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Abstract— In this paper we study the effects of timing errors on
distributed space-time codes for collaborative communications.
We assume a half duplex, decode and forward scheme, where two
relaying nodes are not perfectly synchronized in forwarding. We
analyze 1) the impact of this asynchronism on the performance
of an Alamouti and a Golden code scheme with different types
of detectors, and 2) the sensitivity of above schemes to timing
errors with optimum detectors, when perfect knowledge of timing
errors is assumed. 1

I. INTRODUCTION

In a wireless communication channel, diversity techniques
are commonly used to combat fading. Recently, in sensor
network systems, there has been a growing interest in co-
operative diversity techniques, where multiple terminals in a
network cooperate to form a virtual antenna array in order to
exploit spatial diversity in a distributed manner. The spatial
diversity gain therefore can be obtained even when a local
antenna array is not available. Such cooperative transmission
protocols have been proposed in [1–10]. These protocols
can be categorized into two principal classes: the amplify-
and-forward (AF) scheme and the decode-and-forward (DF)
scheme. In this paper, we focus on the DF scheme.

In all above schemes, the networking systems are assumed
to have perfect symbol level time-synchronization. This can be
reasonably assumed only when the spatial diversity is provided
by an antenna array in one terminal. Cooperative diversity is
asynchronous in nature as it is provided by different antennas
in different terminals. The different distances between relays
and destination may cause some timing errors, which should
be considered in system design.

In [11], a method to achieve cooperative delay diversity
by artificial delays between relays was proposed. At the
destination receiver, a minimum mean square error (MMSE)
estimator is used to exploit cooperative diversity. In [12],
the authors developed a systematic construction of space-time
trellis codes that achieve full cooperative diversity in symbol
asynchronous (time delays are integer multiples of symbol
period) cooperative networking for any number of relays.

1This work was supported by Australian Research Council (ARC) under the
ARC Communications Research Network (ACoRN) RN0459498, ARC Dis-
covery Project DP0557310 and Early Career Researcher Supporting Scheme,
University of South Australia.

In [13], it is assumed that only packet synchronization is
available. Asynchronous relays within a symbol period will
result in small timing errors, which can reduce the benefits of
spatial diversity provided by the relays. Performance analysis
on the effect of timing errors was developed, where a simple
Alamouti scheme [14] is employed with a baseband raise
cosine pulse. Time reverse space-time codes and space-time
coded orthogonal frequency division multiplexing (OFDM)
were proposed to combat timing errors.

In our paper, we assume the same scenario as [13]. In
contrast, we consider a baseband square pulse. This constitutes
a simple worst case analysis with respect to a standard root
raised cosine pulse. We first develop performance analysis
on the effect of timing errors, where the Alamouti and the
Golden code schemes [15] are used with different detection
strategies. We further analyze the sensitivity of both schemes
to timing errors, where a maximum likelihood detector (MLD)
with knowledge of timing errors is assumed. It is shown that
simulation results agree with the analysis.

The rest of the paper is organized as follows. Section II
introduces a system model and performance analysis taking
into account of the effects of timing errors of distributed
space-time communication systems with Alamouti scheme.
Following that, the sensitivity of the scheme to timing errors
are analyzed. In Section III, we extend the above analysis to
the Golden code. Finally, conclusions are drawn in Section IV.

II. TIMING ERRORS IN THE ALAMOUTI SCHEME

In this Section, we consider a simple wireless network with
two terminals and one destination. The two terminals are two
relaying nodes cooperating in order to provide spatial diversity.

A. System Model

The system model is shown in Fig. 1. This model represents
a system using a DF scheme for distributed space-time coding
in half duplex mode. We assume that both terminals have
successfully decoded a packet of symbols.

Under the above assumptions, we now focus on how the
relaying nodes cooperatively forward the decoded symbols to
the destination by using Alamouti scheme. We assume that
the two relaying nodes are not fully synchronous and the time
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Fig. 1. System Model

delay τ is less than one symbol duration T , i.e., 0 < τ < T .
We also assume the destination is synchronous with one of
the relaying nodes. We therefore analyze the effect of timing
errors on the performance of such system, where the delay τ
may be known or unknown at the receiver.

B. Effects of Timing Errors

Let h1(t) and h2(t) be the complex baseband channel
impulse responses between the two relays and the destination.
We assume the channel is flat fading, i.e., hi(t) = hiδ(t)
where hi ∼ Nc(0, 1). In the block fading model the channel
changes from one packet to the next.

For simplicity, we consider a baseband square pulse p(t)
of duration T and amplitude one.2 We consider packets of
Alamouti codewords of length M and duration 2MT . Looking
at two consecutive transmitted Alamouti codewords

Relay 1
Relay 2

[

x2k−3 −x∗
2k−2

x2k−2 x∗
2k−3

] [

x2k−1 −x∗
2k

x2k x∗
2k−1

]

,

we can write the received signal as

r(t)=

M
∑

k=1

h1(t) ∗ [x2k−1p(t − (2k − 2)T )

−x∗
2kp(t − (2k − 1)T )]

+
M
∑

k=1

h2(t) ∗ [x2kp(t − (2k − 2)T − τ)

+x∗
2k−1p(t − (2k − 1)T − τ)

]

+ z(t), (1)

where τ is the delay between the relays.
The receiver uses a matched filter (MF) hMF (t) = p(t)

followed by a sampler at the instants nT . Define

ρ(t) = hMF (t) ∗ p(t) =







t 0 ≤ t < T
2T − t T ≤ t < 2T
0 elsewhere

then sampling the output of the MF at time nT yields

y2k−1 = h1x2k−1ρ(T ) + h2x2kρ(T − τ)

+h2x
∗
2k−3ρ(2T − τ) + z2k−1

y2k = −h1x
∗
2kρ(T ) + h2x

∗
2k−1ρ(T − τ)

+h2x2kρ(2T − τ) + z2k. (2)
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Fig. 2. Sampling at time nT in (2)
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Fig. 3. A simplified illustration of Fig. 2

Fig. 2 depicts the sampling process at time nT with timing
error τ in (2) yielding the output y2k−1. Both signal pulses
x2k and x∗

2k−3 (dashed lines) are shifted due to τ . This causes
the interference term x∗

2k−3ρ(2T − τ) and signal x2k with
degraded amplitude, i.e., x2kρ(T − τ), in (2). A simplified
illustration is given in 3. We now assume the receiver uses the
standard Alamouti detection scheme and we get the decision
variables (we set k = 1 to simplify the notation)

x̃1 = h∗
1y1 + h2y

∗
2

x̃2 = h∗
2y1 − h1y

∗
2

where x̃1 and x̃2 are given in (3) and (4), respectively. In (3)
and (4), we have

A =
[

|h1|2ρ(T ) + |h2|2ρ(T − τ)
]

B = h∗
1h2 [ρ(T − τ) − ρ(T )] x2

+
[

h∗
1h2x

∗
−1 + |h2|2x∗

2

]

ρ(2T − τ)

D = −h1h
∗
2 [ρ(T − τ) − ρ(T )] x1

+
[

|h2|2x∗
−1 − h1h

∗
2x

∗
2

]

ρ(2T − τ)

w1 = h∗
1z1 + h2z

∗
2

w2 = h∗
1z1 − h2z

∗
2

where w1, w2 ∼ Nc(0, (|h1|2 + |h2|2)N0).
For simplicity, let us consider a BPSK constellation S with

x1, x2 = ±1, the symbol error probability using symbol by
symbol detection, without knowledge of τ , can be evaluated

2Other baseband pulses, such as square root raised cosine pulse, can be
used here but more intersymbol interference terms of relatively small values
will appear.



x̃1 = h∗
1

[

h1x1ρ(T ) + h2x2ρ(T − τ) + h2x
∗
−1ρ(2T − τ) + z1

]

+h2 [−h1x
∗
2ρ(T ) + h2x

∗
1ρ(T − τ) + h2x2ρ(2T − τ) + z2]

∗

= |h1|2x1ρ(T ) + h∗
1h2x2ρ(T − τ) + h∗

1h2x
∗
−1ρ(2T − τ) + h∗

1z1

−h∗
1h2x2ρ(T ) + |h2|2x1ρ(T − τ) + |h2|2x∗

2ρ(2T − τ) + h2z
∗
2

=
[

|h1|2ρ(T ) + |h2|2ρ(T − τ)
]

x1 + h∗
1h2 [ρ(T − τ) − ρ(T )] x2

+
[

h∗
1h2x

∗
−1 + |h2|2x∗

2

]

ρ(2T − τ) + h∗
1z1 + h2z

∗
2

= Ax1 + B + w1, (3)

x̃2 = h∗
2

[

h1x1ρ(T ) + h2x2ρ(T − τ) + h2x
∗
−1ρ(2T − τ) + z1

]

−h1 [−h1x
∗
2ρ(T ) + h2x

∗
1ρ(T − τ) + h2x2ρ(2T − τ) + z2]

∗

= h1h
∗
2x1ρ(T ) + |h2|2x2ρ(T − τ) + |h2|2x∗

−1ρ(2T − τ) + h∗
2z1

|h1|2x2ρ(T ) − h1h
∗
2x1ρ(T − τ) − h∗

1h2x
∗
2ρ(2T − τ) − h1z

∗
2

=
[

|h1|2ρ(T ) + |h2|2ρ(T − τ)
]

x2 − h1h
∗
2 [ρ(T − τ) − ρ(T )] x1

+
[

|h2|2x∗
−1 − h1h

∗
2x

∗
2

]

ρ(2T − τ) + h∗
1z1 − h2z

∗
2

= Ax2 + D + w2, (4)

as

Pτ (e) = E[P (e|h1, h2, x−1, x2)]

= E

[

1

2
P (<(x̃1) > 0|x1 = −1)

+
1

2
P (<(x̃1) < 0|x1 = +1)

]

=
1

4
E

[

erfc

(

A −<(B)
√

(|h1|2 + |h2|2)N0

)

+erfc

(

A + <(B)
√

(|h1|2 + |h2|2)N0

)]

(5)

where P (e|h1, h2, x−1, x2) is the conditional error probability
and E[·] is the average over h1, h2, x−1, x2. Note that the same
result can be obtained using x̃2. The bit error rate (BER) is
shown in Fig. 4.

If τ is known at the receiver, a decision feedback equalizer
(DFE) can be used to cancel the interference from previous
symbol x−1. A slightly improved performance can be observed
in Fig. 5.

In Figs. 4 and 5, we notice that an error floor for large
Eb/N0 appears when τ/T ≥ 0.5. This is given by the
probability that E[P (<(B) > A|h1, h2, x−1, x2), w1 = 0],
which can be shown to vanish for τ/T < 0.5.

C. Sensitivity of the Alamouti Scheme to Timing Errors

Assuming τ is known at the receiver, using the ideal DFE,
an MLD is employed based on minimizing

min
x1,x2∈S

{

|y1 − h1x1ρ(T ) − h2x2ρ(T − τ)|2 (6)

+|y2 + h1x
∗
2ρ(T ) − h2x

∗
1ρ(T − τ) − h2x2ρ(2T − τ)|2

}

.

over all pairs of x1, x2 ∈ S.

We thus can rewrite (2) as

Yk = Hd × (D × Xk + X′
k) + Zk (7)

where

Yk = [y2k−1 y2k]
T

Hd = [h1 h2]

D =

[

ρ(T ) 0
0 ρ(T − τ)

]

Xk =

[

x2k−1 −x∗
2k

x2k x∗
2k−1

]

X′
k =

[

0 0
x2kρ(2T − τ) 0

]

and

Zk = [z2k−1 z2k]
T

If τ ≈ 0, we have ρ(2T − τ) ≈ 0, yielding X′
k ≈ 0, where

0 is a 2× 2 zero matrix. In such a case, diversity and coding
gains of the system depend on the determinant of D solely,
i.e., det(D) = 1 − τ/T . Since det(D) is less than 1, we
can see that a coding gain loss appears without affecting the
diversity gain.

If τ is large, we assume ρ(T − τ) ≈ 0 and ρ(2T − τ) ≈ 1.
Consequently, a large τ yields detD ≈ 0, which causes both
rank and determinant loss. Simulation results confirming the
above analysis are shown in Fig. 6. In particular, up to τ/T =
0.5, the performance curves maintain the same diversity.
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III. TIMING ERRORS ON THE GOLDEN CODE SCHEME

In this Section, we consider the same system model as
above. We assume that two relaying nodes with single antenna
cooperate by using the Golden code scheme to reach a two-
antenna receiver. Each relay transmits four QAM information
symbols using half Golden codeword as illustrated below. The
delay τ may be known or unknown at the receiver. We analyze
the effect of timing errors and the corresponding sensitivity to
timing errors respectively.

A. Effects of Timing Errors

Let H(t) = {hi,j(t)}, i, j = 1, 2, be the complex baseband
channel impulse responses between two relays and the two
destination antennas. We assume the channel is flat fading i.e.
hi,j(t) = hi,jδ(t) where hi,j ∼ Nc(0, 1). In the block fading
model the channel changes from one packet to the next.

We consider packets of length M Golden codewords with
duration 2MT . Assuming two consecutive Golden codewords
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Fig. 6. Impact of time delay on bit error rate for BPSK Alamouti scheme
using ML detection with ideal DFE

are sent

Relay 1
Relay 2

[

x4k−7 x4k−5

x4k−6 x4k−4

] [

x4k−3 x4k−1

x4k−2 x4k

]

the Golden codewords are encoded as

1√
5

[

α (a + bθ) α (c + dθ)
iᾱ
(

c + dθ̄
)

ᾱ
(

a + bθ̄
)

]

, (8)

where a, b, c, d ∈ Z[i] are the Q-QAM information symbols,
θ = 1− θ̄ = 1+

√
5

2 , α = 1 + i− iθ, ᾱ = 1 + i(1− θ̄), and the
factor 1√

5
is used to normalize energy [15]. This code has full

rate, full rank and non-vanishing determinant (δmin = 1/5)
for increasing constellation size Q [15]. We can write the two
received signals as

r1(t)=
M
∑

k=1

h11(t) ∗ [x4k−3p(t − (2k − 2)T )

+x4k−1p(t − (2k − 1)T )]

+

M
∑

k=1

h12(t) ∗ [x4k−2p(t − (2k − 2)T − τ)

+x4kp(t − (2k − 1)T − τ)] + z1(t), (9)

r2(t)=

M
∑

k=1

h21(t) ∗ [x4k−3p(t − (2k − 2)T )

+x4k−1p(t − (2k − 1)T )]

+

M
∑

k=1

h22(t) ∗ [x4k−2p(t − (2k − 2)T − τ)

+x4kp(t − (2k − 1)T − τ)] + z2(t). (10)

We assume we use the same matched filter as in the Alamouti
scheme for each receive antenna. Then sampling both outputs



of the MF at time nT yields four samples

y4k−3 = y1((2k − 1)T )

= h11x4k−3ρ(T ) + h12x4k−2ρ(T − τ)

+h12x4k−4ρ(2T − τ) + z4k−3,

y4k−1 = y1(2kT )

= h11x4k−1ρ(T ) + h12x4kρ(T − τ)

+h12x4k−2ρ(2T − τ) + z4k−1

y4k−2 = y2((2k − 1)T )

= h21x4k−3ρ(T ) + h22x4k−2ρ(T − τ)

+h22x4k−4ρ(2T − τ) + z4k−2,

y4k = y2(2kT )

= h21x4k−1ρ(T ) + h22x4kρ(T − τ)

+h22x4k−2ρ(2T − τ) + z4k.

Defining

y = [y4k−3, y4k−1, y4k−2, y4k]T ,

x = [x4k−3, x4k−1, x4k−2, x4k]T ,

z = [z4k−3, z4k−1, z4k−2, z4k]T ,

we write y = Hx + z, where

H=









h11ρ(T ) 0 h12ρ(T − τ) 0
0 h11ρ(T ) h12ρ(2T − τ) h12ρ(T − τ)

h21ρ(T ) 0 h22ρ(T − τ) 0
0 h21ρ(T ) h22ρ(2T − τ) h22ρ(T − τ)









Separating real and imaginary parts yields
[

<(y)
=(y)

]

=

[

<(H) −=(H)
=(H) <(H)

]

×
[

<(x)
=(x)

]

+

[

<(z)
=(z)

]

Note that in [15] the Golden code can be identified for
decoding purposes with the rotated lattice RZ

8 = {x = Ru},
where

u = [<(a), <(b), <(c), <(d), =(a), =(b), =(c), =(d)]
T

is an 8 dimension integer lattice and

R =
1
√

5

2

6

6

6

6

6

6

6

6

6

4

1 θ 0 0 −θ̄ 1 0 0

0 0 1 θ 0 0 −θ̄ 1

0 0 −θ 1 0 0 −1 −θ̄

1 θ̄ 0 0 −θ 1 0 0

θ̄ −1 0 0 1 θ 0 0

0 0 θ̄ −1 0 0 1 θ

0 0 1 θ̄ 0 0 −θ 1

θ −1 0 0 1 θ̄ 0 0

3

7

7

7

7

7

7

7

7

7

5

(11)

is a rotation matrix preserving the shape of the QAM infor-
mation symbols a, b, c, d. Eq. (11) can be written as

Y = Hu + Z (12)

where
H =

[

<(H) −=(H)
=(H) <(H)

]

× R, (13)

and
Y =

[

<(y)
=(y)

]

, Z =

[

<(z)
=(z)

]

. (14)

DFE is used to cancel the interference term from the previous
codeword. If τ is known at the receiver, a significant per-
formance improvement can be obtained by using MLD (see
Fig. 7). The MLD is obtained by a lattice decoder in order to
find u such that

min
u∈Z8

‖Y −Hu‖2
. (15)

If τ is unknown at the receiver, let us define

H̃=









h11 0 h12 0
0 h11 0 h12

h21 0 h22 0
0 h21 0 h22









(16)

and

H̃ =

[

<(H̃) −=(H̃)

=(H̃) <(H̃)

]

× R, (17)

The MLD is obtained by a lattice decoder in order to find u

such that

min
u∈Z8

∥

∥

∥
Y − H̃u

∥

∥

∥

2

. (18)

The performance can be observed in Fig. 8. We note that
severe error floor appears even for small values of τ/T .

B. Sensitivity of the Golden Code to Timing Errors

Assuming τ is known at the receiver, using the ideal DFE,
we have

H = Hd × D

where

Hd =











h11 0 h12 0

0 h11 h12 · ρ(2T−τ)
ρ(T−τ) h12

h21 0 h22 0

0 h21 h22 · ρ(2T−τ)
ρ(T−τ) h22











and

D =









ρ(T ) 0 0 0
0 ρ(T ) 0 0
0 0 ρ(T − τ) 0
0 0 0 ρ(T − τ)









If τ ≈ 0, we have

ρ(2T − τ)

ρ(T − τ)
≈ 0

and Hd
∼= H̃ in (16). Consequently, degradation of the

determinant of D, i.e., det(D) = (1 − τ/T )2, fully affects
the performance. For small τ , there is a small coding gain
loss without diversity gain loss, since det(D) is less than 1.
For large τ , we observe det(D) ≈ 0, which is equivalent to
loosing rank thereby reducing diversity, as illustrated in Fig. 7.

Note that the degradation of det(D) = (1 − τ/T )2 in the
Golden code scheme is more sensitive to timing errors τ , when
compared to that of det(D) = (1 − τ/T ) in the Alamouti
scheme.
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IV. CONCLUSIONS

In this paper we considered distributed space-time codes
for collaborative communications. We assumed a half duplex,
decode and forward scheme, where two relaying nodes are
not perfectly synchronized in forwarding and the delay is
limited to one symbol period. We analyzed the effect of
this asynchronism on the performance of an Alamouti and a
Golden code scheme with different types of detectors. We also
analyzed the sensitivity of both schemes to timing errors, when
optimum detectors are assumed with knowledge of τ . In all
cases, timing error τ is always a critical issue. With knowledge
of τ , the degradation of determinant det(D) always affects the
performance. This suggests us to use large determinant space-
time block codes to compensate the performance loss due to
the delay.
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