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e Electrical Power has been a part of Monash
Electrical Engineering since department was
established.

e It has been a major contributor to both
Teaching and Research.

e The focus of activities has changed over the
years as older technologies have matured and
new technologies have developed.

e One thing remains certain — electrical power is
an essential service on which we all depend.
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e From 1960’s to 1980’s, electrical power
generation, transmission and reticulation
blossomed in South East Australia

e Transmission System voltages jumped from
132 kV to 220 kV to 500 kV

e Generator sizes increased from 10's MW to 500
MW units

e Many innovative ideas were implemented
(SWER, SCADA control)

 Research and development in Electrical Power
was a major growth activity.
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e The major engineering institutions were SECV
and ECNSW

e Major research institutions were at Monash,
Sydney, and Newcastle

 The background research into the 500 kV
transmission system in Victoria was done at
Monash

e Major contributions to power system stability
were made by Monash during the 1970’s
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In the 1980’s, the focus changed:

e Power systems research moved to consider
economic issues as well as technical matters

* New types of plant appeared, using power
electronic conversion systems

e Monash incorporated Power Electronics into its
Electrical Power research and teaching

e Electrical Power became "mature” in the
community, always available, always reliable
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In the 1990’s there were huge changes in the
electrical power supply industry

o State owned utilities were broken up into small
competing private companies, in the nhame of
“efficiency”

e Economics became the dominant concern

e Companies focused on “"what they were good
at” — selling electricity, serving customers

e Central planning effectively ceased, leaving
“the market to provide”

e The changes are in still progress!
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Electrical Power at Monash has managed to
weather this storm for over a decade (well, at
least we are still here!)

e The Centre for Electrical Power Engineering
was established in 1991 as a final contribution
from the SECV

o 8 academics were employed for over 5 years
e Research activities developed in several areas

e Power Electronics established itself as a major
international research contributor
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Unfortunately nothing lasts forever!

 Funding from the electrical power generation
industry has been greatly reduced

e The focus of the industry is on training and
management of the existing resources, not
new developments

e Electrical Power and Energy at Monash must
find a new focus if it is to continue

e Power Electronics and Industrial Electronics is
a world wide R&D growth market, so that is
becoming a major new focus for Monash.
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 Power: turns the lights on
e Electronics: transistor radios

But what is Power Electronics ?

e Power Electronic Systems use electronics to
control Electrical Energy usage

 Power levels range from milliwatts to
megawatits

e The common element is a switched energy
conversion process, smoothed by input and
output filters
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e Power Electronic converters have existed for
nearly 40 years.

e Initially based on Silicon Controlled Rectifiers
(controlled turn-on, uncontrolled turn-off).

e Modern semiconductor devices are:
e Power MosFET’s, 100’s volts, 10’s amps

e Insulated Gate Bipolar Transistors (IGBT),
2000+ volts, 500 A

e Insulated Gate Controlled Thyristor (IGCT),
4000+ volts, 1000's amps.

e Gate Turn Off Thyristor (GTO), 6000+volts,
1000's amps



Power Centre for CEPE

Electronics Powe Y E I eCt ron i CS ? Electrical Power &

Group Engineering

gxternal connection

of power tarminal
Low power| *press fit !'
rectifier +leaded o
*+5MD's E
#prassura
Digs +s5iud % -
#solder pin | | e
i
Thrﬂﬁtﬂr $prassura i "":.l__ } .
#5tud ___ﬂ:". e
- i. B
K'E' -, = '
SEMIPAC #bolt = S
SEMIPONT! esolder pin L e >
{Bridge} | ebolt - s -y
L # SKiiP*
SEMITOR®. 4 :oider pin s em— tecinaloy
| | | | | | | | | | |
| T T | | T T T | —
- = L & — POR ¥ P R A Y - -
°© ® e 8 8 8 8 8 gglAl

Courtesy: Semikron website



., Power Centre for CEPEl.

| Electronics Power EIeCt ronics ? Electrical Power h

7 Group Engineering

e Basic cell structure is half bridge phase leg

e Generic form uses ideal switches that can block
block bi-directional volt, conduct bi-directional
current

e Conventional form uses transistor/diode
combination that can block uni-directional volt

e Input is voltage stiff, Output is current stiff,
transfer function is stepdown (buck).
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e Voltage Source Inverter (VSI)
> Smooth DC Input Voltage, Switched Input Current
> Switched AC Output Voltage, Smooth Output Current
> Bi-directional current and power flow
> Step down voltage transfer ratio

Single Phase Three Phase
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e Open Loop Modulation is the processing of
controlling the actual switching of the
semiconductor elements

e Closed Loop Regulation is a feedback
arrangement to control the modulation to
achieve a controlled variable outcome

e Applications are combinations of modulation and
regulation processes operating as complete
working systems

e Analogue controlled systems are common
historically and still used for simple applications

e Digitally controlled systems are much more
common and essentially now dominate
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e Electrical Power at Monash University — a short
walk through history

e What is this business called Power Electronics ?

e Power Electronics research activities at
Monash
e Other Electrical Power Research Activities

» The EPRI Project
» High Voltage Laboratory
» Renewable Energy

e Summary
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Power Electronics Group (PEG) at Monash was started in 1995

Staff comprises:
» 2 academic faculty
- employed research engineers

» post-graduate students — Masters and PhD.

PEG undertakes both fundamental research and

practical commercial developments

Research activities include:

* PWM modulation

* Open and Closed Loop control of VSI/CSI

» Active Filters & other Custom Power applications
 Distributed Generation in weak grid systems

* Traction systems
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Advances in Modulation Theory

1970’s: Major steps forward

1980°s: Minor improvements

Since then - refinements, despite
many hundreds of papers !!!

Finally, consolidation has been
achieved in the last few years, with
significant contributions from PEG
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Analytical Solution is obtained by Double Fourier
Analysis of the Switched Phase Leg Output
Waveform, which gives:

F(t):%Jr < {AOn cos(naw,t)+ }+ i{Amo cos(ma,t)+ }+ i i {Amn cos(mat + nag)+ }

I B, sin(n a)ot) ol B, sin(ma)ct) s P B, sin(ma)ct + na)ot)

n=0

Cop = Ay + JByn = %ﬂzfﬁ J.;F(x,y)ej(m””y)dxdy : X=w.ty =0,
Fundamental Carrier
The solution contains: .
e Fundamental component ) Carior
- = .
e Baseband Harmonics = Sideband
i i & Harmonics
e Carrier Harmonics = || Bascband \
- - , Harmonics
e Sideband Harmonics ; ‘ " ‘ |

Frequency
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Analytical Solution for one Phase Leg is
WV J, (m %Mjsin m%cos(m[a)ct +0, ])}

Jn(mijsi:EE;+n]’2”jcos(m[mcf+ec]+n[woﬁeo )
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4+ Z Z dc
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Harmonics cancel between phase legs differently for
two level and three level modulation
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Three phase inverters use the same strategy with
reference waveforms that are displaced in time by 120°.
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Now the harmonics cancel between the phase legs
differently, since the reference offset angles are
different.

Three Phase inverter, simple sine-triangle - Three Phase inverter, Space Vector centered - Three Phase inverter, Space Vector centered - Asymmetric
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PWM applied to Multilevel converters

POD/APOD/PD Sine-triangle
modulation strategies

Equivalence of Sine-triangle and SV
modulation

Reduced common mode PWM
strategies
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Multilevel PWM is more complex to develop analytical
solutions. However, the results identify a direct match
between NPC APOD and cascaded inverter modulation.
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This in turn allows a new modulation strategy to be
developed for Cascaded Inverters, which achieves PD
type harmonic response.
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e Target Objectives of a modulation system are to
switch an inverter to achieve an “average” output
voltage.

e Once this is achieved, the secondary objectives of
reduced harmonics and minimised losses can be
considered.

e These objectives are achieved by using the three
nearest active space vectors to the target reference
phasor, and placing these vectors centrally in the
carrier period.

o Carrier-based and SV strategies can achieve identical
harmonic results provided a suitable offset waveform
is defined.

o Concepts readily extrapolate to multilevel inverters.
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LINEAR CLOSED LOOP CONTROL

e Conventional Closed Loop Control uses

Proportional and integral Gain in the forward
path to minimise error.

e Typical application is current controlled inverter

emf “ D(s) - Disturbance

Error r:‘C‘)ut|::uutt
- urren
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This type of system is known to create steady state
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e For Three Phase systems, regulation in the
synchronous d-q frame eliminates steady state error.

e There is no simple single phase equivalent
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e Can get an equivalent response by implementing a
resonant gain block in the stationary frame.

o Equally applicable to single or three phase systems
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e The performance of the P+ resonant controller is
excellent as a current regulator
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NON LINEAR CONTROL

e Non Linear Converter control systems directly
control the switches from the control algorithm.

e Most common example is hysteresis control.

Lk Lock Out
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* Non Linear Converter control systems directly
control the switches from the control algorithm.

e Most common example is hysteresis control.

A Problems with
conventional hysteresis
control are:
o Variable frequency
switching.
e Sub optimal switching

pattern for both single
.~ and three phase.

e Limit cycle hazard.

v



Power Centre for ceEPE

| Electronics Power Electronics Group Electical Power g

Group Engineering

e Variable band width switching solves most of
these problems.
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Linking variable band hysteresis with deadbeat
control improves the performance even further.

Phase Current
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Inverter Device Switching Signals

Measured and Demanded Phase Current 8
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Multilevel Hysteresis Control: 5 Level
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Extending the Power Quality
Compensation Capabilities of
Dynamic Voltage Restorers

Michael John Newman

Monash University
Melbourne, Australia
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Proposed additional control system
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* DVR primary value adding objective:
+ Sag Compensation

« Other possible value adding objectives:

* Harmonic voltage compensation -

« Harmonic isolation

* Fundamental Voltage Regulation
» Reactive Injection (requires large series rating — fine for DVR)

* Real Injection (requires power source — possibly bi-directional)

+ Swell regulation (requires bi-directional supply)

* ldeal design criteria for value adding DVR systems

» Addition should not affect the transient response of the DVR

* The topology should preferably not be altered

* Primary aim is to provide extra value added services to the customer using the
exact same equipment, with minimal adverse affects
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Supply Voltage: 5": 5%, 7":2%
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Supply Voltage: 5": 5%, 7":2%
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A Robust Multilevel Hybrid
Compensation System for 25kV
Electrified Railway Applications

# Group

P. C. Tan, P. C. Loh, D. G. Holmes

Centre of Electrical Power Engineering,
Dept. of Electrical and Computer System Engineering,
Monash University, Australia

Nanyang

Technological University
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Railway locomotive model
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Typical trackside voltage waveform
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Railway traction system model
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Hysteresis current regulation
IGBT

| |
LEGEND: - - - for first three-level inverter;
T‘ T‘ ===for second threedevel inverter
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Hysteresis current regulation
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Active power filter control
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Simulation results Before compensation
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Simulation Results

After compensation
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Experimental results After compensation
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Current Power Electronic Research Projects

 Distributed PE compensation systems for electrical
grids

 Auxiliary power supplies for high voltage converters
 High performance drive systems

« EPLD implementation of high performance
modulation

 Low inertia induction motor
 Intrinsically safe switch mode power supplies

« Reduction of EMI for power converter systems
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Moore’s Law:
“Every 1.5 years
the cost of a ‘bit’

drops 50%.”

Between 1920 - 1970,
every 1.5 years
the cost of kWh

dropped 5%.

Since then it is constant.

Ep—




Standardization in Information Processing
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Digital Revolution

Input
Devices /'<:> Output
‘/ - ~ = Devices
Number
Crunching

- /

Most of Information Processing has been reduced to
arithmetic and logic manipulation of binary numbers
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Or Power Electronics Converter
Design in the Last Century
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Active Switching Stages: Embedded

CPES rower
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DPS Integration: Power Passives
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Discrete DC/DC 1. Standard Fabrication techniques:
Converter

« Direct metal deposition;
* Electro-plating;

« Photolithography;

+ Wet-etching;

« Laser cutting;

* Reflow soldering;

2. Improved power density, efficiency and
thermal performance:
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e Electrical Power at Monash University — a short
walk through history

e \What is this business called Power Electronics ?
e Power Electronics research activities at Monash

e Other Electrical Power Research Activities

> The EPRI Project
» High Voltage
» Renewable Energy

e Summary
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EPRI-Monash Work:
Moisture in Transformers

e Started in mid 1990’s to investigate aging
transformer insulation

e One of the longest running EPRI funded
projects in the world

e A world leader in modelling moisture
content in electrical power transformers

e Headed by Dr Valery Davydov
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Moisture in Thin Insulation:

Failure of the Transformer
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Moisture Determination Procedure

1. Measure water content of oil at low temperature, i.e. when oil
temperature indicator reads minimum value for the day

2. Measure water content of oil taken from the same port at higher
temperature (can be on the same day, depending on oil
temperature cycle)

3. Plot results of two consecutive measurements on the Color Chart

4. Observe where the rate of change in WCO vector is headed.
Direction of this vector is indicative of moisture state in
transformer

5. If both measurements fall into the uncertain area, repeat the

measurements during the higher temperature season or during
the load increase period
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Trf with Natural Oil Circulation:Position of Sensors

Conservator

Sensor at Top .,

\_ l /Cooler

Oil-Paper
T System

Sensor at Botto

Bottom Drain Valve
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Results of Moisture Assessment

Conservator

Sensor at Top
\_T oitop = 30-70°C Cooler
WCP, 1,,=4.7% /

T l

T oipot = 20-50°C |
WCP, 10,=9.0%

Sensor at Botto

Bottom Drain Valve
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Monash WIP Algorithm (Simplified)

Measurement of True % RS

U

Water Solubility Test

J

Determination of WCP,
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Transformer Moisture Muniturl

EPRI Project

Input File Name
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New Laboratory
for the EPRI-Monash Project

e Monash University has invested a sum of approx.

USD $250,000 from its non-EPRI funds into
construction of the New EPRI-Monash Project
Laboratory

e Another USD $50,000 from non-EPRI funds are
being spent for purchasing laboratory equipment

e The New Lab will become fully operational
following installation and commissioning of the
new equipment in 2004

CEPE"\.
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Monash Assessment of
On-Load Dryout of EdF 22.5 MVA Trf

Aims
* Dry out the transformer on-load

« Assess dryout using Monash WIP algorithm

« Compare FRA signatures before and after to
assess effect
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Monitoring of On-Load Drying for 8 Weeks
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Changes in Active WCP during and after Dryout

3.5
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Pall sensor only
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FRA Signatures for EdF Transformer before and
after Dryout

comparison of the frequency response of the 3 LV windings before and after drying out.

0
14)0 1000 104 100000 ,/‘;1 000000 10000000

BN P-eu.q,

Amplitude (dB)

——ac before drying out ||
—=—cb before drying out
ba before drying out

ac after drying out
—¥— cb after drying out

——ba after drying out I

Frequency (Hz)
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Factors which may affect

FRA Signatures following Dryout

 Changes in the temperature of transformer
« Changes in moisture content of insulation

 Possible slackness of transformer windings
due to reduction of

FRA Studies conducted in 2003

« Changes in the temperature of windings
« Changes in moisture content of insulation due to dryout

« Changes in geometry of windings due to a mechanical
shift following re-clamping of the new transformer

Tests conducted on new transformer and on Monash model
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EPRI Project Flectical Poer Bl
Proposed FRA Studies for 2004-06

(ARC Project)

- Effect of changes in clamping pressure
simulated on test models

- Effect of winding slackness simulated on
test models

- Effect of dryout of newly built and older
repaired transformers at the plant

- Effect of on-load dryout in the field
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e Electrical Power at Monash University — a short
walk through history

e \What is this business called Power Electronics ?
e Power Electronics research activities at Monash

e Other Electrical Power Research Activities

» The EPRI Project
> High Voltage
» Renewable Energy

e Summary
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PARTIAL DISCHARGE ANALYSIS
A DETERMINISTIC APPROACH

Input-output representation of partial
discharge process

Partial ‘ ‘
Discharge ol |
Process ‘ ‘

Periodic T ‘Marked
forcing Noise & Point
Process’
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Deterministic dynamic model

PD phase 2-D trajectory
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Stochastic vs. non-linear — which one predicts better?
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Classified PD signals

500

[

8 0 ...................

»

o]

o H : : :

h S5O0 s .............. ............. y
as e 0 50 100 150 200 250 300 350

resolved
plots

200

100

PD source 2
()

-100

-200

200 : =
03 AOO L BN i J
8
3 O K e S
br)
o]
a -100} *
200k .............. .............. .................. ................. A _
] 1 i I ] ]
0 50 100 150 200 250 300 350

Phase angle, deg



Power
Electronics
Group

High Voltage

Classified PD signals

FD phase(n-delay)
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Classification results

Confusion table of RMS errors for classified series

Reference series

A B C D E F G H

Clas  A: PD source 1 084 106 109 14 156 12 122  1.03
ifi

. dle B: PD source 2 112 052 073 174 135 106 113 106

serie  C: PD source 3 108 062 043 177 134 102 113 101

D: PD simulated 1.05 1.26 1.22 0.04 1.1 1.08 1.39 1.15
E: periodic 1.24 1.09 1.13 1.41 0.01 0.51 1.39 1.03
F: periodictnoise 1.55 1.3 1.39 2.08 1.07 0.59 1.87 1.07
G: chaotic cont. 1.11 1.04 0.98 1.59 1.49 1.15 0.09 1.01
H: chaotic disc. 1.13 1.11 1.13 1.48 1.37 1.1 1.29 1.01



Power Centre for

||
Electroni H h v It Electrical P
Grti)curponlcs Ig o age ectrical Power

Engineering

Is classification robust?

Confusion table of RMS errors for the robustness test

Reference series

A B C D E F
A: periodic, n/s=0 0.03 0.29 0.47 0.61 0.67 1.01
Cla  B:periodic, n/s=20% 0.31 0.23 0.37 0.57 0.6 1.02
Zziﬁ C: periodic, n/s=40% 0.73 0.45 0.39 0.54 0.53 1.01

Serl . periodic, n/s=60% 096 0.68 056 0.63 061 1.04
(S
E: periodic, n/s=80% 1.08 0.83 0.69 0.72 0.71 1.06

F: random Gaussian 1.65 1.4 1.2 1.14 1.08 1.02

- Classification seems robust for noise levels up to 50% of the signal
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Signal discrimination
by non-linear dynamics

This idea is demonstrated by using synthetic data

e Process 1 /\
Logistic generator (chaotic) \/ > Processl \JM_L
g
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: nc —>
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Processes synchronised by
eXterna| Slgnal Measurement

Random noise added to both Dynamic Noise Noise
iInputs and the output




Output signal trajectory reveals the input signal dynamics
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Conclusions

o Deterministic model predicts better than the
stochastic one, so PD process is likely to have
dominating deterministic component

e The error of prediction can be used as the
discriminating statistic for PD source
identification

e Mixed signals can be unscrambled by using
trajectory plots, a promise for discrimination
of PDs from mixed sources
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Australia: Target 2% new renewables by
2010

Solar Photovoltaic, Wind and Biomass

Main applications of solar PV energy systems

 Off-Grid Domestic
 Off-Grid Non-Domestic
* Mini Grid Hybrid
 Grid-tied distributed
 Grid-tied central
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AS 4 Economic aspects of solar PV systems
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Design and Optimum sizing of PV systems for
Telecommunication Companies, ie Telstra

Load:
Radio

Repeating
Station

Solar Panel
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Grid-tied PV system, Quality of Electricity Islanding,
Harmonics & Voltage variation

Solar Panel
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