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Abstract— We present a robust multidimensional trellis coded
modulation scheme for a high rate 2×2 multiple-input multiple-
output (MIMO) system over both slow and fast block fading
channels. Set partitioning of the Golden code [2] is designed
specifically to increase the minimum determinant. The branches
of the outer trellis code are labeled with these partitions. The
Viterbi algorithm is applied for trellis decoding and branch
metrics are computed using a sphere decoder. The general
framework for code optimization is given. Performance of the
proposed scheme is evaluated by simulation and it is shown that
it achieves significant performance gains over uncoded Golden
code on both slow and fast block fading channels.1

I. INTRODUCTION

Wireless networks for multimedia traffic demand high

spectral efficiency coding schemes with low packet delay.

Algebraic space-time codes for multiple-input multiple-output

(MIMO) systems provide some very good tools so solve this

challenging design problem. Wireless channels are commonly

modeled as block fading. We will consider both slow and fast
block fading channels, i.e., the channel coefficients are fixed

over the duration of a frame or over the duration of a short

block within the frame, respectively. We will show that for

such channels the careful concatenation of a space-time block

code with an outer trellis code provides a robust solution for

high rate transmission over both slow and fast block fading

channel.

Space-time trellis codes (STTCs) using PSK and QAM

modulations were designed according to both rank and de-

terminant criteria [1]. A more refined concatenated scheme

enables to split these two design criteria. As an inner code,

we can use a simple space-time block coding scheme, which

guarantees full diversity for any spectral efficiency (e.g. Alam-

outi scheme). An outer code is then used to improve the coding

gain.

In this paper, we consider a concatenated scheme, where

the inner code is the Golden code [2] and the outer code is

a trellis code. We can view this as a multidimensional trellis

coded modulation (TCM), where the Golden code acts as a

signal set to be partitioned. This Golden Space-Time Trellis

1This work was supported by the STREP project No. IST-026905 (MAS-
COT) within the Sixth Framework Programme of the European Commission,
Australian Research Council (ARC) Project DP0663567, and ARC Commu-
nication Research Work (ACoRN) RN 0459498.

Coded Modulation (GST-TCM) scheme is appropriate for high

data rate systems thanks to the great flexibility in the choice

of the modulation spectral efficiency.

A first attempt to design such a scheme was made in

[3]. However, the resulting ad hoc scheme suffered from a

high trellis complexity. Here, we develop a systematic design

approach for GST-TCM over slow and fast block fading

channels. In [4–7], lattice set partitioning combined with a

trellis code is used to increase the minimum square Euclidean

distance between codewords. Here, it is used to increase the

minimum determinant. The Viterbi algorithm is used for trellis

decoding, where the branch metrics are computed using a

sphere decoder for the inner code.

We propose a design approach that is based on Unger-

boeck’s design rules for TCM, [5, 8]. We design different

GST-TCM and optimize their performance according to the

design criterion. It is shown that a 16 state TCM, with the

spectral efficiency of 6 bits per channel use (bpcu), achieves

a significant performance gain of 4.2dB and 4.5dB over the

uncoded Golden code in slow and fast block fading channels,

at an frame error rate (FER) of 10−3.

The following notations are used: T denotes transpose and †
denotes Hermitian transpose. Let Z, Q, C and Z[i] denote the

ring of rational integers, the field of rational numbers, the field

of complex numbers, and the ring of Gaussian integers, where

i2 = −1. Let Q(θ) denote an algebraic number field generated

by the primitive element θ. Let GF (2) = {0, 1} denote the

Galois field of degree two. The m × m dimensional identity

matrix is denoted by Im. The m×n dimensional zero matrix

is denoted by 0m×n.

II. SYSTEM MODEL

We first consider a 2 × 2 MIMO system (nT = 2 transmit

and nR = 2 receive antennas) over slow block fading channels.

The received signal matrix Y ∈ C2×2L (2L is the frame
length), is given by

Y = HX + Z, (1)

where Z ∈ C2×2L is the complex white Gaussian noise matrix

with i.i.d. samples ∼ NC(0, N0).
For a slow block fading channel, the channel matrix H ∈

C2×2 is constant during a frame X and varies independently
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from one frame to another. The elements of H are assumed

to be i.i.d. circularly symmetric Gaussian random variables ∼
NC(0, 1). The channel is assumed to be known at the receiver.

In (1), X = [X1,...,Xt, ..., XL] ∈ C2×2L is the transmitted

signal matrix, where Xt ∈ C2×2. If we consider fast block

fading we can write

Yt = HtXt + Zt t = 1, . . . , L (2)

where the channel matrix Ht ∈ C2×2 can vary every two

channel uses (one block).

There are three different options for selecting inner code-

words Xt, t = 1, . . . , L:

1) Xt are independently selected from the Golden code G,

i.e.,

Xt =
1√
5

[
α (at + btθ) α (ct + dtθ)
iᾱ

(
ct + dtθ̄

)
ᾱ

(
at + btθ̄

) ]
(3)

where at, bt, ct, dt ∈ Z[i] are the information symbols,

θ = 1 − θ̄ = 1+
√

5
2 , α = 1 + i − iθ, ᾱ = 1 + i(1 − θ̄),

and the factor 1/
√

5 is used to normalize energy [2].

2) Xt are independently selected from a linear subcode of

the Golden code;

3) A trellis code is used as the outer code encoding across

the symbols Xt selected from partitions of G.

We denote Case 1 as the uncoded Golden code, Case 2 as the

Golden subcode, and Case 3 as the Golden Space-Time Trellis
Coded Modulation.

In this paper, we use Q-QAM constellations, where Q = 2η

as information symbols in (3). We assume the constellation is

scaled to match Z[i] + (1+ i)/2, i.e., the minimum Euclidean

distance is set to 1 and it is centered at the origin. The average

energy Es is 0.5, 1.5 and 2.5 for Q = 4,8,16. Signal to noise

ratio is defined as SNR = nT Eb/N0, where Eb = Es/q is

the energy per bit and q denotes the number of information

bits per symbol. We have N0 = 2σ2, where σ2 is the noise

variance per real dimension, which can be adjusted as σ2 =
(nT Eb/2)10(-SNR/10).

Assuming that a codeword X is transmitted, the maximum-

likelihood receiver might decide erroneously in favor of an-

other codeword X̂. Let r denote the rank of the codeword
difference matrix X− X̂. Since the Golden code is full rank,

r = nT = 2. Let λj , j = 1, . . . , r, be the eigenvalues of the

codeword distance matrix A = (X − X̂)(X − X̂)
†
.

In the case of slow block fading, let Δ =
∏

λj be the de-

terminant of the codeword distance matrix A and Δmin be the

corresponding minimum determinant, Δmin = min
X�=X̂

det (A).

We call nT nR the diversity gain and (Δmin)1/nT the coding
gain [1]. In the case of linear codes we can simply con-

sider the all-zero codeword matrix and we have Δmin ≥
min

X�=02×2L

det
(
XX†

)
, where equality holds for infinite codes

used to carve the finite constellations [2].

In order to compare two coding schemes in a 2× 2 MIMO

system, supporting the same information bit rate, but with

different minimum determinants (Δmin,1 and Δmin,2) and

different constellation energies (Es,1 and Es,2), we define the

asymptotic coding gain as

γas =

√
Δmin,1/Es,1√
Δmin,2/Es,2

. (4)

In the case of L = 1, the codeword matrix X = X1 ∈ G
is a square matrix. The Golden code G has full rate, full rank

r = 2, and the minimum determinant is δmin = 1
5 [2]; thus

Δmin = δmin for the uncoded Golden code system.

In the case of GST-TCM over slow block fading channels

det
(
XX†

)
= det

(
L∑

t=1

(
XtX

†
t

))
. (5)

A code design criterion attempting to maximize Δmin is hard

to exploit, due to the non-additive nature of the determinant

metric in (5). Since XtX
†
t are positive definite matrices, we

use the following determinant inequality [10]

Δmin ≥ min
X�=02×2L

L∑
t=1

det
(
XtX

†
t

)
= Δ′

min. (6)

The lower bound Δ
′
min will be adopted to design our scheme.

In particular we will design trellis codes that attempt to

maximize Δ
′
min, by using set partitioning to increase the

minimum number L′ of non zero terms det
(
XtX

†
t

)
in (6).

In the case of GST-TCM over fast block fading channels,

the coding gain is related to

Δmin = min
X �=02×2L

(L′)∏
det(XtX

†
t ) �=0

det
(
XtX

†
t

)

where L′ is the minimum number of non zero “det” terms.

In order to maximize this Δmin over fast block fading

channels, we follow the same strategy as for slow block fading

cases. Hence, the code design based on Δ
′
min is robust to

different channel conditions ranging from slow to fast fading.

III. TRELLIS CODED MODULATION

The uncoded Golden code (Case 1) and Golden subcode

(Case 2) are discussed in [3, 11]. Here, we propose a sys-

tematic design approach for Case 3. We analyze the design

problem of this scheme by using Ungerboeck style set parti-

tioning rules for coset codes [5–7]. The design criterion for

the trellis code is developed in order to maximize Δ′
min, since

this results in the maximum lower bound on the asymptotic

coding gain of the GST-TCM over the uncoded Golden code

γas ≥
√

Δ′
min/Es,1√

δmin/Es,2

. (7)

Before we design the coding scheme, we briefly recall the set

partition chain in [3].

The Golden subcodes – Let us consider a subcode Gk ⊆ G
for k = 1, . . . , 4, obtained by

Gk = {XBk, X ∈ G}, (8)
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Fig. 1. General encoder structure of the concatenated scheme.

where

B =
[

i(1 − θ) 1 − θ
iθ iθ

]
. (9)

This provides the minimum square determinant 2kδmin (see

Table I). It is shown that the codewords of Gk, when vec-

torized, correspond to different sublattices of Z8. It can be

verified that these lattices form the lattice partition chain

Z8 ⊃ D2
4 ⊃ E8 ⊃ L8 ⊃ 2Z8 (10)

where D2
4 is the direct sum of two four-dimensional Shäfli

lattices, E8 is the Gosset lattice and L8 is a lattice of index 64

in Z8. Any two consecutive lattices Λk ⊃ Λk+1 in this chain

form a four way partition, i.e., the quotient group Λk/Λk+1

has order 4. Let [Λk/Λk+1] denote the set of coset leaders

of the quotient group Λk/Λk+1. The lattices in the partition

chain can be obtained by Construction A [9], using the nested

sequence of linear binary codes Ck listed in Table I.
Let Gk denote the generator matrix of the code Ck for

k = 1, 2, 3. We have

G1 =

⎡
⎢⎢⎢⎣

1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎦

G2 =

⎡
⎣ 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

⎤
⎦

G3 =
[

0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

]
Following the track of [5–7], we consider a partition tree of

the Golden code of depth �. From a nested subcode sequence

G ⊇ G�0 ⊃ G�0+1 ⊃ · · · ⊃ G�0+�, we have the corresponding

lattice partition chain Z8 ⊇ Λ�0 ⊃ Λ�0+1 ⊃ · · · ⊃ Λ�0+�

where

Λ�0 = Λ�0+1 + [Λ�0/Λ�0+1] = · · ·
= Λ�0+� + [Λ�0/Λ�0+1] + · · · + [Λ�0+�−1/Λ�0+�]
= Λ�0+� + [C�0/C�0+1] + · · · + [C�0+�−1/C�0+�]

Level Subcode Lattice Binary code Δmin

0 G Z8 C0 = (8, 8, 1) δmin

1 G1 D2
4 C1 = (8, 6, 2) 2δmin

2 G2 E8 C2 = (8, 4, 4) 4δmin

3 G3 L8 C3 = (8, 2, 4) 8δmin

4 G4 = 2G 2Z8 C4 = (8, 0,∞) 16δmin

TABLE I

THE GOLDEN CODE PARTITION CHAIN WITH CORRESPONDING LATTICES,

BINARY CODES, AND MINIMUM SQUARED DETERMINANTS.

The coset leaders in [Ck/Ck+1] form a group of order 4

(Z/2Z×Z/2Z), which is generated by two binary generating

vectors h1 and h2

[Ck/Ck+1] = {b1h1 + b2h2 | b1, b2 ∈ GF (2)}
If we consider all the lattices in (10), and the corresponding

nested sequence of linear binary codes Ck, we have:

[C0/C1] :

{
h(1)

1 = (0, 0, 0, 0, 0, 0, 0, 1)
h(1)

2 = (0, 0, 0, 1, 0, 0, 0, 0)
(11)

[C1/C2] :

{
h(2)

1 = (0, 0, 0, 0, 0, 0, 1, 1)
h(2)

2 = (0, 0, 0, 0, 0, 1, 0, 1)

[C2/C3] :

{
h(3)

1 = (0, 1, 0, 1, 0, 1, 0, 1)
h(3)

2 = (0, 0, 1, 1, 0, 0, 1, 1)

[C3/C4] :

{
h(4)

1 = (0, 0, 0, 0, 1, 1, 1, 1)
h(4)

2 = (1, 1, 1, 1, 1, 1, 1, 1)

Encoder structure – Fig. 1 shows the encoder structure of

the proposed concatenated scheme. The input bits feed two

encoders, an upper trellis encoder and a lower lattice encoder.

For two lattices Λ�0 and Λ�0+�, we have the quotient group

Λ�0/Λ�0+� with order Nc = |Λ�0/Λ�0+�| = 4�, which corre-

sponds to the total number of cosets of the sublattice Λ�0+� in
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the lattice Λ�0 . We assume that we have 4q input bits. The up-

per encoder is a trellis encoder that operates on q1 information

bits. Given the relative partition depth �, we select a trellis code

rate Rc = 1/�. The trellis encoder outputs nc = q1/Rc bits,

which are used by the coset mapper to label the coset leader

c1 ∈ [Λ�0/Λ�0+�]. The mapping is obtained by the product of

the nc bit vector with a binary coset leader generator matrix

H1 with rows h(�0+1)
1 ,h(�0+1)

2 , · · · ,h(�0+�)
1 ,h(�0+�)

2 , where

the rows are taken from (11). This will limit q1 = 2.

The lower encoder is a sublattice encoder for Λ�0+� and

operates on q2 + q3 information bits, where q2 = 2 ×
(4 − � − �0) and q3 = 4q − q1 − q2. The q2 bits label

the cosets of 2Z8 in Λ�0+� by multiplying the matrix H2

with rows h(�0+�+1)
1 ,h(�0+�+1)

2 , · · · ,h(4)
1 ,h(4)

2 , which gener-

ates the coset leaders c2 ∈ [Λ�0+�/2Z8].
We finally add both coset leaders of c1 and c2 modulo 2 to

get c′. The q3 bits go through the 2Z8 encoder and generate

vector 2u, u ∈ Z8, which is added to c′ (lifted to have integer

components) and then mapped to the Golden codeword Xt.

We now focus on the structure of the trellis code to be used.

We consider linear convolutional encoders over the quaternary

alphabet Z4 = {0, 1, 2, 3} with mod 4 operations, in order to

match the four way partitions. We assume the natural mapping

between pairs of bits and Z4 symbols, i.e., 0 → 00, 1 →
01, 2 → 10, 3 → 11. Let β ∈ Z4 denote the input symbol and

α1, . . . , α� ∈ Z4 denote the � output symbols generated by the

generator polynomials g1(D), . . . g�(D) over Z4.

Trellis labeling– In this subsection, we focus on slow block

fading cases. For fast fading cases, it can be derived similarly

by replacing the sums with the products in Δ′
min.

In order to increase the potential coding gain, the

lower bound Δ′
min in (6) should be maximized. Let

Δpar = 2�0+�δmin denote the minimum determinant of

the trellis parallel transitions corresponding to the Golden

codewords in the partition Λ�0+� + cv1. Let Δsim =
minX�=02×2L

∑to+L′−1
t=to

det(XtX
†
t ) denote the minimum de-

terminant on the shortest simple error event, where L′ is the

length of the shortest simple error event diverging from the

zero state at to and merging to the zero state at ti = to+L′−1.

The lower bound Δ′
min in (6) is determined either by the

parallel transition error events or by the shortest simple error

events in the trellis, i.e.,

Δ′
min = min {Δpar,Δsim}

≥ min
{

Δpar, min
Xto

det(Xto
X†

to
) + min

Xti

det(XtiX
†
ti

)
}

.

For fast block fading the above sum of two terms is replaced

by a product of the same two terms. The corresponding coding

gain will be

γ′
as = min {γ′

as(Δpar), γ′
as(Δsim)} . (12)

Therefore, we focus on Δ′
min and we have the following:

Design Criterion – The incoming and outgoing branches
for each state should belong to different cosets that have the
common father node as deep as possible in the partition tree.
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Fig. 2. Two level (� = 2) partition tree of Λ�0 into 16 cosets of Λ�0+2.

This guarantees that simple error events in the trellis give the
largest contribution to Δ′

min.
In order to fully satisfy the above criterion for a given

relative partition level �, the minimum number of trellis states

should be Nc = 4�. In order to reduce complexity we will

also consider trellis codes with fewer states. We will see in

the following that the performance loss of these suboptimal

codes (in terms of the above design rule) is marginal since

Δpar is dominating the code performance. Nevertheless, the

optimization of Δsim yields a performance enhancement. In

fact, maximizing Δsim has the effect of minimizing another

relevant term in the determinant spectrum.

Decoding – The decoder is structured as a typical TCM de-

coder, i.e. a Viterbi algorithm using a branch metric computer.

The branch metric computer should output the distance of the

received symbol from all the cosets of Λ�0+� in Λ�0 .

IV. CODE DESIGN EXAMPLE

In this section, we give an example to show the performance

of GST-TCM with different numbers of trellis states over slow

and fast block fading channels.

We assume each frame contains L = 130 symbols (2 × 2).

We first describe the uncoded Golden code scheme with the

same frame length, which is used as a reference system for

performance comparison.

Uncoded Golden code 6bpcu – A total of 12 bits must

be sent in a Golden codeword (3): the symbols a, b, c, d are

in a 8-QAM (3bits). This guarantees that the same average

energy is transmitted from both antennas. In this case we have

Es,2 = 1.5 and q = 3 bits.

GST-TCM Example – Consider Λ�0 = Z8,Λ�0+� = L8,

where �0 = 0, � = 3. Using 16-QAM we have 6 bpcu, Es,1 =
2.5 and q = 3 bits. Since we have a three level partition with

quotient group Λ�/Λ�0+� = Z8/L8 of order Nc = 64 we use

quaternary trellis encoders with rate Rc = 1/3. Then we have

q1 = 2 input information bits and nc = 6 output bits, which

label the 64 coset leaders. The sublattice encoder has q2 = 2
and q3 = 8 input bits, giving a total number of input bits per

information symbol q = (q1 +q2 +q3)/4 = 12/4 = 3bits, i.e.,

6 bpcu.

The 16 state GST-TCM has the following generator polyno-

mials: g1(D) = D, g2(D) = D2, g3(D) = 1 + D2, where D
is a delay operator. For the 16 state GST-TCM, at each trellis

state, four outgoing branches are labeled with α1, α2, α3,

corresponding to input β ∈ Z4. In this case, since α1 and
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Fig. 3. Performance comparison of 16- and 64-state trellis codes using 16-
QAM constellation and an uncoded transmission at the rate 6bpcu, Λ = Z8,
Λ� = L8, � = 3, slow block fading.

α2 are fixed, α3 varies. This guarantees an increased Δ′
min.

The four trellis branches arriving in each state are in cosets of

E8. This does not give the highest possible increase to Δ′
min

since α2 varies. This results in a suboptimal design, which

yields

Δ′
min ≥ min(8δmin, 4δmin + δmin + 2δmin) = 7δmin.

The above problem suggests the use of a 64 state encoder

with the generator polynomials: g1(D) = D, g2(D) =
D2, g3(D) = 1 + D3. In such a case, the output labels α1, α2

are fixed for all outgoing and incoming states. Only α3 varies

to choose different subgroups from the deepest partition level

in this example. This fully satisfies our design rule and yields

Δ′
min ≥ min(8δmin, 4δmin + δmin + 2δmin + 4δmin) = 8δmin.

Compared to 16 state GST-TCM, the 64 state GST-TCM has

a higher decoding complexity. It requires Nc = 256 lattice

decoding operations in each trellis section, while the 16 state

TCM only requires Nc = 64.

Performance of the proposed codes and the uncoded scheme

with 6 bpcu over a slow block fading channel is compared in

Fig. 3. We can observe that a 16 state GST-TCM outperforms

the uncoded scheme by 4.2 dB and is 3.1 dB away from

outage probability at the FER of 10−3. The 64 state GST-

TCM outperforms the uncoded case by 4.3 dB and 3 dB away

from outage probability at FER of 10−3.

In the case os fast fading the same codes as above are

compared in Fig. 4. It is shown that the 16 and 64 state

codes have the same performance and outperform the uncoded

Golden code by about 4.5 dB at the FER of 10−3.

V. CONCLUSIONS

In this paper, we presented GST-TCM, a coding scheme

suitable for 2×2 MIMO systems over slow and fast block fad-

ing channels. The inner modulation is the Golden code, which

provides the full diversity and non-vanishing determinant prop-

erty. Lattice set partitioning is designed specifically to increase

5 10 15 20 25
10−3

10−2

10−1

100

GC + Z8/L8 partition − 16 states TCM
GC + Z8/L8 partition − 64 states TCM
GC Uncoded

Fig. 4. Performance comparison of 16- and 64-state trellis codes using 16-
QAM constellation and an uncoded transmission at the rate 6bpcu, Λ = Z8,
Λ� = L8, � = 3, fast block fading.

the minimum determinant of the Golden codewords, which

label the branches of the trellis code. Viterbi algorithm is

applied in trellis decoding, where branch metrics are computed

by using a lattice decoder. The general framework for GST-

TCM design and optimization is based on Ungerboeck TCM

design rules. It is shown that the design criteria are robust to

various channel conditions ranging from slow to fast block

fading.
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