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Partitionning the Golden Code: A framework to the
design of Space-Time coded modulation

David Champion, Jean-Claude Belfiore, Ghaya Rekaya and Emanuele Viterbo

Abstract— This paper presents a method of set partitionning
for the Golden code. This space-time block code has been intro-
duced in [1]. We show how to construct the Gosset lattice E8 as
well as the Leech lattice Λ24. The same set partitionning is finally
used to construct a trellis-coded modulation that outperforms the
Golden code.

Index Terms— Set partitionning, reduced norm, coded modu-
lation

I. INTRODUCTION

IN [1], the 2×2 Golden code was presented. It outperformed
all previous 2 × 2 constructions. Moreover, its minimum

determinant remains constant when the spectral efficiency
increases. We propose here to construct new space-time coded
modulations based on a set partitionning of the Golden code
that increases both the minimum Euclidean distance and the
minimum determinant.

II. THE GOLDEN CODE

We first recall the construction of the Golden Code, which is
related to the Golden number θ = 1+

√
5

2 and yields excellent
performance [1]. We assume the reader is familiar with the
basic definitions in algebraic number theory, for which we
suggest [2], [3], [4].

Consider K = Q(i,
√

5) = {a + bθ|a, b ∈ Q(i)} as a
relative quadratic extension of Q(i), with minimal polynomial
µθ(X) = X2−X−1. Denote by θ and θ̄ = 1−θ = 1−

√
5

2 , the
two roots of the minimal polynomial. Let OK = Z[i][θ] denote
the ring of integers of K, with integral basis BK = {1, θ}. We
consider the cyclic division algebra

A = (K/Q(i), σ, i) = {z1 + z2 · e, z1, z2 ∈ K}

where the operating rules are e2 = i, z · e = e · σ(z), ∀z ∈ K.
A matrix representation of an element of this algebra is

[

z1 z2

iσ(z2) σ(z1)

]

The reduced norm of an element of this algebra, denoted
Nr(·) is the determinant of the matrix representation. Let α =
1 + i − iθ and IK be the principal ideal generated by α. We
define the infinite Golden code C∞ = (A, IK) as an order of
A, obtained by restricting z1, z2 ∈ IK. Codewords of C∞ are
given by

X =
1√
5

[

α(a + bθ) α(c + dθ)
γᾱ(c + dθ̄) ᾱ(a + bθ̄)

]

(1)

where a, b, c, d ∈ Z[i], ᾱ = 1 + i(1 − θ̄) and the factor 1√
5

is
necessary for energy normalizing purpose. We recall that the
minimum squared determinant of the Golden code is

δmin(C∞) =
1

25
|NK/Q(i)(α)|2 =

1

25
|2 + i|2 =

1

5
(2)

III. A QUATERNARY SET PARTITIONNING FOR THE

GOLDEN CODE

A. The set partitioning

We recall that a cyclic algebra of order 2 is a quaternion
algebra [5] and its elements are called quaternions. Thanks to
KANT software [6], we can find, in the algebra defined by the
Golden code, a quaternion with reduced norm 1 + i. Namely,
this quaternion is

β = i (1 − θ) + (1 − θ) e

with matrix representation

[

i (1 − θ) 1 − θ
i
(

1 − θ̄
)

i
(

1 − θ̄
)

]

.

The infinite Golden code G is a quaternionic order. Let Iβ be
the right ideal defined by

Iβ = {X · β,X ∈ G} .

In fact, since Nr(β) = 1+ i, we have |G�Iβ | = |1 + i|4 = 4
(in fact, this quotient ring is equal to the finite field F4). So,
we get a quaternary partition of the Golden code that can be
iterated by considering powers of the ideal Iβ.

B. Identification of lattices in the partitionning chain

Figure 1 shows the quaternary partition chain of the Golden
code when using Iβ as the partitionning ideal (see [7] for
more details). What is surprising is that we can construct the
Gosset lattice E8 which is the densest one in dimension 8
for the Euclidean distance. The minimum squared determinant
δmin is multiplied by 2 = |Nr(β)|2 at each step. But the
problem is that the determinant increase just compensates the
constellation expansion as can be seen in figure 2. On the
Gaussian channel, we see the well-known asymptotic gain of
3dB whereas, on the Rayleigh quasi-static channel, there is no
gain for the Golden E8 code compared to the Golden code.
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Fig. 1. Partitionning the Golden code

C. Construction of the Leech lattice

A construction of the Leech lattice Λ24 similar to the
Tits’s one [8] is proposed. First, we define the conjugate of a
quaternion q = x + y · e with x, y ∈ K as q̄ = σ(x) − y · e.
We get the following relation,

q · q̄ = Nr(q) = NK/Q(i)(x) − iNK/Q(i)(y).

Now, define the lattice

Λ =
{

(x1, x2, x3) with xi ∈ I
2
β

∣

∣

∀i 6= j xi ≡ xj mod I
3
β and x1 + x2 + x3 ≡ 0 mod I

2
β · Iβ̄

}

It can be shown that this lattice is the Leech lattice (see
[9, Chap. 8, pp. 210-211]). But, as it has been remarked in
subsection III-B, we do not know the effective coding gain
of this lattice compared to the Golden code, for the Rayleigh
quasi-static channel.
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Fig. 2. The Golden code and the Golden E8 lattice on Gaussian and Rayleigh
quasi-static channels (12 bits p.c.u.)

IV. INCREASING THE CODING GAIN

With this formalism, we should be able to construct non-
square space-time codes with larger coding gains than the

square Golden code as described in figure 3. For a codeword
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Fig. 3. Rectangular codeword based on the Golden code

whose components are quaternions from the Golden code
C = (g1, g2, . . . gN ), the determinant of the Gram matrix is

det
(

CC†) =

N
∑

i=1

det
(

gig
†
i

)

+ positive crossed terms .

In fact, the coding gain is in the “crossed terms” and is
difficult to evaluate. In figure 4, we give, as an example, the
performance of the Golden code both uncoded and trellis-
coded by using the set partitionning of figure 1.
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Fig. 4. 16−states trellis-coded Golden code vs. the Golden Code
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