
Software Defined Radio Implementation of a
Two-way Relay Network with Digital Network

Coding
Dmitry Kramarev, Yi Hong, and Emanuele Viterbo

Department of Electrical and Computer Systems Engineering,
Monash University, Australia

Email: {dmitry.kramarev, yi.hong, emanuele.viterbo}@monash.edu

Abstract—Network coding is a technology which has the
potential to increase network throughput beyond existing stan-
dards based on routing. Despite the fact, that the theoretical
understanding is mature, there have been only a few papers
on implementation of network coding and demonstration of a
working testbed. This paper presents the implementation of
a two-way relay network with digital network coding. Unlike
previous work, where the testbeds are implemented on custom
hardware, we implement the testbed on GNU Radio, an open-
source software defined radio platform. In this paper we discuss
the implementation issues and the ways to overcome the hardware
imperfections and software inadequacies of the GNU Radio
platform. Using our testbed we measure the throughput of the
system in an indoor environment. The experimental results show
that the network coding outperforms the traditional routing as
predicted by the theoretical analysis.

Index Terms—Software-defined radio, GNU radio, network
coding, two-way relay network, testbed, network coding imple-
mentation.

I. INTRODUCTION

In the simplest two-way relay network (TWRN), two
terminals A and B exchange information via relay R. The
relay is needed when the terminals are unable to communicate
directly due to large distance, low SNR or major obstacles.
The traditional scheduling (TS) scheme implements such
communication in four time slots, as shown in Figure 1a.
First, A transmits a message m1 to relay R; second, relay R
forwards m1 to B. In the third and fourth time slots, terminal
B transmits a message m2 to relay R, and R forwards m2

to A, respectively. With digital network coding (DNC), it is
possible to increase the throughput of the network by 33%
via reducing the number of time slots to three, as shown in
(Figure 1b). In the first and second time slots, each terminal
transmits its message m1 and m2 to the relay, then in the
third slot, relay R broadcasts the XOR of the two received
messages m1 ⊕m2 to both terminals. In this case, a terminal
is able to recover the information based on the received
combination and its own transmitted message. DNC was first
proposed in [1] and [2]. Physical-layer network coding (PNC)
proposed in [3] allows for further reduction of the number of
time slots to two, by superposing the first and the second time
slots. The design of a PNC testbed will be investigated in
our future work. In [4] Louie et al. compare the performance

N210 N210

N210

N210 N210

N210

A B

R

A B

R

1 2

34

1 2

33

(a)

N210 N210

N210

N210 N210

N210

A B

R

A B

R

1 2

34

1 2

33

(b)

Fig. 1: Two-way relay network with (a) the four-hop TS, and
(b) three-hop DNC scheme

of the two-, three-, and four-hop TWRNs. The paper also
provides an extensive survey of the recent theoretical work
on network coding for two-way relay networks.

Although a significant number of theoretical results have
been verified by simulations, limited results are available on
the implementation of TWRN testbeds on real-time hardware.
Only a few implementations of DNC in TWRN or larger relay
networks are reported in [2], [5] and [6]. For example, [5]
demonstrates essential reduction of time required to exchange
video files between smartphones, in case DNC is employed.
In [2], Katti et al. present a new architecture for wireless
mesh networks (COPE), which improves the throughput of
wireless networks by forwarding DNC mixed packets. The
testbed consists of 20 wireless nodes located on two floors of
a building. In addition to demonstrating advantages of DNC,
the authors also investigate the implementation issues of a
large network, such as the congestions control, traffic patterns

2014 Australian Communications Theory Workshop (AusCTW)

978-1-4799-3354-9/14/$31.00 ©2014 IEEE 120

and optimal routing. Another example of implementation
of a multi-hop relay network with MIMO network coding
is provided in [6]. The MIMO TWRN implements data
exchange within two time slots by transmitting messages
from both the terminals at the same time. Both messages are
fully recovered by exploiting multiuser antenna diversity of
MIMO system with space-time coding. Then the messages
are XORed and broadcasted in the second time slot.

All the testbeds, mentioned above are implemented on
specific dedicated hardware. Such hardware provides only
a few opportunities to easily modify the important physical
layer functions and parameters such as modulation type,
frequency range etc., or extend an experiment. In contrast,
software-defined radio (SDR) enables to implement in
software all the baseband signal processing algorithms such
as modulation, demodulation, filtering, and synchronization
[7] - [9]. The hardware for SDR is based on an inexpensive
simple RF front-end, followed by analog-to-digital and
digital-to-analog converters. SDR introduces significant
flexibility and programmability, compared to traditional
communication systems.

Taking into account this gap between theory and practice
we see the interest for implementation of a two-way relay
network testbed using SDR. As a first step towards the
implementation of PNC in TWRN, we design a three-hop
DNC relay network using GNU Radio, an open-source SDR
platform. GNU Radio provides signal processing blocks
to implement software radios using external low-cost RF
hardware. GNU Radio applications, written in the Python
language consist of signal processing blocks implemented in
C++. Using these blocks and creating new custom blocks,
we are able to implement real-time radio systems in a
simple-to-use environment [10]. In this paper we discuss the
implementation challenges in GNU Radio and analyze the
performance of our testbed.

The rest of this paper is organized as follows. In Section II
we describe some implementation aspects and ways we have
used to resolve them. Section III provides detail description
of two-way relay network schemes for our testbed. The
experimental environment and measurements results are
provided in Section IV. Finally, Section V concludes this
paper and discusses directions for future work.

II. IMPLEMENTATION ASPECTS OF THE HALF-DUPLEX
COMMUNICATION

In this section we discuss implementation aspects for the
half-duplex communication used in the prototype testbed.
We start with the discussion of hardware and software
platforms, and we then present design aspects for half-duplex
packet-switched communications in GNU Radio. Also, we
summarize all the parameters of the different blocks involved
in the design and describe the used packet format.

-�
Wb

Fig. 2: Bandpass signal spectrum with IF processing

A. Hardware and Software

The hardware platform is based on Universal Software
Radio Peripheral (USRP) N210 from Ettus Research [11].
Each USRP is equipped with an half-duplex XCVR2450
daughterboard operating in 2.4-2.5 GHz and 4.9-5.9 GHz dual
band. The GigE interface connects the USRP and the host
PC, and allows for 25 MSPS (16-bit) data transfer. We set
the carrier frequency at 2.41 GHz and the sampling rate at
6.25 Msps (complex samples) at the USRP source and sink.
A terminal is implemented with an USRP N210 connected to
an individual PC running GNU Radio. The software is based
upon GNU Radio 3.6.2.

B. Mitigation of the USRP Transmission noise

Measurements with a spectrum analyzer indicate, that RFs
of the daughterboards have a significant DC component,
volume of which largely varies from one daughterboard to an-
other. This phenomenon causes TX gain control parameters to
be unrepresentative and the TX SNR uncontrollable. As such,
swapping of two terminals can cause significant degradation
of the system throughput, especially with lower TX gains.

In order to mitigate this TX noise impact we have employed
additional digital up/down-conversion of the baseband signal
to a small intermediate frequency (IF). The intermediate
frequency fI is chosen such that fI > Wb/2, where Wb is
the bandwidth of the transmitted signal. The baseband signal
is first up-converted to IF on the TX side using the onboard
FPGA. Then, we choose the carrier frequency fc in the USRP
sink such that:

fc = fd − fI ,

where fd is the actual transmitted carrier frequency. The
spectrum of the resulting bandpass signal after IF processing
is illustrated in Figure 2. Similarly, on the receiver side,
the bandpass signal is first down-converted to IF fI by the
USRP’s daughterboard and further digital down-conversion to
baseband is performed by the FPGA on the motherboard. As a
result, the unwanted noisy component is shifted to frequency

2014 Australian Communications Theory Workshop (AusCTW)

121

f = −fI < Wb/2 and suppressed by the pulse-shaping
filter before demodulation. Thus, our IF processing improves
the TX SNR, and in turn increases the effective range of
TX gains. This makes manual calibration of the TX power
unnecessary.

C. Half-Duplex Packet Switching in GNU Radio

The current GNU Radio software architecture is primarily
aimed at processing continuous data streams. Packet switching
is therefore difficult to implement in the GNU Radio receiver
due to the bursty nature of the incoming stream. In the current
version of GNU Radio blocks are not clocked and operate
under the control of a scheduler, which attempts to provide a
steady stream of input data to each signal processing block.
To the best of our knowledge there is no half-duplex packet
switching implementations which would be satisfactory to
adopt in our project in GNU Radio.

We employ the transmit-on-receive approach, i.e., a
terminal transmits its packet upon reception from the other
terminal. This approach identifies the terminal starting
communication as the master and the other as the slave.

preamble
detected?

postamble
correct?

packet_no ==
packet_no_expected?

Initializing

listen

Begin

packet_no++

Make a new packet

Send packet

yes

yes

yes

no

no

ECC decoding

timeout_flag ==1

no

no

CRC correct?

Save payload

yes

no

yes

Begin

reset timer

idle

timer>Tout

reset timer
timeout_flag =1

yes

no

reset timer

Master Mode only

Fig. 3: A terminal operation flowchart

Packets are equipped with sequence number which is used
as an ACK/NACK mechanism. The transmitter decides if
the transmitted packet has been received successfully by
the receiver, based on the reply packet number. Reception
of a corrupted packet will cause the retransmission of the
previous packet, which in turn causes the retransmission
of the corrupted packet. The flowchart of this half-
duplex packet switching protocol is presented in Figure 3.
Upon reception from the other terminal, the terminal
compares the packet number of the received packet with
the expected packet number. If these numbers are equal,
the terminal increments its own packet number and in
turn transmits the next packet, otherwise re-transmits the
previous packet. The master retransmits on timeout in case
the communication is lost. The slave starts transmitting only
after receiving a packet from the master.

We implemented this half-duplex packet switching protocol
in Python and included it into GNU Radio Companion (GRC)
flow graphs as a custom block, as shown in Figures 8,9.
The GRC flow graphs are described in details in the Appendix.

D. Block Parameters and Packet Format

Table I contains parameters for the communication between
two USRP devices.

Block Parameter Value
USRP USRP Sample Rate 6.25M

Antenna J1
Rx Gain 0 dB

Mod./Demod. Modulation Scheme DQPSK (Gray code)
Samples per symbol 2
Excess BW 0.3
AGC Default

Half-duplex Packet Length 4096 bytes
Correlator Tolerance 9
Master Timeout Tout 0.05 s.
Guard time Tg 0.006 s.
ECC (10,8) Reed-Solomon,

CRC Adler-32

TABLE I: Parameters of design and experiments

The packet format is presented in Figure 4. A packet
begins with 128 bytes of dummy data, followed by 8-bytes
access code. The dummy data is sent at the beginning of the
packet and is used for carrier, phase and timing recovery on
the receiver side. An access code is needed for addressing
the destination terminal and for frame synchronization.
The next part of the packet consists of one byte packet

Dummy Data Access Code packet no Encoded payload CRC pad 0x55 0xFF

128 bytes 8 bytes 1 byte 1 byte

4 bytes
4096 bytes

4 bytes

SOB EOB

Fig. 4: Packet format

2014 Australian Communications Theory Workshop (AusCTW)

122

A

R

B

A

R

B
0 1 2 3 1 1 2 32

timeout

timetime

(a) (b)

1 2 3 4 1 1 2 32 1 2 3 4

timeout timeout Tg Tg Tg

Fig. 5: Network synchronization: (a) the four-hop scheme, (b) the three-hop scheme

sequence number followed by the encoded payload, CRC
checksum, the pad and the postamble. For ECC we employ
the (10, 8) Reed-Solomon code over GF (28), available in
the Python extension module [12]. CRC32 error detection
algorithm is also added for post-ECC data verification. The
postamble indicates the end of the packet and is represented
by one byte with value 0x55. In the presence of timing
recovery errors, an incorrectly received postamble indicates
insertion/deletion errors. The length of the pad varies
according to the codeword length of the used ECC in order
to keep the required packet size. Finally, four extra bytes
of 0xFF are added to the tail of the packet as a guard interval.

III. TWO-WAY RELAY NETWORK SCHEMES

In this section we provide the detailed description of the
two-way relay network schemes implemented in the testbed,
namely the four-hop scheme and three-hop scheme based
on DNC. The communication between a terminal and the
relay is based on the half-duplex packet switching protocol
described in the previous section.

A. The Four-hop Scheme Based on the Traditional Scheduling

In the four-hop scheme each terminal has its own
tx access code and rx access code. The relay has two pairs
of tx access code and rx access code, such that:

tx access codeR0 = rx access codeA,
tx access codeR1 = rx access codeB ,
rx access codeR0 = tx access codeA,
rx access codeR1 = tx access codeB .

We set one of the terminals into the master mode to perform
the network synchronization. Figure 5 shows the network
synchronization scheme when terminal A is the master.
Terminal A initiates the communication by sending the first
message m0 addressed to R. Upon receiving m0, R verifies
the packet. If the packet is correct, the preamble of m0 is
changed from tx access codeA to rx access codeB and
this modified message m′

0 is forwarded to terminal B. After
being received m′

0 is verified and processed according to the
procedure described in Figure 3. If the reception is successful,

B sends its message m1 to R and this message is forwarded
to A in the same manner. Upon successful reception the
master transmits the next message and so on. In the case, a
packet is lost or corrupted in any hop, time-out occurs, and
the master retransmits the previous message.

B. The Three-hop Scheme Based on DNC

In the three-hop scheme each terminal has its own
tx access code but shares the rx access code. The relay has
one tx access code and two rx access code, such that:

tx access codeR0 = rx access codeA =
rx access codeB ,

rx access codeR0 = tx access codeA,
rx access codeR1 = tx access codeB ;

which allows relay R to communicate with both terminals
at the same time. Unlike the four-hop scheme, the network
synchronization here is performed by the relay, as shown in
Figure 5. At the beginning R broadcasts a packet containing
dummy data. Upon reception terminal A transmits its message
immediately (hop 1), while B transmits after a delay Tg

(hop 2). If the messages from both the terminals are received
successfully, R performs XOR of the two messages payload
data and broadcasts the resulting message (hop 3). After
successful reception of the broadcasted message, terminals
A and B transmit the next messages and so on. In case
any packet is lost at any hop, time-out at R happens and R
re-transmits the previous XORed packet.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the
testbed via a series of experiments in the indoor environment.
The locations of the terminals and relay are illustrated in
Figure 6. Each terminal is located in a separate room such
that the distance between terminal A and the relay is about
9 meters, the distance between terminal B and the relay is
about 12 meters, and the distance between two terminals is
about 18 meters. The data exchanged between the terminals are
randomly generated. The payload scrambling is implemented
to avoid pattern-dependencies. Figure 7 shows a measured

2014 Australian Communications Theory Workshop (AusCTW)

123

Fig. 6: Locations of the terminals in the indoor environment

average data throughput of the TWRN per direction vs. the
TX gain. With TX gain 20dB the average data throughput per
directions achieves about 504 kbps and 664 kbps for TS and
DNC, respectively. The lower performance of the TS scheme
at 25 dB may be due to power amplifier nonlinearity. Thus, the
throughput of the DNC scheme is about 30% higher than that
of the TS scheme. Also, the figure demonstrates the advantage
of the TWRN communication over direct communication,
when the distance between the terminals is large. Direct
communication between two terminals without relay is only
possible with the highest TX gain (25 dB). Despite the gain,
the throughput is still lower than that of the TWRN due to
presence of uncorrectable errors, insertion/deletion errors and
packet losses.

D
at

a
th

ro
ug

hp
ut

, k
b

p
s

0

100

200

300

400

500

600

700

Tx Gain, dB
10 15 20 25

 DNC
 TS
 direct

Fig. 7: Measured average data throughput per direction vs. TX
gain

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a prototype of the two-way
relay network implemented in GNU Radio. This prototype
supports both the four-hop traditional scheduling protocol and
the three-hop digital network coding. In order to overcome the
negative impact of the hardware imperfections and software
inadequacies we have implemented a few signal processing
algorithms on the FPGA of the USRP devices, such as the
intermediate frequency processing. Additionally, we have
designed the GNU Radio blocks for the half-duplex packet
switching.

We then have investigated the performance of the testbed
in terms of throughput. The actual throughput of the testbed
using digital network coding is about 30% higher than that
of the traditional scheduling. This result agrees with the
theoretical performance. At the same time, the throughput of
the direct communication without the relay is significantly
lower than that of the TWRN.

Finally, our future research will focus on implementation
of the physical-layer network coding for the two-way relay
network.

ACKNOWLEDGEMENT

This work was performed at the Monash Software Defined
Telecommunications Lab. This work was partially supported
by Australian Federal and Victoria State Governments and
the Australian Research Council through the ICT Centre of
Excellence program, National ICT Australia (NICTA).

APPENDIX

GNU Radio Companion (GRC) generates a signal
processing Python script from the signal flow graph. We
create a GRC flow graph composed of standard and custom
blocks. The flow graphs representing a terminal and the relay
are shown in Figures 8 - 10. Figure 8 shows a flow graph of
a terminal for the four-hop scheme. Figure 9 shows a flow
graph of a terminal adapted for the three-hop scheme. The
skip head block is used to skip the dummy data from the
first message sent for synchronization purpose. The XOR
block connected with output rx out of Half-Duplex block
and the source file is used to recover the message from the
network-coded received packet.

The GRC flow graph of the relay for both schemes is
shown in Figure 10, where both the schemes are implemented
in Python in the block Half-Duplex-R.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,”
IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204-1216, July 2000.

[2] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM Trans.
on Networking, vol. 16, no. 3, pp. 497-510, June 2008.

2014 Australian Communications Theory Workshop (AusCTW)

124

Fig. 8: GRC flow graph of the terminal with the four-hop scheme

Fig. 9: GRC flow graph of the terminal with the three-hop scheme

Fig. 10: GRC flow graph of the relay

[3] S. Zhang, S. C. Liew, and P. P. Lam, “Physical-Layer Network Coding,”
in Proceedings of the 12th annual international conference on Mobile
computing and networking (MobiCom 06), pp. 358-365, LA, USA, Sept.
2006

[4] R. H. Y. Louie, Y. Li, and B. Vucetic, “Practical Physical Layer Network
Coding for Two-Way Relay Channels: Performance Analysis and Com-
parison,” IEEE Trans. on Wireless Comm., vol. 9, no. 2, pp. 764-777,
Feb. 2010.

[5] H. Seferoglu, L. Keller, B. Cici, A. Le, and A. Markopoulou, “Cooperative
Video Streaming on Smartphones,” Proceedings of the 49th Annual
Allerton Conference, pp. 220-227, Illinois, USA, 2011.

[6] K. Mizutani, Y. Kida, T. Miyamoto, K. Sakaguchi, and K. Araki, “Real-
ization of TDD Two-way Multi-hop Relay Network with MIMO Network
Coding,” Proceedings of the 6th Int. ICST Conference on Cognitive Radio
Oriented Wireless Networks and Communications, Osaka, Japan, 2011.

[7] A. Abidi, “The Path to the Software-Defined Radio Receiver,” IEEE J.
Solid-St. Circ., vol. 42, no. 5, pp. 954-966, May 2007.

[8] J. Mitola, “The Software Radio Architecture,” IEEE Commun. Mag., vol.
33, no. 5, pp. 26-38, May 1995.

[9] C. Johnson, W. Sethares, and A. Klein, “Software Receiver Design,”

Cambridge University Press, 2011.
[10] GNU Radio: http://gnuradio.org/
[11] Ettus Research USRP N210, https://www.ettus.com/product/details/UN210-

KIT
[12] Reed-Solomon ECC Python Extension Module,

http://hathawaymix.org/Software/ReedSolomon/

2014 Australian Communications Theory Workshop (AusCTW)

125

