An Application-Oriented Communication System for Clusters of Workstations

Prof. Dr. Antônio Augusto Fröhlich
Thiago Robert dos Santos

snow@lisha.ufsc.br
http://snow.lisha.ufsc.br/
Outline

- Motivation
- The SNOW Project
- Application-Oriented System Design
- EPOS
 - Overview
 - Communication System
 - Performance
- Conclusions
Motivation

- Parallel computing performance revisited in 2000
 - a cluster of commodity workstations
 - running on commodity and custom run-time systems
Commodity Hardware, Custom Run-time System

- Commodity X Custom Hardware
 - Convergence

- Commodity X Custom Run-time Systems
 - Commodity
 - multi-{user, tasks,...}, interactive, web-aware
 - more distributed than parallel
 - Custom
 - high performance and low latency
 - specially designed to support parallel computing

- Clusters do need dedicated RTS in order to be as efficient as traditional supercomputers
SNOW Goals

- Developing an application-oriented parallel programming environment for clusters of workstations
 - run-time support system (EPOS)
 - programming language (DPC++)
 - management tools (CODINE)
- Bringing cluster performance closer to traditional supercomputers
- Validated by selected parallel applications
 - computational biology
 - complex industrial processes
Overview of a SNOW Cluster

- Server
 - fs
 - EPOS
 - Linux
 - ix86 FE

- Work-node
 - Application
 - MPICH DPC++
 - EPOS
 - Linux
 - ix86 Myrinet FE

- Work-node
 - Application
 - MPI DPC++
 - EPOS
 - ix86 Myrinet FE

Service network
High-speed network
Application-Oriented System Design
EPOS: SNOW's RTS

- application program
- inflated interfaces
- framework

- analyzer
- configurator
- generator

- info
- aspects
- adapters
- components

- system instance
Myrinet NIC

- LANai processor
 - Programmable NIC
- Parallel DMA engines
 - Host
 - Network send
 - Network receive
 - Two memory access per clock cycle
- Doorbell mechanism
 - Hardware support for VIA
Communication System (paged address space)

Host (GNU/Linux) -> Data Packets -> Application Address Space

1. Host (GNU/Linux)
2. NIC
3. Copy block (Non-swappable)
4. NIC
5. Host (GNU/Linux)
Communication System (flat address space)
Pipelined Communication System

Host (Epos)

Messages

Frames

Physical Memory
Non-swappable
Flat address space

OS

NIC

Send Ring

Receive Ring

1

2

3

4

Unsolicited Ring

Tx DMA Requests

Tx FIFO Queue

NIC

Rx FIFO Queue

Rx DMA Requests

Host (Epos)
Light-Weight Communication Protocols

- Infrastructure
 - broadcast/multicast
 - reliability
 - flow control
 - QoS
 - protection schemes
 - ...

- Parallel
 - immediate communication
 - barriers
 - collective operations
 - ...

Scalable Network of Workstations

June 2004
http://snow.lisha.ufsc.br
Communication System Performance

![Graph showing latency comparison between GM and Baseline]

- **Latency (microseconds)**
- **Frame size (bytes)**

The graph compares the latency of the GM network to the Baseline network for different frame sizes in bytes.
Conclusions

- SNOW is operational as regards
 - Run-time support system (EPOS)
 - MPI on EPOS
 - DPC++

- SNOW is able to support high-performance applications
 - RTS < 10 KB
 - Thread scheduling < 375 ns
 - Dynamic memory allocation < 100 ns
 - Round-trip latency < 5 us

- But real applications must confirm it!
 - Molecular biology at LabBioInfo