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• Electrical Power has been a part of Monash 
Electrical Engineering since department was 
established.

• It has been a major contributor to both 
Teaching and Research.

• The focus of activities has changed over the 
years as older technologies have matured and 
new technologies have developed.

• One thing remains certain – electrical power is 
an essential service on which we all depend.
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• From 1960’s to 1980’s, electrical power 
generation, transmission and reticulation 
blossomed in South East Australia

• Transmission System voltages jumped from 
132 kV to 220 kV to 500 kV

• Generator sizes increased from 10’s MW to 500 
MW units

• Many innovative ideas were implemented 
(SWER, SCADA control)

• Research and development in Electrical Power 
was a major growth activity.
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• The major engineering institutions were SECV 
and ECNSW

• Major research institutions were at Monash, 
Sydney, and Newcastle

• The background research into the 500 kV 
transmission system in Victoria was done at 
Monash 

• Major contributions to power system stability 
were made by Monash during the 1970’s
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In the 1980’s, the focus changed:

• Power systems research moved to consider 
economic issues as well as technical matters

• New types of plant appeared, using power 
electronic conversion systems

• Monash incorporated Power Electronics into its 
Electrical Power research and teaching

• Electrical Power became “mature” in the 
community, always available, always reliable



Power 
Electronics 
Group

Centre for 
Electrical Power 

EngineeringPower at Monash
In the 1990’s there were huge changes in the 

electrical power supply industry

• State owned utilities were broken up into small 
competing private companies, in the name of 
“efficiency”

• Economics became the dominant concern

• Companies focused on “what they were good 
at” – selling electricity, serving customers

• Central planning effectively ceased, leaving 
“the market to provide”

• The changes are in still progress!
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Electrical Power at Monash has managed to 
weather this storm for over a decade (well, at 
least we are still here!)

• The Centre for Electrical Power Engineering 
was established in 1991 as a final contribution 
from the SECV 

• 8 academics were employed for over 5 years

• Research activities developed in several areas

• Power Electronics established itself as a major 
international research contributor
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Unfortunately nothing lasts forever!

• Funding from the electrical power generation 
industry has been greatly reduced 

• The focus of the industry is on training and 
management of the existing resources, not 
new developments

• Electrical Power and Energy at Monash must 
find a new focus if it is to continue

• Power Electronics and Industrial Electronics is 
a world wide R&D growth market, so that is 
becoming a major new focus for Monash.
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• Power: turns the lights on

• Electronics: transistor radios

But what is Power Electronics ?

• Power Electronic Systems use electronics to 
control Electrical Energy usage

• Power levels range from milliwatts to 
megawatts

• The common element is a switched energy 
conversion process, smoothed by input and 
output filters
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• Power Electronic converters have existed for 
nearly 40 years.

• Initially based on Silicon Controlled Rectifiers 
(controlled turn-on, uncontrolled turn-off).

• Modern semiconductor devices are: 

• Power MosFET’s, 100’s volts, 10’s amps

• Insulated Gate Bipolar Transistors (IGBT), 
2000+ volts, 500 A

• Insulated Gate Controlled Thyristor (IGCT), 
4000+ volts, 1000’s amps.

• Gate Turn Off Thyristor (GTO), 6000+volts, 
1000’s amps
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Courtesy: Semikron website
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• Basic cell structure is half bridge phase leg
• Generic form uses ideal switches that can block 

block bi-directional volt, conduct bi-directional 
current

• Conventional form uses transistor/diode 
combination that can block uni-directional volt

• Input is voltage stiff, Output is current stiff, 
transfer function is stepdown (buck).
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• Voltage Source Inverter (VSI)
Smooth DC Input Voltage, Switched Input Current 
Switched AC Output Voltage, Smooth Output Current
Bi-directional current and power flow
Step down voltage transfer ratio
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Cascaded Topology
• Isolated DC Supplies 
• Suitable for High Num Levels
• Hybrid - Unequal Supplies

Diode Clamped Topology
• One DC bus 
• Capacitors form Levels
• Voltage Balance restricts 

No. Levels
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• Open Loop Modulation is the processing of 
controlling the actual switching of the 
semiconductor elements

• Closed Loop Regulation is a feedback 
arrangement to control the modulation to 
achieve a controlled variable outcome

• Applications are combinations of modulation and 
regulation processes operating as complete 
working systems

• Analogue controlled systems are common 
historically and still used for simple applications

• Digitally controlled systems are much more 
common and essentially now dominate
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• Power Electronics Group (PEG) at Monash was started in 1995
• Staff comprises: 

• 2 academic faculty
• employed research engineers
• post-graduate students – Masters and PhD.

• PEG undertakes both fundamental research and 
practical commercial developments

• Research activities include: 
• PWM modulation
• Open and Closed Loop control of VSI/CSI
• Active Filters & other Custom Power applications
• Distributed Generation in weak grid systems
• Traction systems
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Advances in Modulation Theory
1970’s: Major steps forward

1980’s: Minor improvements

Since then - refinements, despite 
many hundreds of papers !!!

Finally, consolidation has been 
achieved in the last few years, with 
significant contributions from PEG
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Simplest 
strategy is 
sin-triangle 
PWM
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Analytical Solution is obtained by Double Fourier 
Analysis of the Switched Phase Leg Output 
Waveform, which gives:

( ) ( )
( )

( )
( )

( )
( )∑ ∑∑∑

∞

=

∞

≠
−∞=

∞

=

∞

= 







+
++

+






 +

+






 +

+=
1

0
1 0

0

1 0

000

sin
cos

sin
cos

sin
cos

2 m
n
n ocmn

ocmn

m cm

cm

n on

on

tntmB
tntmA

tmB
tmA

tnB
tnAAtF

ωω
ωω

ω
ω

ω
ω

 

Fundamental 

Baseband 
Harmonics 

Carrier 

Carrier 
Sideband 
Harmonics 

Frequency 

M
ag

ni
tu

de
 

( ) ( ) tytxdxdyeyxFjBAC oc
nymxj

mnmnmn ωω
π

π

π

π

π
===+= ∫ ∫− −

+ ,,,
2

1
2

The solution contains:
• Fundamental component
• Baseband Harmonics
• Carrier Harmonics
• Sideband Harmonics



Power 
Electronics 
Group

Centre for 
Electrical Power 

Engineering
Power Electronics Group

Analytical Solution for one Phase Leg is
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reference waveforms that are displaced in time by 120o.

Power Electronics Group

vb

vc

vab

va

Phase "a" 
Reference

Phase "b" 
Reference

Phase "c" 
Reference Triangular 

Carrier

t

t

+Vdc

-Vdc

+Vdc

-Vdc

+Vdc

-Vdc

-2Vdc

+2Vdc

t

t

t

Phase Legs 
Switching in 
Response to 

PWM 
Comparison

l-l output 
voltage



Power 
Electronics 
Group

Centre for 
Electrical Power 

Engineering
Power Electronics Group

Now the harmonics cancel between the phase legs 
differently, since the reference offset angles are 

different.
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PWM applied to Multilevel converters

• POD/APOD/PD Sine-triangle 
modulation strategies

• Equivalence of Sine-triangle and SV 
modulation

• Reduced common mode PWM 
strategies
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Cascaded Topology
• Isolated DC Supplies 
• Suitable for High Num Levels
• Hybrid - Unequal Supplies

Diode Clamped Topology
• One DC bus 
• Capacitors form Levels
• Voltage Balance restricts 

No. Levels
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Multilevel PWM is more complex to develop analytical 
solutions. However, the results identify a direct match 
between NPC APOD and cascaded inverter modulation.

L-L HarmonicsPhase Leg Harmonics
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This in turn allows a new modulation strategy to be 
developed for Cascaded Inverters, which achieves PD 

type harmonic response.
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• Target Objectives of a modulation system are to 
switch an inverter to achieve an “average” output 
voltage.

• Once this is achieved, the secondary objectives of 
reduced harmonics and minimised losses can be 
considered.

• These objectives are achieved by using the three 
nearest active space vectors to the target reference 
phasor, and placing these vectors centrally in the 
carrier period.

• Carrier-based and SV strategies can achieve identical 
harmonic results provided a suitable offset waveform 
is defined.

• Concepts readily extrapolate to multilevel inverters.
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LINEAR CLOSED LOOP CONTROL
• Conventional Closed Loop Control uses 

Proportional and integral Gain in the forward 
path to minimise error.

• Typical application is current controlled inverter
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This type of system is known to create steady state 
error for AC regulation systems.

Plot of error  verses reference as frequency varies
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• For Three Phase systems, regulation in the 
synchronous d-q frame eliminates steady state error.

• There is no simple single phase equivalent
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• Can get an equivalent response by implementing a 
resonant gain block in the stationary frame.

• Equally applicable to single or three phase systems
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• The notch filter achieved almost infinite gain at the 
target frequency and hence almost zero error
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• The performance of the P+ resonant controller is 
excellent as a current regulator
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NON LINEAR CONTROL
• Non Linear Converter control systems directly 

control the switches from the control algorithm.
• Most common example is hysteresis control.
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• Non Linear Converter control systems directly 
control the switches from the control algorithm.

• Most common example is hysteresis control.

2Ih
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t1

Problems with 
conventional hysteresis 
control are:

• Variable frequency 
switching.

• Sub optimal switching 
pattern for both single 
and three phase.

• Limit cycle hazard.
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• Variable band width switching solves most of 
these problems.
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Variable band hysteresis control
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Linking variable band hysteresis with deadbeat
control improves the performance even further.
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Extending the Power Quality 
Compensation Capabilities of 
Dynamic Voltage Restorers

Michael John Newman

Monash University
Melbourne, Australia
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Proposed additional control system
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• DVR primary value adding objective:

• Sag Compensation

• Other possible value adding objectives:

• Harmonic voltage compensation

• Harmonic isolation

• Fundamental Voltage Regulation

• Reactive Injection (requires large series rating – fine for DVR)

• Real Injection (requires power source – possibly bi-directional)

• Flicker compensation (more temporary energy storage may be required)

• Swell regulation (requires bi-directional supply)

• Ideal design criteria for value adding DVR systems

• Addition should not affect the transient response of the DVR

• The topology should preferably not be altered

• Primary aim is to provide extra value added services to the customer using the 
exact same equipment, with minimal adverse affects
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Supply Voltage: 5th: 5%, 7th:2%

0 4 8 12 16 20 24 28 32 36 40

0 

2000V

Ph
as

e 
V

ol
ta

ge
 (V

) 

Time (msec)

4000V

6000V

8000V

10000V

-2000V

-4000V

-6000V

-8000V

-10000V

1. Steady-state Results: 
Distorted Supply

Load Voltage: 5th: 0.4%, 7th:0.3%
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Test 1 Conditions:
- Test AC Voltage: 10kV l-l rms
- Distorted voltage from programmable supply
- Linear passive load (approx. 2kW)
- DC Bus voltage of 400V
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Supply Voltage: 5th: 5%, 7th:2%
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Test 1 Conditions:
- Test AC Voltage: 10kV l-l rms
- Distorted voltage from programmable supply
- Linear passive load (approx. 2kW)
- DC Bus voltage of 400V
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Supply Voltage: 5th: 5%, 7th:2%, 0.83pu sag
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2. Transient Results:  
Distorted Supply with Sag

Compensated Load Voltage
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Test 2 Conditions:
- Distorted voltage from programmable supply
- Linear passive load (approx. 2kW)
- 0.83p.u. Sag
- DC Bus voltage of 400V
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A Robust Multilevel Hybrid 
Compensation System for 25kV 
Electrified Railway Applications

P. C. Tan, P. C. Loh, D. G. Holmes

Centre of Electrical Power Engineering,
Dept. of Electrical and Computer System Engineering,

Monash University, Australia
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AC Traction System

HV Utility Supply

25kV feeders
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Railway locomotive model
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Typical trackside voltage waveform
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Railway traction system model

Hybrid Compensation System
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Hysteresis current regulation
0.

0
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Output of second 
three-level inverter

t4

t5

B4

LEGEND:  for first three-level inverter;
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Inverter line-line 
output

Output of first 
three-level 
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Cascaded inverter
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Hysteresis current regulation
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Active power filter control

Compensator controller block diagram

Fundamental Voltage Control / Reactive Power Compensation

150Hz Resonant
Filter N3(s)

250Hz Resonant
Filter N5(s)
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++
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Simulation Results After compensation
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Experimental results After compensation
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iLD
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Current Power Electronic Research Projects
• Distributed PE compensation systems for electrical 

grids

• Auxiliary power supplies for high voltage converters

• High performance drive systems

• EPLD implementation of high performance 
modulation

• Low inertia induction motor

• Intrinsically safe switch mode power supplies

• Reduction of EMI for power converter systems



What is the Future of Power Electronics?

Power 
Electronics

Electric
Power

Between 1920 - 1970,
every 1.5 years
the cost of kWh 

dropped 5%.
Since then it is constant.

Micro-
electronics

Moore’s Law:
“Every 1.5 years
the cost of a ‘bit’

drops 50%.”



Standardization in Information Processing

Digital Revolution
Input

Devices Output
Devices

D-to-A
Conv.

D-to-A
Conv.

A-to-D
Conv.

A-to-D
Conv.

Number
Crunching

A-to-D
Conv.

Most of Information Processing has been reduced to 
arithmetic and logic manipulation of binary numbers



Integration in Information Processing

Product Quality, Reliability, and Cost Factors:

Manufacturing

Design
&

Development
Materials

ASIC

• Small 
number 
of 
steps

• Small number 
of different 
materials

• Efficient use of 
materials

• Optimized 
general 
purpose 
design

• Automated 
dedicated 
design

µP

• Batch 
processing

Volume Production

Cost Reduction



Modularization in Power Processing ??

Or Power Electronics Converter 
Design in the Last Century

Digital Controller

Gate Drives

Power Supplies
Sensor Interface
Analog Interface
Digital Interface

Power Stage



Standardization in Power Processing

High Frequency Synthesis  (PWM)

Control Signal

Integration of the Active 
Switching Stages

Switching



Active Switching Stages: Embedded 
Power

 Component Component
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Cross-sectional 
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Solderable Drain 
Electrode



DPS Integration: Power Passives
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Improvements

1. Standard Fabrication techniques:Discrete DC/DC 
Converter • Direct metal deposition;

• Electro-plating;

• Photolithography;

• Wet-etching;

• Laser cutting;

• Reflow soldering;

2. Improved power density, efficiency and 
thermal performance:
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Discrete EMI Filter+ Discrete DPS

Integrated EMI Filter+ Integrated DPS

IECON    
2013

Pin

Pout

The Future
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• Electrical Power at Monash University – a short 
walk through history

• What is this business called Power Electronics ?

• Power Electronics research activities at Monash

• Other Electrical Power Research Activities
The EPRI Project

High Voltage

Renewable Energy

• Summary



Power 
Electronics 
Group

Centre for 
Electrical Power 

EngineeringEPRI Project

EPRI-Monash Work:
Moisture in Transformers

• Started in mid 1990’s to investigate aging 
transformer insulation

• One of the longest running EPRI funded 
projects in the world

• A world leader in modelling moisture 
content in electrical power transformers

• Headed by Dr Valery Davydov
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Moisture in Thick Insulation:
Electrical Treeing and Deterioration

EPRI Project
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Moisture in Thin Insulation:
Failure of the Transformer

EPRI Project
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Moisture Determination Procedure

1. Measure water content of oil at low temperature, i.e. when oil 
temperature indicator reads minimum value for the day

2. Measure water content of oil taken from the same port at higher 
temperature (can be on the same day, depending on oil 
temperature cycle)

3. Plot results of two consecutive measurements on the Color Chart

4. Observe where the rate of change in WCO vector is headed. 
Direction of this vector is indicative of moisture state in 
transformer

5. If both measurements fall into the uncertain area, repeat the 
measurements during the higher temperature season or during 
the load increase period
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Classification Chart Usage

KNDL

FRLN

RAHW

50

42 26 17 11 7 5 3 2 2 1 1 1 1 1

40 46 29 19 12 8 5 4 3 2 1 1 1 1 1

51 32 21 14 9 6 4 3 2 1 1 1 1 1

30 65 41 27 17 12 8 5 3 3 2 1 1 1 1

72 46 29 19 13 9 6 4 3 2 1 1 1 1

20 86 54 35 23 15 10 7 5 3 2 1 1 1 1

102 65 42 27 18 12 8 6 4 3 2 1 1 1

10 125 79 51 33 22 15 10 7 5 3 2 2 1 1

160 102 66 43 28 19 13 9 6 4 3 2 2 1

0 206 131 84 55 36 24 17 11 8 6 4 3 2 1
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
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Trf with Natural Oil Circulation:Position of Sensors

Bottom Drain Valve

Conservator

Oil-Paper
System

Sensor at Top

Sensor at Bottom

Cooler



Power 
Electronics 
Group

Centre for 
Electrical Power 

EngineeringEPRI Project
Results of Moisture Assessment

Cooler

Conservator

Bottom Drain Valve

Sensor at Top

Sensor at Bottom

T oil top      = 30-70°C
WCPA top=4.7%

T oil bot      = 20-50°C
WCPA top=9.0%
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Monash WIP Algorithm (Simplified)

Measurement of True %RS

Water Solubility Test

Determination of  WCPA



Power 
Electronics 
Group

Centre for 
Electrical Power 

EngineeringEPRI Project



Power 
Electronics 
Group

Centre for 
Electrical Power 

EngineeringEPRI Project
New Laboratory 

for the EPRI-Monash Project

•Monash University has invested a sum of approx. 
USD $250,000 from its non-EPRI funds into 
construction of the New EPRI-Monash Project 
Laboratory

•Another USD $50,000 from non-EPRI funds are 
being spent for purchasing laboratory equipment

•The New Lab will become fully operational 
following installation and commissioning of the 
new equipment in 2004
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Monash Assessment of 
On-Load Dryout of EdF 22.5 MVA Trf

Aims
• Dry out the transformer on-load
• Assess dryout using Monash WIP algorithm
• Compare FRA signatures before and after to 

assess effect
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Monitoring of On-Load Drying for 8 Weeks
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Changes in Active WCP during and after Dryout
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FRA Signatures for EdF Transformer before and 
after Dryout

comparison of the frequency response of the 3 LV windings before and after drying out.
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EPRI Project
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• Changes in the temperature of transformer
• Changes in moisture content of insulation
• Possible slackness of transformer windings

due to reduction of 
clamping pressureFRA Studies conducted in 2003

EPRI Project
Factors which may affect 

FRA Signatures following Dryout

• Changes in the temperature of windings
• Changes in moisture content of insulation due to dryout
• Changes in geometry of windings due to a mechanical 

shift following re-clamping of the new transformer

Tests conducted on new transformer and on Monash model
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66 kV Winding of the WTC New 150 MVA, 220/66/11 kV 
Transformer

EPRI Project
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Proposed FRA Studies for 2004-06

(ARC Project)

• Effect of changes in clamping pressure 
simulated on test models

• Effect of winding slackness simulated on 
test models

• Effect of dryout of newly built and older 
repaired transformers at the plant

• Effect of on-load dryout in the field



Power 
Electronics 
Group

Centre for 
Electrical Power 

Engineering

• Electrical Power at Monash University – a short 
walk through history

• What is this business called Power Electronics ?

• Power Electronics research activities at Monash

• Other Electrical Power Research Activities
The EPRI Project

High Voltage

Renewable Energy

• Summary
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PARTIAL DISCHARGE ANALYSIS
A DETERMINISTIC APPROACH

Input-output representation of partial 
discharge process

Periodic 
forcing

Partial 
Discharge 
Process

Noise ξ

‘Marked 
Point 
Process’
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Deterministic dynamic model
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‘Apparently stochastic’ output from a deterministic process
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Model determination

PD magnitude                                               PD phase
Prediction errors from the global AR(10) model (xxx ) and the local 

linear model (+++)

High Voltage

Stochastic vs. non-linear – which one predicts better?
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Classified PD signals

Phase 
resolved 
plots
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Classified PD signals

Trajectory plots



Power 
Electronics 
Group

Centre for 
Electrical Power 

EngineeringHigh Voltage

Classification results

Confusion table of RMS errors for classified series

Reference series
A B C D E F G H

Clas
sifie

d 
serie

s

A: PD source 1 0.84 1.06 1.09 1.4 1.56 1.2 1.22 1.03

B: PD source 2 1.12 0.52 0.73 1.74 1.35 1.06 1.13 1.06

C: PD source 3 1.08 0.62 0.43 1.77 1.34 1.02 1.13 1.01

D: PD simulated 1.05 1.26 1.22 0.04 1.1 1.08 1.39 1.15

E: periodic 1.24 1.09 1.13 1.41 0.01 0.51 1.39 1.03

F: periodic+noise 1.55 1.3 1.39 2.08 1.07 0.59 1.87 1.07

G: chaotic cont. 1.11 1.04 0.98 1.59 1.49 1.15 0.09 1.01

H: chaotic disc. 1.13 1.11 1.13 1.48 1.37 1.1 1.29 1.01
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Is classification robust?

Confusion table of RMS errors for the robustness test

Reference series
A B C D E F

Cla
ssifi
ed 
seri
es

A: periodic, n/s=0 0.03 0.29 0.47 0.61 0.67 1.01

B: periodic, n/s=20% 0.31 0.23 0.37 0.57 0.6 1.02

C: periodic, n/s=40% 0.73 0.45 0.39 0.54 0.53 1.01

D: periodic, n/s=60% 0.96 0.68 0.56 0.63 0.61 1.04

E: periodic, n/s=80% 1.08 0.83 0.69 0.72 0.71 1.06

F: random Gaussian 1.65 1.4 1.2 1.14 1.08 1.02

• Classification seems robust for noise levels up to 50% of the signal
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Signal discrimination 
by non-linear dynamics

This idea is demonstrated by using synthetic data

Process1

Measurement 
Noise

Process2

Dynamic Noise

Sync
Signal

Process 1
Logistic generator (chaotic)

Process 2
xn+1=2π⋅sin(xn)
Processes synchronised by 
external signal
Random noise added to both 
inputs and the output



Output signal trajectory reveals the input signal dynamics

High Voltage
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Conclusions

• Deterministic model predicts better than the 
stochastic one, so PD process is likely to have 
dominating deterministic component

• The error of prediction can be used as the 
discriminating statistic for PD source 
identification

• Mixed signals can be unscrambled by using 
trajectory plots, a promise for discrimination 
of PDs from mixed sources
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• Electrical Power at Monash University – a short 
walk through history

• What is this business called Power Electronics ?

• Power Electronics research activities at Monash

• Other Electrical Power Research Activities
The EPRI Project

High Voltage
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• Summary
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Australia: Target 2% new renewables by 
2010

Solar Photovoltaic, Wind and Biomass

Main applications of solar PV energy systemsMain applications of solar PV energy systems

•• OffOff--Grid DomesticGrid Domestic
•• OffOff--Grid NonGrid Non--DomesticDomestic
•• Mini Grid HybridMini Grid Hybrid
•• GridGrid--tied distributedtied distributed
•• GridGrid--tied centraltied central
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Design and Optimum sizing of PV systems for 

Telecommunication Companies, ie Telstra

Solar Panel

Battery Storage

Load:
Radio

Repeating
Station
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Grid-tied PV system, Quality of Electricity Islanding, 

Harmonics & Voltage variation
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Hybrid systems, Modelling, Performance prediction
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• Electrical Power at Monash University – a short 
walk through history

• What is this business called Power Electronics ?

• Power Electronics research activities at Monash

• Other Electrical Power Research Activities
The EPRI Project

High Voltage

Renewable Energy

• Research Opportunities – electrical energy 
conversion applications

(Centre for Energy and Power Electronics ?)
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