Digital Perception Lab.

Dept. Electrical and Computer Systems Engineering
Monash University
Research Covers Areas Such as:

- Computational Mathematics
 - Novel Splines and Fast Approximation of Splines (related to Radial Basis Functions, Support Vector Machines)
 - Finite Element, Wavelets, Multi-pole Methods
- Image Processing
 - Restoration of Historical Film
 - Biomedical Image Processing
- Computer Vision/Robotics
 - Optic Flow
 - Motion Segmentation
 - Tracking
 - 3-D structure modelling

A common thread is: Motion/Displacement Estimation from Images

Common techniques are robust statistics, model selection, model fitting....
Current (and New) Projects

- Robust Model Fitting and Model Selection (with Wang, Bab-Hadiashar, Staudte, Kanatani…..)
- Subspace Methods for SFM and Face recognition (with Chen) (soon to be postdoc with PIMCE)
- Biomedical: Microcalcification in breast X-rays (with Lee, Lithgow), Knee cartilage segmentation (with Cheong and Ciccutini)
- Invariant Matching/Background Modelling (with Gobara)
- Historical Film Restoration and Film Special Effects (with Boukir)
- Wavelet denoising (with Chen)
- (new) Geometric aspects of tracking (ARC 2004-6)
 - Postdoc Wang
- Human motion Modelling and Tracking (with U)
- Visualisation (Monash SMURF vizlab)
- (new) Urban Scanning (Monash NRA – soon to be postdoc Schindler)
- (new) 4-D Recorder Room
 (+Tat-jun Chin + Tk – soon to start phd students)
Advance on Previous Restoration Work (with Boukir)

Can’t capture distortion – e.g., rotation

Can try to use 3-D projective geom. – below

Symmetry in (Robust Fitting)

Actually, the assumption that median belongs to “clean” data is false sometimes even when outliers < 50%!

55 inliers – 45 *clustered* outliers
Symmetry in (Robust Fitting)

about 45% clustered outliers
Very Robust Fitting – Mean-shift

about 95% outliers!

H. Wang and D. Suter.

Large Grant 2000-2
Very Robust Fitting
about 95% outliers!
Very Robust Fitting

How does it work?

Essentially – not just dependent upon a single stat (the median or the number of inliers) but on the pdf about the chosen estimate.

Uses Mean Shift and maximizes a measure roughly

\[
\frac{\text{sum of inlier pdf – as defined by mean shift window}}{\text{bias – mean residual - centre of mean shift window}}
\]
USF Noisy Points

WSU Missed Surf.

UB – distorted edges

Large Grant 2000-2
<table>
<thead>
<tr>
<th>Technique</th>
<th>Avg. error (degree)</th>
<th>Std. dev. (degree)</th>
<th>Density (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black (1994)</td>
<td>3.52</td>
<td>3.25</td>
<td>100</td>
</tr>
<tr>
<td>Szeliski and Coughlan (1994)</td>
<td>2.45</td>
<td>3.05</td>
<td>100</td>
</tr>
<tr>
<td>Black and Anandan (1996)</td>
<td>4.46</td>
<td>4.21</td>
<td>100</td>
</tr>
<tr>
<td>Black and Jepson (1996)</td>
<td>2.29</td>
<td>2.25</td>
<td>100</td>
</tr>
<tr>
<td>Ju et. al. (1996)</td>
<td>2.16</td>
<td>2.00</td>
<td>100</td>
</tr>
<tr>
<td>Memin and Perez (1998)</td>
<td>2.34</td>
<td>1.45</td>
<td>100</td>
</tr>
<tr>
<td>Memin and Perez (2002)</td>
<td>1.58</td>
<td>1.21</td>
<td>100</td>
</tr>
<tr>
<td>Lai and Vemuri (1998)</td>
<td>1.99</td>
<td>1.41</td>
<td>100</td>
</tr>
<tr>
<td>Bab-Hadiashar and Suter (WTLS2, 1998)</td>
<td>2.56</td>
<td>2.34</td>
<td>100</td>
</tr>
<tr>
<td>Bab-Hadiashar and Suter (WTLS6, 1998)</td>
<td>1.97</td>
<td>1.96</td>
<td>100</td>
</tr>
<tr>
<td>Farneback2 (2000)</td>
<td>1.94</td>
<td>2.31</td>
<td>100</td>
</tr>
<tr>
<td>Farneback6 (2000)</td>
<td>1.40</td>
<td>2.57</td>
<td>100</td>
</tr>
<tr>
<td>Farneback6 (2001)</td>
<td>1.14</td>
<td>2.14</td>
<td>100</td>
</tr>
<tr>
<td>vbQMDPE2 ($\sigma_0=2.0$, 17×17, $m=30$)</td>
<td>2.12</td>
<td>2.08</td>
<td>100</td>
</tr>
<tr>
<td>vbQMDPE6 ($\sigma_0=2.0$, 17×17, $m=30$)</td>
<td>1.54</td>
<td>1.99</td>
<td>100</td>
</tr>
<tr>
<td>vbQMDPE2 ($\sigma_0=2.0$, 25×25, $m=30$)</td>
<td>2.27</td>
<td>2.07</td>
<td>100</td>
</tr>
<tr>
<td>vbQMDPE6 ($\sigma_0=2.0$, 25×25, $m=30$)</td>
<td>1.34</td>
<td>1.69</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technique</th>
<th>Avg. error (degree)</th>
<th>Std. dev. (degree)</th>
<th>Density (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memin and Perez (1998)</td>
<td>2.34</td>
<td>1.45</td>
<td>100</td>
</tr>
<tr>
<td>Memin and Perez (2002)</td>
<td>1.58</td>
<td>1.21</td>
<td>100</td>
</tr>
<tr>
<td>Bab-Hadiashar and Suter (WLS2, corrected)</td>
<td>2.64</td>
<td>4.98</td>
<td>100</td>
</tr>
<tr>
<td>Bab-Hadiashar and Suter (WLS6, corrected)</td>
<td>2.82</td>
<td>5.03</td>
<td>100</td>
</tr>
</tbody>
</table>

Large Grant 2000-2
Imputation\Subspace Learning
(Hallucination if you prefer)

P. Chen and D. Suter.
Recovering the missing components in a large noisy low-rank matrix:
Application to SFM.

What you start with:

Low rank, large noisy matrix with "holes"

\[M = \begin{pmatrix}
\times & 0 & \cdots & \times \\
\times & \times & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
\times & \times & \cdots & \times \\
\end{pmatrix}_{m \times n} \]

We want to fill in and de-noise
Why?

- Data Mining – on line recommender systems
- DNA
- Etc……
- Structure From Motion
 \[M = RS \]
 (M- location of features in images
 R – camera motion – S – structure)
- Face Recognition – other learning and classification tasks.
36 frames and 336 feature points – the most reliable by our measure
4983 points over 36 frames

2683 points (those tracked for more than 2 frames)
SUBSPACE-BASED FACE RECOGNITION: OUTLIER DETECTION and A NEW DISTANCE CRITERION FOR MATCHING

P. Chen and D. Suter.
Subspace-based face recognition: outlier detection and a new distance criterion.

Yale B face database
Outlier detection
(Iterative reweighted least square: IRLS)
7D eigenimages
Subsets 1-5
Comparison of the error classification rate (%) on Yale-B face database

<table>
<thead>
<tr>
<th>Method</th>
<th>Subset 1-3</th>
<th>Subset 4</th>
<th>Subset 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear subspace [9]</td>
<td>0</td>
<td>15</td>
<td>/</td>
</tr>
<tr>
<td>Cones-attached [9]</td>
<td>0</td>
<td>8.6</td>
<td>/</td>
</tr>
<tr>
<td>Cones-cast [9]</td>
<td>0</td>
<td>0</td>
<td>/</td>
</tr>
<tr>
<td>9PL [14]</td>
<td>0</td>
<td>2.8(5.6)</td>
<td>/</td>
</tr>
<tr>
<td>Proposed</td>
<td>0</td>
<td>0</td>
<td>7.9</td>
</tr>
</tbody>
</table>