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Abstract-Integer-forcing (IF) linear receiver has been recently 
introduced for multiple-input multiple-output (MIMO) fading 
channels. The receiver has to compute an integer linear com
bination of the symbols as a part of the decoding process. 
In particular, the integer coefficients have to be chosen based 
on the channel realizations, and the choice of such coefficients 
is known to determine the receiver performance. The original 
known solution of finding these integers was based on exhaustive 
search. A practical algorithm based on HKZ and Minkowski 
lattice reduction algorithms was also proposed recently. In this 
paper, we propose a low-complexity method to obtain the integer 
coefficients for the IF receiver. For the 2 x 2 MIMO channel, 
we study the effectiveness of the proposed method in terms of 
the ergodic rate. We also compare the bit error rate (BER) of 
our approach with that of other linear receivers, and show that 
the suggested algorithm outperforms the minimum mean square 
estimator (MMSE) and zero-forcing (ZF) linear receivers, but 
trades-off error performance for complexity in comparison with 
the IF receiver based on exhaustive search or on HKZ and 
Minkowski lattice reduction algorithms. 

Index Terms-CLLL algorithm, MIMO, linear receivers. 

I. INTRODUCTION 

In multipath fading channels, using multiple antennas at the 
transceivers is known to provide large capacity gains. Such a 
capacity gain comes at the cost of high decoding complexity 
at the receiver. It is known that a high-complexity joint ML 
decoder can be employed at the receiver to reliably recover 
the information. On the other hand, the linear receivers such 
as the ZF and the MMSE receiver [7] reduce the decoding 
complexity trading-off error performance. 

The integer forcing (IF) linear receiver has been recently 
proposed [15]. This new architecture obtains high rates in 
MIMO fading channels. In this approach, the transmitter em
ploys a layered structure with identical lattice codes for each 
layer. Then each receive antenna is allowed to find an integer 
linear combination of transmitted codewords. The decoded 
point will be another lattice point because any integer linear 
combination of lattice points is another lattice point. This idea 
has been brought to MIMO channels from the compute-and
forward protocol for physical layer network coding [4], [5]. 

In the MIMO IF architecture, a filtering matrix B and a 
non-singular integer matrix A are needed such that BH � A 
with minimum quantization error at high signal-to-noise ratio 
(SNR) values. The exhaustive search solution to the problem of 
finding A, B is addressed in [15]. It is prohibitively complex 
already for 2 x 2 real MIMO and becomes untractable for 
2 x 2 complex MIMO and beyond. A smart practical method 
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of finding A based on HKZ and Minkowski lattice reduction 
algorithms has been proposed recently [9]. This provides full 
receive diversity with much lower complexity in comparison 
to exhaustive search. The major differences between integer
forcing linear receivers and lattice reduction aided MIMO 
detectors [11], [12], [14] are also presented in [9]. 

In this paper, we propose a low-complexity method for 
choosing the above matrices. In [9], [15], a 2n-layered scheme 
is considered with real lattice code book for each layer. Unlike 
the model there, we work on complex entries and we lift that 
set-up to complex case. The proposed method is a combination 
of three low-complexity methods which are based on complex 
lattice reduction (CLLL) [2] technique for a lattice, and 
singular value decomposition (SVD) of matrices. For the 2 x 2 
MIMO channel, we compare the performance (in terms of 
ergodic rate and uncoded probability of error) of the proposed 
low-complexity solution with the known linear receivers and 
show that the proposed solution (i) provides a lower bound 
on the ergodic rate of the IF receiver, (ii) outperforms the ZF 
and MMSE receivers in probability of error, and (iii) trades off 
error performance for computational complexity in comparison 
with exhaustive search and other lattice reduction methods 
including HKZ and Minkowski algorithms. 

The rest of the paper is organized as follows. In Section II, 
we give a brief background on lattices. We present the problem 
statement along with the signal model in Section III. In 
Section IV, we study the solution to the IF receiver via two 
CLLL algorithms. In Section V, we show some simulation 
results on the performance of IF receiver in ergodic MIMO 
setting. Finally, we present concluding remarks in Section VI. 

Notations. Row vectors are presented by boldface letters, 
and matrices are denoted by capital boldface letters. Let v 
be a vector, vT denotes transposition, and vh denotes the 
Hermitian transposition. We show the n x n identity and zero 
matrix as In and On respectively. For a matrix X, the element 
in the k-th row and moth column of X will be denoted by 
Xk,m. The sets <C, and Z[i] denote the set of all complex 
numbers, and the Gaussian integer ring, respectively, where 
i = A. If Z E <C, then �(z) is the real part and 8'(z) is the 
imaginary part of z. Let I . I denote the modulus of a complex 
number. The II . II operation denotes the norm square of a 
vector. For a complex number z, the closest Gaussian integer 
to z is denoted by l z l, which we refer as the quantization of z. 
The notation l v l is the component-wise quantized version of 
the vector v. The Hermitian product of a and b is defined by 



(a, b) £ bha. Finally, the set of orthogonal vectors generated 
by the Gram-Schmidt orthogonalization procedure are denoted 
by {GS(d1), ... , GS(dn)}. 

II. BACKGROUND ON LATTICES AND CLLL ALGORITHM 

A lattice A with basis {gl, g2, ... ,gn}, where gk E en, is 
the set of all points {x = u G I u E Z [it}. A generator matrix 
f A ·  I "  G [T T] T or IS an n x n comp ex matnx = gl"'" gn . 
The Gram matrix of A is M = GGh. The m-th successive 
minima of A, denoted by Am, is the radius of the smallest 
possible closed ball around origin containing m or more 
linearly independent lattice points. 

In complex lattice reduction, we let G' = UG, where U 
is an unimodular matrix. Let us define 

(ge,GS (gj)) 
Me,j = 

IIGS (gj) 112 

where 1 ::; g, j ::; n. A generator matrix G' is said to be 
CLLL-reduced if the following two conditions are satisfied [2]: 

1) for 1 ::; j < g ::; n 

2) for 1 < m ::; n, 

where 5 E (1/2, 1] is a factor selected to achieve a good 
quality-complexity tradeoff. 

An algorithm is provided in [2] to evaluate a CLLL-reduced 
basis matrix G' of a lattice A with a generator matrix G. The 
input of this algorithm is the matrix G and a factor 5, and the 
outputs of the algorithm are the unimodular matrix U and the 
CLLL-reduced basis matrix G' such that G' = UG. 

III. SIGNAL MODEL AND PROBLEM STATEMENT 

A flat-fading MIMO channel with n transmit antennas 
and n receive antennas is considered. The channel matrix H 
is in enxn, where the entries of H are i.i.d. as CN(O,l) 
this channel coefficient remains fixed for a given interval (of 
at least N complex channel uses) and take an independent 
realization in the next interval. We use a n-Iayer transmission 
scheme where the information transmitted across different 
antennas are statistically independent. For 1 ::; m ::; n, the 
m-th layer is equipped with an encoder Em : n k ---+ eN. This 
encoder maps a vector message m E n k, where n is a ring, 
into a lattice codeword Xm E A c eN. If X denotes the 
matrix of transmitted vectors, the received signal Y is given 
by Y = JPHX + Z, where P = 

S�R and SNR denotes 
the average signal-to-noise ratio at each receive antenna. The 
entries of Z are i.i.d. and distributed as CN(O, 1). We also 
assume that the channel state information is only available at 
the receiver. The goal of IF linear receiver is to approximate 
H with a non-singular integer matrix A. Since we suppose 
the information symbols to be in the ring n, we look for an 
invertible matrix A over the ring n. Thus, we have 

y' = BY = VP AX + VP(BH - A)X + BZ. 
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As JP AX is the useful signal component, the effective noise 
is v'P(BH - A)X + BZ. In particular, the power of the m-th 
row of effective noise is IIbml12 + PllbmH - am112. Hence, 
we define 

where am and bm denote the m-th row of A and B, 
respectively. Note that in order to increase the effective signal 
to noise ratio for each layer, the term g( am, bm) has to be 
minimized for each m by appropriately selecting the matrices 
A and B. We formally put forth the problem statement below: 

Given Hand P, the problem [15] is to find the matrices 
B E enxn and A E Z[i]nxn such that 

• the max1< m<n g(am, bm) is minimized, and 
• the corresponding matrix A is invertible over the 

ring n. 

In order to have ZF receiver, we put B = H-1 and A = In. 
If we let B = HhS-1 where 

s = p-1In + HHh, (2) 

and A = In, then we get the linear MMSE receiver. 
In [15], the authors have proposed a method to obtain A 

and B, which reduces g(am, bm) for each m. We now recall 
the approach presented in [15]. First, conditioned on a fixed 
am = a, the term g(a, bm) is minimized over all possible 
values of bm. As a result, the optimum value of bm can be 
obtained as 

(3) 

Then, after replacing bm of (3) in g(a, bm), one has to 
minimize g( a, aHhS -1) over all possible values of a to obtain 
am as am = argminag(a,aHhS-1). The last expression can 
be written as 

am = argmin aYDyhah, a (4) 

where Y is the matrix composed of the eigenvectors of 
HHh and D is a diagonal matrix with m-th entry Dm,m = 

(p p'?n + 1) -1, where Pm is the m-th singular value of H. 
With this, we have to obtain n vectors {am} which result in 
the first n smaller values of a YDyhah along with the non
singular property on A. In order to get am, 1 ::; m ::; n, the 
authors of [15] have suggested an exhaustive search for each 
component of am within a sphere of squared radius 

(5) 

where Pmax = maxm Pm. It has also been pointed out in [15] 

that this search can be accelerated by means of a sphere 
decoder on the lattice with Gram matrix M' = YDyh. For a 
fixed P, the complexity of this approach is of order 0 (pn). 
It is also shown in [15] that the exhaustive search approach 
provides a diversity order of n and a multiplexing gain of n. 
At this stage, we note that the exhaustive computation of am 
has high computational complexity, especially for large values 
of P and n, and hence the approach in [15] is not practical 



even for the 2 x 2 complex case. 
The best possible am's for this problem are the set of all 

successive minimas of VD!, which can be approximately 
computed by either the Minkowski or HKZ lattice reduction 
algorithms [6], [8], [16]. In [9], using HKZ and Minkowski 
reduction algorithms, we obtain the matrices A and Band 
show that these practical algorithms achieve full receive diver
sity in terms of error performance with reasonable complexity. 
Since the CLLL algorithm has lower complexity than HKZ 
and Minkowski reduction algorithms, it could be employed to 
get matrix A as well. Hence, in the rest of the paper we focus 
on using CLLL algorithm to find the best possible A for our 
problem. 

IV. LOW-COMPLEXITY IF RECEIVERS 

In this section, we propose three low-complexity methods 
to obtain some candidates for the rows of A. The first two 
are based on CLLL algorithm and the last one is based on 
SVD decomposition. Then, we propose a selective combining 
technique to choose the rows of A from the candidate rows. 
Once we obtain A, we obtain B as B = AH hs-l , where Sis 
given in (2). Henceforth, we only address systematic methods 
to obtain A. 

A. Algorithm 1 via CLLL 

It is pointed out in [15] that the minimization problem in (4) 

is the shortest vector problem for a lattice with Gram matrix 
M' = VDVh. Since M' is a positive definite matrix, we can 
write M' = LLh for some L E cnxn by using Choelsky 
decomposition. With this, the rows of L = VD! generate 
a lattice, say N. Based on (4), a set of possible choices 
for {a1, ... , an} is the set of complex integer vectors whose 
corresponding lattice points in N have lengths at most equal 
to the n-th successive minima of N. However, finding these 
vectors is again computationally complex. 

Input: HE cnxn, and P. 
Output: A set of n candidates for the rows of A. 

1) Form L = VD! of a lattice N. 
2) Reduce L to Lclll by CLLL algorithm. 
3) The n rows of LclllL -1 provides n values of am. 

We now use the CLLL algorithm [2] to obtain the complex 
integer vectors. In particular, we use the CLLL algorithm to 
reduce the basis set in L to obtain a new basis set represented 
by the rows of Lclll. For each 1 :s; m :s; n, it is known that 
the length of the m-th row vector in Lclll is upper bounded 
by a scaled version of the m-th successive minima of N [2]. 

Hence, the rows of LclllL -1 can be used to obtain n possible 
choices for the desired matrix A. We note that the structure of 
the above algorithm is exactly the same as the one presented 
in [9] with only one difference: we used HKZ and Minkowski 
lattice reduction algorithms instead of CLLL algorithm. 
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B. Algorithm 2 via CLLL 

Given Hand P, let us define a 2n-dimensional complex 
lattice A generated by 

G = [ p-�2In I �� ] E c2nx2n. (6) 

The Gram matrix of this lattice is M = GGh. The Schur's 
component of M denoted by (MIS) is given by (M IS) = 

In - HhS-1 H, while the Schur's decomposition of M can be 
derived as, 

Replacing H by its SVD representation, one can easily observe 
that M' = (MIS). Consider x E A where x = uG and 
u E Z[ij2n and u = [bla] forming by adjoining row vector 
a after b for some a, b E Z[i]n. For u = [dlc] with 
d,c E Z[i]n, we define f(c,d) � uMu h. Further, we expand 
the term f(c,d) to obtain f(c,d) = p-111d112 + IldH - cI12. 
Note that f(c, d) = P-1g(C, d). Therefore, the solutions 
to the minimization of f( c, d) are also the solutions to the 
minimization of g( c, d). Towards minimizing f( c, d), one can 
immediately recognize that solving minimization of f (c, d) is 
nothing but finding the shortest vector of A. For the matrix 
G in (6), let Gclll denote the 2n-dimensional CLLL-reduced 
generator matrix of A. Using the short vectors in Gclll, we 
obtain the complex integer matrix U with 2n row vectors 
Um = [dmlcm] such that U = GcllIG-1. With this, we 
have obtained complex integer vectors dm, Cm which results 
in smaller values for g( d, c). Hence, the vectors dm, Cm can 
be readily used for the IF architecture as bm = d m, and 
am = Cm. However, we do not use bm as it is a complex 
integer vector. In such a case, b mH -I- am even for large SNR 
values which in turn results in an error floor in the probability 
of error. Instead, we only use am, and subsequently obtain bm 
using (3). This algorithm can be summarized as: 

Input: H E cnxn, and P. 
Output: A set of 2n candidates for the rows of A. 

1) Form the matrix G as in (6). 

2) Reduce G to Gclll by CLLL and compute U 
GcllIG-1. 

3) Use Um = [dmlcmL choose am = Cm for 1 :s; 
m :s; 2n and put bm as in (3). 

Remark 1: It is important to highlight the difference be
tween Algorithm 1 and Algorithm 2. In Algorithm 1, a set 
of candidates for am are chosen via the CLLL reduction 
technique on a n-dimensional complex lattice. However, in Al
gorithm 2, we jointly obtain dm and Cm on a 2n-dimensional 
complex lattice, and only use am = Cm as candidates for the 
rows of A. Note that vectors am delivered from Algorithm 2 
can be different from that of Algorithm 1, since Algorithm 2 
attempts to minimize g(a, b), whereas Algorithm 1 attempts 
to solve minimization of aVDVhah. 
Note that, the CLLL algorithm guarantees the existence of at 
least n vectors of the lattice A such that the vector in the first 



row of R is most likely the shortest vector of the lattice. 

C. Algorithm 3 via SVD 

For large values of P, we can [15] write am VDVha� in 
(4) as P1211vla�112 + . . .  + p;:21Ivna�r where Vk denotes 
the k-th row of V. From the SVD property, we have Pmin = 

PI and Pmax = Pn· If Pmax » Pj for j i- n, then the above 
equation suggests us to select all am, 1 :s; m :s; n, along the 
direction of Vn, and as short as possible. On the other hand, 
if Pk is large for each k, and are comparable, then a set of 
good candidates can come from choosing a complex integer 
vector along each Vk. 

Input: H E  cnxn, and P. 
Output: A set of n candidates for the rows of A. 

1) Obtain the SVD of Has H = U�Vh. 
2) Choose am = l Vm l for 1 :s; m :s; n. 

Therefore, another n possible choices for integer vectors can 
be obtained from the rows of V as am = l v m l for 1 :s; m :s; 
n, where l·l denotes the nearest integer of a real number. 

D. Combined CLLL-SVD solution 

Till now, we have proposed three different low-complexity 
algorithms to obtain candidate vectors for the rows of A. 
Algorithm 1 gives us n choices, Algorithm 2 delivers 2n 
choices, whereas Algorithm 3 brings another n possible 
choices. Overall, we can use all the 4n candidate vectors for 
am and obtain the corresponding vectors bm, 1 :s; m :s; 4n 
using the relation in (3). With this, we have 4n pairs of 
(am, bm). Now, we proceed to sort these 4n vectors in the 
increasing order of their g(am, bm) values. Then, we find the 
first n vectors which form an invertible matrix over the ring 
R. Note that all the three algorithms have low computational 
complexity. As a result, the combining algorithm has lower 
computational complexity than the exhaustive search and other 
lattice reduction algorithms like HKZ and Minkowski, and 
hence, the proposed technique is amenable to implementation. 
We refer to the combined solution as "combined CLLL-SVD 
solution". It is clear that the combined CLLL-SVD method 
includes at most a 2n-dimensional CLLL algorithm with 
complexity 0 ( 4n 2 log(2n)) following by a sorting algorithm 
of size 4n with complexity 0 (4n log( 4n ) ). Therefore the 
complexity of this approach is O (4n2 10g(2n)) and it is 
obviously independent of P. 

V. SIMULATION RESULTS 

In this section, we present simulation results on the ergodic 
rate (see [9] or [10] for definition of ergodic rate) and the 
probability of error for the following receiver architectures on 
2 x 2 MIMO channel: (i) IF linear receiver with exhaustive 
search, (ii) IF linear receiver with Minkowski lattice reduction 
solution [9], (iii) IF linear receiver with combined CLLL-SVD 
solution, (iv) the ZF and MMSE linear receiver, and (v) the 
joint maximum likelihood (ML) decoder. For the IF receiver 
with exhaustive search, the results are presented with the 
constraint of fixed radius for the exhaustive search. We have 
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Fig. l. Ergodic rate of various linear receivers for 2 x 2 MIMO channel. 

not used the radius constraint given in (5) as the corresponding 
search space increases with P. Instead, we have used a fixed 
radius of 8 for all values of P. By relaxing this constraint, we 
have reduced the complexity of brute force search, noticeably. 

In Fig. 1, we present the ergodic rate of the above listed 
receivers, wherein, for the case of ML receiver, the ergodic 
capacity [13] of 2 x 2 MIMO channel has been presented. The 
rate for IF linear receiver with Minkowski lattice reduction 
solution is cited from [9]. We observe that the combined 
CLLL-SVD solution performs pretty much the same as IF 
receiver with exhaustive search and IF based on Minkowski 
lattice reduction solution at low and moderate SNRs. Also, 
note that the combined CLLL-SVD and Minkowski lattice 
reduction solutions give lower bounds on the ergodic rate of 
exhaustive search based IF receiver while the latter one is 
tighter. For the ergodic rate results of the IF receiver, we have 
used A matrices which are invertible over Z[i]. 

Now, we present the uncoded bit error rate (BER) for the 
above receiver architectures with 4-QAM constellation. We 
use the finite constellation S = {D, 1, i, 1 + i} carved out of 
the infinite lattice Z[i]. Note that Z[i] = S EEl 

J
Z[i]. In this 

method, the received vector is of the form, y = 
S� Hs+z, 

where s E S2x 1. For the above setting, we use modulo lattice 
decoding at the receiver. Each component of y is decoded 
to the nearest point in Z[i] and then "modulo 2" operation 
is performed independently on its in-phase and quadrature 
component. With this, we get r E S2x 1 from both the com
ponents of y. Further, we solve the system of linear equations 
r = As modulo 2 over the ring R to obtain the decoded vector 
s. In Fig. 2, we present the BER results for all the five receiver 
architectures. Note that both the IF receiver with combined 
CLLL-SVD and Minkowski lattice reduction solutions out
perform the ZF and MMSE architectures, but trades-off error 
performance for complexity in comparison with brute force 
search. In particular, the combined CLLL-SVD approach fails 
to provide diversity results as that of the exhaustive search and 
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Fig. 2. BER for various linear receivers with 4-QAM constellation. 

Minkowski lattice reduction approaches. This diversity loss 
is due to the larger value of maxm g(am, bm) delivered by 
the combined CLLL-SVD algorithm in comparison with the 
optimum solution. For the probability of error results of the 
IF receiver, we have used A matrices which are invertible 
over Z2[ij. We have observed similar results for 4 x 4 MIMO 
channels as well. 

V I. CONCLUSIONS 

In [9], Algorithm 1 along with HKZ and Minkowski lattice 
reduction algorithms was employed to find the matrix A. 
Algorithm 1 which includes the complex LLL method as an 
alternate technique for the above reduction methods turned 
out to be not satisfactory in terms of ergodic rate and error 
performance. Hence, we have tried to improve effectiveness 
of CLLL algorithm by combining it with other approaches 
such as Algorithms 2 and 3. We have proposed a low
complexity systematic method called the combined CLLL
SVD algorithm for the MIMO IF architecture. Simulation 
results on the ergodic rate and the probability of error were 
also presented to reveal the effectiveness of combined CLLL
SVD solution versus other linear receivers. The proposed com
bined algorithm trades-off error performance for complexity 
in comparison with both IF receivers based on exhaustive 
search and Minkowski or HKZ lattice reduction algorithms. 
Further improvements are required to achieve results which 
are competitive with IF receivers based on exhaustive search 
and the ones presented in [9]. 
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