capability information,
 - SSID,
 - PHY parameter set,
 - Traffic Indication Map (TIM)
 - SSID (Service set identifier)
- Identifies an ESS or IBSS
MAC Mgmt : Authentication & Association

With respect to an access point, a station can be in one of the following three states:
- Unauthenticated/Unassociated
- Authenticated/Unassociated
- Authenticated/Associated

A station can pre-authenticate with several access points in advance to speedup roaming.

A station can be associated with only one AP at a given time.

Association state is used by the distribution system to figure out the current location of the station within the ESS.

MAC Mgmt : Power Management

- A station which is synchronized with an AP clock can wake up periodically to listen for beacons.
- Beacon packets contain Traffic Indication Map (TIM), a bit vector, which indicates whether a station has a packet buffered at AP.
- The station sends a PS-Poll message to the AP asking the AP to release buffered packets for the station.
- All broadcast and multicast frames are transmitted following beacons with DTIM flag set.

P. Bhagwat
802.11 Frame Format

<table>
<thead>
<tr>
<th>bytes</th>
<th>2</th>
<th>2</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>2</th>
<th>6</th>
<th>0-2312</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame control</td>
<td>Duration ID</td>
<td>Addr 1 Addr 2</td>
<td>Addr 3</td>
<td>Seq ctrl</td>
<td>Addr 4</td>
<td>Frame body</td>
<td>CRC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

802.11 MAC header (30 bytes)

- 802.11 frame has more fields than other media type frames
- 30 bytes frame header appears too long!
- All fields are not present in all frames

Frame Control Field

<table>
<thead>
<tr>
<th>bytes</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame control</td>
<td>Prot Ver</td>
<td>Type</td>
<td>Subtype</td>
<td>To DS</td>
<td>From DS</td>
<td>More Frag</td>
<td>Retry</td>
<td>Pwr Mgmt</td>
<td>More Data</td>
<td>WEP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bits</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mgmt</td>
<td></td>
<td>Control</td>
<td>Data</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

- Association req
- Association resp
- Re-association req
- Re-association resp
- Probe req
- Probe resp
- Beacon
- Announcement Traffic
 - Indication Request (ATIM)
- Disassociation
- Authentication
- De-authentication

Data
- Power save (PS)-poll
- Request to Send (RTS)
- Clear to send (CTS)
- Acknowledgement (ACK)
- Contention free (CF)-END
- CF-END + CF-ACK
- Data
- Data + CF-ACK
- Data + CF-Poll
- Data + CF-ACK + CF-Poll
- Null
- CF-ACK
- CF-Poll
- CF-ACK + CF-Poll

P. Bhagwat 87

P. Bhagwat 88
802.11 Privacy and Authentication

Wired Equivalent Privacy (WEP)

- Design Objectives
 - Confidentiality
 - Prevent others from eavesdropping traffic
 - Data Integrity
 - Prevent others from modifying traffic
 - Access Control
 - Prevent unauthorized network access

Provide same level of security as a physical wire
802.11 security design goals

<table>
<thead>
<tr>
<th>Authentication</th>
<th>Access Control</th>
<th>Accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protect identity theft</td>
<td>Prevent masquerading, modification, and unauthorized access</td>
<td>Accurate usage monitoring</td>
</tr>
<tr>
<td>No red tape</td>
<td>No queues</td>
<td>No fraud</td>
</tr>
</tbody>
</table>

- **User concerns**
 - Anonymity
 - Confidentiality

- **Equipment vendor’s concerns**
 - Scalability
 - Efficiency
 - Low cost

- **Service Provider’s concerns**
 - Audit trails

Unfortunately, WEP fails on all three counts.

WEP design: adding privacy

Sender

- $K \rightarrow \text{Random key stream}$
- \oplus Plain text

Receiver

- $K \rightarrow \text{Random key stream}$
- \oplus Cipher text, IV

Plain text

- XOR cipher text with the same random key stream to recovers the plain text
- An eavesdropper cannot compute the plain text by inspecting the cipher text
- New key streams are refreshed periodically
 - Use initialization vector (IV) in conjunction with shared key
 - Transmit IV in clear text along with the cipher text

P. Bhagwat 91

P. Bhagwat 92
WEP design: adding data integrity

The problem is that cipher text can be modified without any knowledge of the key:
- Just flip some bits in the cipher text
- After decrypting the cipher text, receiver will not know that the plain text has been corrupted

Solution:
- Computer 32 bit CRC of plain text and append it with plain text before generating the cipher text
- If cipher text is modified, CRC check will fail and the frame will be discarded

WEP design: adding Authentication

Summary:
- Shared secret keys are distributed out of band
- AP sends a challenge to the station
- Station responds with a WEP encrypted packet
- AP verifies station’s response
Where is the problem?

Problem #1: improper use of stream ciphers

- Two messages should never be encrypted using the same key streams.
- Suppose P1 and P2 are encrypted using the same key stream:
 - C1 = P1 XOR b
 - C2 = P2 XOR b
- Adversary can compute C1 + C2 = P1 + b + P2 + b = P1 + P2
- Usually XOR of two plain texts is enough to recover both plain texts.
- Moreover, if one plain text is known other can be computed trivially.

Key stream reuse in WEP

- Key stream is a function of secret key and initialization vector.
- IV vector is only 24 bits long; since there are only 16 million combinations, eventually key streams will be recycled.
- Since IV vector is transmitted in clear text, key stream reuse is easy to detect by passive eavesdropping.
- An eavesdropper can record all instances of key stream reuse:
 - Require 1K * 16 million = 16 GB space.
- Worse yet, most 802.11 cards when reset start counting IV from 0:
 - So, key streams are recycled more frequently.
Possible attack: Message decryption

- Inject known plain text in the network by e-mail spamming, or ping
- Passively record encrypted packets
- By computing XOR of known plain text with encrypted packet, it is possible to compute the RC4 key stream that was used to encrypt the known plain text
- Build a dictionary of key streams
 - Map each value to IV to its associated key stream
- Once this dictionary is built, any packet can be decrypted
 - Record the packet
 - Inspect the IV
 - Pull out the key stream associated with the observed IV from the dictionary
 - XOR the key stream with the encrypted packet and obtain the plain text
- The same dictionary can also be used to inject any message in the network

Possible attack: Breaking Authentication

Station
\[\begin{array}{c}
\text{K} \\
\text{Distributed out of band}
\end{array} \]

AP

\[\begin{array}{c}
\text{K} \\
\text{shared key}
\end{array} \]

- The previous attack relies on finding a known plain text and its encrypted version to compute the key stream
- By snooping 802.11 Authentication protocol, this pair can be collected for free
- Using this key stream, an adversary station can respond to any new challenge from the AP!
More problems

Problem #2: improper use of CRC

- Integrity check value (ICV) is good at detecting random bit errors, not intentional modifications to the packet
- An adversary can modify an encrypted packet such that those changes cannot be detected by CRC test at the receiver
- This is possible because encryption function (XOR) as well as CRC are both linear operations
 - \((M, c(M)) \text{ XOR } (R, c(R)) = (M \text{ XOR } R, c(M \text{ XOR } R))\)
- The modified message after decryption will pass the CRC test!

WEP current status

- Note that attacks don’t try to deduce the key. Knowledge of key stream is enough to launch all sorts of attacks
- Possible Solutions
 - Long IV’s which never repeat for the lifetime of the shared secret
 - Replace CRC by a strong message authentication code which depends on the key and IV
- WEP2 addresses the first problem, but not the other
- A recent paper by Fluhrer, Mantin, and Shamir has discovered many inherent weaknesses in RC4 stream cipher. They have shown that RC4 is completely insecure when used used in a way prescribed by WEP, in which a fixed secret key is concatenated with known IV modifiers.
- 802.11i working group is now looking into using AES instead of WEP. AES will fix both problems of WEP
 - AES is a block cipher
 - AES includes a strong keyed message authentication code
- Bill Arbaugh’s web-page (http://www.cs.umd.edu/~waa/wireless.html) is good source of info on this topic.
802.11 current status

- 802.11f: Inter Access Point Protocol
- 802.11e: QoS enhancements

802.11b: 5.11 Mbps
802.11g: 20+ Mbps
802.11a: 6, 9, 12, 18, 24, 36, 48, 54 Mbps

Bluetooth Vs. 802.11

- Bluetooth is a (top down) market driven consortium
 - Business interests take precedence over technical considerations
 - Designed primarily for voice; data an afterthought
- 802.11 is a (bottom up) open standard effort
 - Good piece of engineering except for WEP
 - Designed primarily for data; voice an afterthought
Bluetooth Vs. 802.11: Radio issues

Radio is typically the most costly component in a wireless network interface

- Bluetooth radio is (will be) inexpensive because
 - It is a frequency hopper (which is relatively easy to build)
 - Its sensitivity is poor
 - It uses very simple modulation technique (GFSK) (requires less silicon)
 - It is possible to package both baseband and radio in a single chip
 - Potentially market for Bluetooth radios is (will be?) large if every mobile phone vendor decides to embed Bluetooth in their products

- 802.11 DSSS radios are costly today, but
 - if market for 802.11 continues to grow, their price may become competitive to Bluetooth
 - DSSS radios are superior to Bluetooth in terms of range, speed, BER performance
 - Due to better range, it may be cheaper to cover an area with 802.11
 - 802.11 can be operated at 0 dBm to reduce power consumption

802.11 Market drivers: Business Users

Trend #1: Need for wireless access inside office building

Trend #2: Growth of Wireless LAN access in hotels, airports, etc.

Trend #3: Replacement of wired phones with VOIP over wireless phones

Trend #4: Dual mode phones

Traveling

Inside office
Bluetooth Value chain

- **Stack providers**
- **Integrators**
- **Software vendors**
- **Silicon**
- **Radio**

Conspicuously missing

Bluetooth Vs. 802.11: Market issues

<table>
<thead>
<tr>
<th></th>
<th>Bluetooth</th>
<th>802.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Potential for low cost implementation exists but the market size will eventually determine the price point</td>
<td>Technology advances and market growth can reduce cost, even if tight single integration is not achieved in the near term</td>
</tr>
<tr>
<td>Market size</td>
<td>Potentially huge if every consumer electronic device is Bluetooth enabled</td>
<td>It is unlikely that 802.11 will penetrate the consumer electronic device market in the near future</td>
</tr>
<tr>
<td>Form factor</td>
<td>Smaller due to single chip integration</td>
<td>Multi chip solution</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Lower due to low power transmitter and tight integration</td>
<td>Will reduce in the future</td>
</tr>
<tr>
<td>Interoperability</td>
<td>The biggest problem of Bluetooth at present</td>
<td>802.11 is a more mature technology</td>
</tr>
<tr>
<td>Applications</td>
<td>Still looking for a killer app.</td>
<td>TCP/IP</td>
</tr>
</tbody>
</table>
Concluding remarks

- Will Bluetooth survive?
 - Bluetooth is ideal for cable replacement
 - Initial applications of Bluetooth will exploit its point-to-point or point-to-multipoint connectivity feature
 - Attempts to turn it into a LAN technology will face a tough competition from 802.11
 - Scatternet is still a difficult technical problem
 - Higher chance of success in Europe and Asia

- 802.11
 - Will continue to grow in
 - Public spaces, home, industry vertical, and enterprise market
 - 802.11 will provide a viable alternative to 3G in public places

Thank you