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Upper Bound on the Frame Error
Probability of Terminated Trellis Codes

Giuseppe Caire,Member, IEEE, and Emanuele Viterbo,Member, IEEE

Abstract—The frame-error rate (FER) of trellis codes with
trellis termination can be approximatedby considering the length
of the error events negligible with respect to the frame length.
In this letter we prove that this approximation is actually a true
upper bound. This may be useful to orientate the design of frame-
based transmission systems directly in terms of FER instead of
the more common but less significant bit-error rate figure.

Index Terms— Trellis-coded modulation performance.

I. INTRODUCTION AND MOTIVATIONS

I N MANY modern communication systems analog speech,
audio and video signals are compressed and transmitted

in digital form. Source encoders are normally frame-oriented
and produce frames of encoded data. In order to cope with
poor quality channels, each frame is then channel-encoded,
interleaved and transmitted over the channel.

When trellis codes are used, a way to preserve the frame
structure of transmission istrellis terminationi.e., the encoder
is forced to start from a known state at the beginning of each
frame and it is driven to a known state at the end of the frame.1

At the receiver, various error concealment techniques can
be employed and subjective tests are required to establish the
quality of the system as function of the frame-error rate (FER)
at the channel decoder output. This motivates the interest in
evaluating the FER of terminated trellis codes (TTC).

II. SYSTEM MODEL

We consider a general time-invariant trellis code that admits
a minimal (canonical) feedforward encoder [2].

The minimal encoder is a finite-state machine withinput
rails that accept symbols from a-ary input alphabet . Each
rail is connected to a shift register of length , for

. The encoder state space (i.e., the set of encoder
states) is of cardinality . At each trellis step,
the encoder accepts a-tuple of input symbols and produces a
symbol belonging to a -dimensional signal constellation. In
the following, sequences of symbols are denoted by boldface
characters and can be viewed as real vectors of length.
Each code sequence corresponds to a path in the trellis
diagram of the encoder. The number of branches outgoing
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1In general, initial and final states may be different, although normally they

are the same.

from each state and merging into each state is, at each step,
. Starting from state at step 0, all states can be

reached in at most steps. Trellis termination
is obtained by adding to the encoder input sequence a tail of

known symbols.
A TTC spanning trellis steps can be viewed as

a block code over the reals of length and size
. We assume that eachth real component of the

transmitted code sequence is sent through an additive white
Gaussian noise (AWGN) channel with possibly time-varying
real amplitude gains , so that the -th received sample is

for , where .
For the sake of generality, we do not impose any statistical
property on the channel gains .

In this letter we derive an upper bound on , the
conditional FER of TTC’s, when the decoder has perfect
knowledge of the channel gains [perfect channel state
information (CSI)].

In the case of the standard stationary AWGN channel we
just substitute for all , while in the case of a fading
channel the result of the bound should be averaged over the
joint distribution of the ’s. For example, with independent
Rayleigh fading the are i.i.d. Rayleigh distributed.

III. A NALYSIS

In principle, the standard Union Bound for block codes can
be used to upperbound as

(1)

where is the conditional pairwise-error prob-
ability (PEP) of choosing instead of given , as
if and were the only two possible decoder outcomes
[3]. Unfortunately, bound (1) turns out to be very loose and
computationally too complex to evaluate because of the large
number of code words in .

A simple heuristic reasoning gives an approximation of
. Denote by an error event of length

starting at step, i.e., a pair of code sequences that split at step
and whose first merge is steps later. Assuming for

all relevant error events and by neglecting trellis termination,
we can write

(2)

where is the probability of having an error event
starting from a given step (say step ), given , which in
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Fig. 1. FER: simulation versus bound.

turn can be upperbounded by the standard Union Bound [3]

(3)
where is the subcode of all sequences of length
stemming from state at step . Bound (3) can be
computed by standard techniques based on the generalized
transfer function of the encoder state diagram (see [3] for
convolutional codes and [1] for more general trellis codes).
Note also that expectations over the initial statesand over
the reference sequencesare not needed for geometrically
uniform codes [2].

In the following we prove that the right-hand side of (2)
is actually a true upper bound. The derivation is made in two
steps: 1) we consider a trellis section of lengthand compute
the conditional FER given the reference sequence

, assuming that all the trellis sequences are admissible
(starting and ending in any state) and 2) we consider the TTC
consisting of all paths stemming from a given stateand
ending in a given state after steps. In order to take into
account the case of nonuniform codes we average both over
all and over all pairs . There will be at least a TTC
with conditional FER less or equal than average. In practice,
for nonuniform codes the initial and the final states should be
optimized. For uniform codes (for , which always
holds in practical cases), the choice ofand is irrelevant
and expectation is not needed, so that the bound holds for all
TTC’s.

Step 1: The conditional FER given the reference sequence
can be upperbounded as

(4)

Proof: The bound (4) can be obtained by expurgating
the standard union bound

from all events obtained by concatenating two (or more)
other events. All what we have to prove is that if an error event

is the concatenation of two events and ,
with disjoint support2 it can be elimitated from the Union
Bound mantaining the inequality, irrespectively of the channel
gain sequence. Let and let and
be the noise and the received sequences, respectively. The
optimal decoder with perfect CSI decides according to the
minimum Euclidean distance criterion. Hence, we need to
show that if

(5b)

(5b)

then either or
. By manipulating (5a) and substituting (5b) we

get the equivalent condition

(6)
Since and have disjoint supports, the third term
on the left handside of (6) vanishes.

Hence, either or
, otherwise (6) would be false. But the

above implies the thesis.
Going back to (4) we observe that the same pairwise error

event of length appears from step to step
for a total of terms. Hence

(7)

2We define the support of an error event(x;x)i+L
i

as the ordered set of
integersfi; i+ 1; � � � ; i+ L� 1g.
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Step 2: Now we average with respect to all
, a code consisting of all sequences of length

stemming from a state at step and ending
in a state at step . Moreover, we average the
result with respect to all pairs . The total expectation
gives (for ):

where (a) follows from and (b)
follows from the fact that in there are exactly
paths coinciding in the first steps. We can further upper
bound by replacing by and letting go to
in the sum

(8)

IV. RESULTS

As an example we consider the binary convolutional code
of rate and 16 states with generators (in
octal notation) transmitted with antipodal binary PAM over
the stationary AWGN channel. In this case is the all-
one vector and the PEP is given by [3]

where is the Gaussian tail

function, is the average bit-energy and is the
componentwise Hamming distance betweenand . Since
this trellis code is uniform, the bound (8) applies to all TTC’s,
irrespective of the initial and final state.

Fig. 1 shows bound (8) for and . Monte
Carlo simulation points are shown for comparison. We notice
that (8) provides accurate results in the range of values
interesting for applications (FER 10 ).
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