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DIFFRACTION OF A PLANE WAVE 
BY A STRIP GRATING 

Vito Oaniele. Marco Gilli, and Emanuele Viterbo, 
Dipattimento di Elertronica, Politecnico 
di Torino, Corso Duca degli Abruzzi 24 
10 129 Torino, Italy 

The solution of a canonical problem regarding the diffraction of a plane 
electromagnetic wave incident, with an arbitrary angle, upon a strip grating 
formed by infinitely long thin metallic ribbons is found. 

The formulation is given for any relation between the width of the ribbons and 
the width between the ribbons. The exact solution is obtained by using Wiener- 

Hopf techniques in the case of equal width af the ribbon and the spacing. 
The numerical values of the transmission and reflection coefficients can be 

evaluated in a simple manner to any desired accuracy. Plots are given for 
different angles of incidence in a certain frequency range. 
The closed form of the TE modes scattering matrix is also given. 

This research was supported in part by ENEA under contract 552188. 
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V. DANIELE ET AL. 

The object of this paper is the analytical solution of e canonical problem using 
the Wiener-Hopf technique. We study the diffraction of a plane wave, with an 
arbitrary angle of incidence, upon an infinite strip grating, as shown in fig.1. 
The importance of solving such a canonical problem is that: 
- the results give interesting information on similar structures; 
- they may be used to verify the validity of numerical methods. 
The main engineering applications of such a structure are to electromagnetic 
screening and dichroic surfaces; structures which are composed by cascading a 
single screen can also have interesting applications. 

So far the problem has only been solved analytically in the case in which the 
width of the metal strips is equal to the width of the spacing between the 
strips. 
The normally incident plane wave was first studied by Baldwin and Heins 131, but 
the results are not immediately usable far engineering applications. Another 
solution, proposed by Weinstein [ & I ,  gives more practical results. 
The case of oblique incidence has been treated in 151 with an 'ad hoc' method. 
The present work solves the problem of the oblique incidence by using Wiener- 
Hopf techniques, with a more general approach than [ S ]  and [6] end obtains more 
accurate results in a larger range of frequencies. 
A particular formulation of the problem is needed to obtain the Wiener-Hopf 
equation in the space-frequency domain. The solution of the Wiener-Hopf equation 
is carried out using a modified version of the classical Wiener-Hopf method [el. 
In fact, the classical method would lead, in this case, to a function which does 
not vanish at infinity and cannot be a Fourier transform of the solution field. 
With this procedure, an analytical solution is obtained and reflection and 
transmission coefficients can be computed to any desired accuracy. 
The TE-modes scattering matrix of the structure is also given in a closed form 
and can be a starting point to study more complex cascaded structures. The RI- 

modes scattering matrix can be obtained by using Babinet's principle [Ill. 
A computer code has been developed to calculate the coefficients of the 
scattering matrix, from the analytical expression. in a simple and quick manner. 
Plots are shown for some incidence angles and in a certain range of frequencies. 
but very precise results are available for any incidence angle and without 
limits in the frequency range. 

In this paper, we will use bold characters to indicate vectors and underlined 
bold characters to indicate matrices. 
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DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 

Figure I :  Geometry of the problem. 
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V. DANIELE ET AL. 

Fig. 1 shows the geometry of the problem, where the structure is uniform in the 
y direction. Each conducting strip. of width c and zero thickness, is spaced 
periodically from its neighbours by a distance d = a + c. 

The time dependence exp(jwt) is assumed and the incident plane vave is TE ( the 
case of TM excitation is obtained by applying Babinet's principle in its 
rigorous version). 

The incident plane wave is: 

i E (x,z) = E0(u)i exp[-jKo(x cos Bo + z sin eo)] 
Y 

i 
ni(x.z) = Y i n x ~  (x.2) 

where E (w) is the amplitude of the incident field, KO the vave number. Y the 
0 

admittance of free space; ix and i are shown in Fig.1 and: 
Y 

in ix cos 9 + i sin 'ao 
0 Z ( 3 )  

It is possible to write the incident field in the following manner: 

where: 

(Eli, Elli) is half of the incident wave and its magnetic image; 

( E ~ ~ ,  is half of the incident wave and its electric image; 

We can separate the main problem into two problems, where the incident field is 
i either El ) or (I$', B2i); 

The first problem is shown in Fig. 2. A perfect magnetic conductor can be used 
instead of the apertures. because the tangential component of the incident 
magnetic field vanishes on the apertures and it is possible to show that also 
the tangential component of the total magnetic field is zero on the apertures. 

The second problem is shown in Fig.3. The computation of the scattered field is 
trivial in this case; we have: 
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DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 

1 i 
Figure 1: Structure equivalent to f i g .  1 when (El (r). 5 (r)) 
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250 V. DANlELE ET AL. 

x<O &L~(x,z) = -112 E (w) i exp[-jKo(-x cos Bo + z sin Bo)l 
0 Y ( 6 )  

x>O B~~(x,z) = 112 Eo(w) i exp[-jKo(x cos 0 + z sin B0)1 
Y 0 

( 7 )  

The image wave propagation versor is indicated in Figs. 2 and 3 with iIn and it 
is: iIn - -ix cos BO + iZ sin Bo 

3.  SOLUTION OF l?TE FIRST PROIUJM 

Since the structure is periodic, it is convenient to use Floquet's theorem and 
the scattered field takes the form: 

where: 

r - q +2nnld (n=O,i1.*2,. . .) with q = K 
n o ( 9 )  

2 2 112 a = [KO - ( q  + 2nnld) I n (10) 

Every term in the infinite sum (8) is a TE mode of the structure. 
In this section we assume 0 * 0; in section 5 we will discuss the case Q = 0. 

0 0 
We propose an analytical method, based on the Wiener-Hopf technique, to 
determine the coefficients Rn of the scattered field. 

We reduce the problem to that of semi-infinite wave guides in the iZ direction 
with particular boundary conditions. 
-for n d S z S n d + c ;  perfect electric conductor; 
- far c + n d S z 5 (n+l) d; perfect magnetic conductor; 
where n is an integer; 
We will consider a periodic transmission line along the iZ axis and use 
Harcuvitz-Schwinger's formalism 121. 

The transversal fields are given by the following expressions: 

where V ( z )  and I (z) are voltage and current in the transmission line and e ( x )  
a a a 
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DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 251 

and h (x) are the eigenfunctions of the semi-infinite transversal section wave 
a 

guide: more precisely: 

- for perfect electric conductor boundary condition: 
e = 2 sin(ax)i a Y 
ha = -2 sin(ax)ix 

- for perfect magnetic conductor boundary condition : 
e = - 2j cas(ax)i a Y 
ha = . Zj cos(ax)ix 

$ We indicate with F (a) the unilateral Fourier transform of the function f(x): 

By imposing the continuity of the field at z=0 and z=a and its semiperiodicity, 
we obtain the following Wiener-Hopf equation: 

where 
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252 V. DANIELE ET AL. 

where the symbol * in (20) indicates the multiplication of the 2x2 matrix 
( - ti)-' by each 2x2 matrix of the 4 x 4  matrix; ~r is the magnetic permeability 

d 
of free space. 

It is worth noting that matrices involved in _G' comute because they are 

functions of the same matrix: 

The singularities of g' are only simple poles and, precisely, they are the zeros 
of the determinant of Ed- ti: 

det[$- ti] = 2 exp(jrld) [cos(qd) - cos(rd)l (24) 

In the complex plane these zeros are located at: 

a = i a (n=O.i1,*2, ... ) n ( 2 5 )  

where : 

a = [KO n 2- (q + 2nnId) I 'I2 (n = 0, fl. fZ.. . . )  (26) 

We introduce a medium with small losses, to have 

KO = KO' - jKo" where K "<< K ' and KOo'>O 
0 0 

and we choose the branch of the complex root with negative 

imaginary part; thus for a=a we can write: n 
r = T - 0 +2nn/d (n=O,il.i2. ... ) n (27)  

and similarly the values of Z and Ya corresponding to a are: 
a n - 1 Y = Z - T~/(wu) (n=O,tl.i2, ... ) 

n n (28) 

Remembering that B(a) is given by the sum of the unilateral Fourier transform 
of the incident and scattered field, it follows that: 

and taking into account the expression of IXli we obtain the equation: 

where 
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DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 

and 

Equation (30) may be solved with a Wiener-Hopf procedure; 

we factorize the matrix g' into two matrices g'+ and _ G I - .  which are regular and 

without zeros for Im(a)2O and Im(a)SO respectively; then we separate in equation 

(301, the function regular in Im(a)LO, from the function regular in Im(a)SO : 

Since the two functions coincide on the real axis they are equivalent in all 
the complex plane to an entire function, that we have to determine. 
The most important problem in this procedure is to factorize the matrix G'; no 
general method exists in the literature for a matrix, like g', which is a 
transcendental function of a. 

We will show that _G' can be factorized using the procedure proposed in [ I ] .  
We will factorize the new matrix g(a) defined in this way: 

with 

C' = - 

where 

C = 
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That is 

V. DANIELE ET AL. 

The factorization is possible for different values of a and c, but in the case 
aec the determination of the entire function w(a) leads to a system that cannot 
be solved in a closed form. From now on we assume a=c=d/2. 

To factorize _G it is useful to make the following substitution: 

G(a) can be rewritten in the following way: - 

By the factorization of 

Q(a)= Q-(a) . Q+(a); 
@ will be decomposed in two parts: 

g = 4 + @_ where 

p+ - In(%) and 

g- - ln(Q-) 
are regular respectively in the upper and lower planes. 

It follows from the exponential form in (39): 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
0
:
4
6
 
1
4
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 

We will show that Q(a) can be factorized, by using the general method proposed 

in [ I ] ,  after some algebraic manipulations. 

From (38) a mare convenient expression of Q(a) can be obtained: 

Q j d a )  exp [(1/2)t(a) 

where: 

As indicated in I l l  the factorization of Q can be carried out by decomposing 
t(a) and factorizing do). 
From expression (47) one can note that the function m(a) can be factorized by 

the use of Ueierstrass' theorem [91; we have introduced in the expression of 
m+(a) the Ganrma function to improve the convergence of the infinite product and 
we have obtained the very cumbersome expression: 
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V. DANIELE ET AL. 

jnd d sineo 
r(-  ---- - +I) 

4n 2X 

jad d sin Bo 1 
r(- - - + -) 

477 2X 2 

jad d sin Bo 
r(- - + + 1) 

4" 2A 

j ad d sin 0 0 
3 

r(- - + + -) 
4n 2X 2 

n-m (1-a/a )(l-a/a-2n+l){l-jad/[2n(2n- (d/X)sin eo)1 1 
2n+l 

. n  ( 

n-1 (l-ala2n)(l-a/a-2n)(1-jad/[2n(2n+l +(d/A)sin Bo) 1) 

and 

From expression (48). by using the small losses hypothesis, we note that t(a) is 
regular in a small strip, which contains the real axis, and within this strip 
It(a)l vanishes, as Re(a) +m.  

Then t(a) can be decomposed according to the formula given in [7]; only the the 
final results are reported here since their derivation is quite complex: 
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DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 

m 1 a - a 
- ( ln 2n+l 

t+(a) L ) + 
n=-m .[(a) a - a  2n 

As a result of the factorization of Q(a), and of (42) and (43). %(a) and _~-(a) 
are obtained from expressions (44) and (45). 

The last step is to determine the entire function w(a) in such a way that eS(a) 

is the Fourier transform of a function and precisely: 

es(a) = Oa+, (110") ; o = 1 a 1 and E>O (53) 

The study of the behaviour at infinity of %(a) shows that "(a) has to be a 

constant and its expression is: 

Remembering that the only singularities of (a) are simple poles in a = an, and s 
that its behaviour at infinity is given by (53). Hittag-Leffler's expansion 

yields: 

w(a) = 

m 
eS(a)= r Yn 

-a a - a  n 

. 

0 

W2 

0 

0 

where Yn is the residue of e,(a) at a = an. 

in which: 

- 1 
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258 V. DANIELE ET AL. 

The evaluation of the coefficients Y can be performed by means of (331,  by 
n 

noting that [_G'+(a)l has no zeros in the upper half plane and that the pole at 

a=a is a first order pale; in fact by putting: 
0 

where _R1(a ) is the residue of ~~l+(a)l-~ at a. and _BS0(a) regular at a = ao. 
0 

one obtains : el(aO). [~'-(a~)l-~ . q(O) = 0. 

The computation of Y leads to the following results: n 

9 
(n) = 

where: 

- 1 
(a-an) [m+(u)l exp(-jnl4) exp(-t+r/2) 

f(an) = limaan for n odd 
4 

It is worth noting that the limit can be evaluated in an analytical way because 
- 1 

m+(a) exp(t+r/2) contains the term la-an]-' for n even. while [m+(a)l 

exp(-t+r/2) contains the ssme term for n odd. 

By the use of (19) and (58) we obtain the following expression for the scattered 
i 

field in the problem of Pig.2 when a field of the type ( B ~ ~ .  El ) incides: 
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DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 259 

where: 

r = q +2nnld (n=O.*l.i2, ... ) n 
2 a = [KO - (q + 2nnld) I n 'I2 (Im an 5 o 

and Rn are coefficients defined by : 

By combining the results of the problem of fig.2 and the problem of fig.3 we 
will determine the coefficients of the TE modes scattering matrix in its non 
symmetric form [see 101; in particular we will write the scattering matrix in 
the form: 

where is the reflection matrix and is the transmission matrix; since the 
screen is infinitely thin it can be shown that: 

The R1 modes scattering matrix can be obtained by the use of Babinet's principle 
1111; in fact the dual source of a TM incident plane wave is a TE plane vave and 
the complementary screen of the structure shown in fig.1 ( vith a=c ) is the 
same screen, shifted by dl2 along the i axis. 
The following equations (68). (69) and 770) give the analytical form of 1 for TE 
modes; the second subscript indicates the incident mode, while the first 
indicates the scattered one. can be obtained by the use of (67). 
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260 V. DANIELE ET AL. 

( for even values of n-m. except zero) 

(for add values of n-m) 

(for n-m) : 

where f(an) is defined by (60); 

In the case of normal incidence (0 = 0) the same method used in section 2 can 
0 

be applied to study the problem of fig.2. 
Some simplifications occur in the expressions (47) and (48) of t(a) and dm); 
t(a) becomes -117 end its decomposition is well knom [ ? I .  
We do not discuss the steps to obtain the exact expression of the transmission 
and reflection coefficients; the only problem consists in the right evaluation 
of the limit conditions, after having changed the expression of t(a). 
We will report the analytical form of the TE modes reflection matrix, because 
the transmission matrix can be obtained by (67): 

(for even values of n-m, except zero) 

(for odd values of n-m) 
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DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 261 

(for n=m) 

where : 

(for n even) (74) 

jTn ex~(-jn/4) 
f(an) = 1 2  1 Z  lim 

a w n  (a-an) lm+(a)l-' 
Zlj~, + (KO%)] I l j ~ ~  - (K,+n,)l 

(for n odd ) (75) 

exp(jnl4) m+(a) (a-an) 
112 

f(on) - lim 
a+an (for n=O) (76) 

2 

A simple computer code has been developed to calculate reflection and 
transmission coefficients from the analytical expression and to plot them for 
different values of the incidence angle and of the ratio dl?. . 
Comparison with the results in 151 shows a very good agreement at low 
frequencies while at higher frequencies our results are more accurate. 

We now report some examples of the convergence of the numerical value of the 
transmission coefficient of the fundamental mode: 

-For Q = 30 and d/A = 1 
considering the first 100 and 200 terms in the infinite sum (51) and infinite 
product (49) the results change from: 
TI = 0.416692 + j 0.235711 to 
T2 = 0.416691 + j 0.235711 
-For Q = 30 and d/X = 5 
considering the first 100 and 200 terms in the infinite sum (51) and infinite 
product (49) the results change from: 
T1 = 0.492674 + j 0.0475643 to 
T2 = 0.492678 + j 0.0475640 
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262 V. DANIELE ET AL. 

For comparison the transmission coefficient of the third mode is reported. 

-For Q - 30 and d/X = 20 
considering the first 100 and 200 terms in the infinite sum (51) and infinite 
product (49) the results change from: 

Plots are shown (in Figs. 4 to 7) for the following incidence angles: 
10, 30. 50. 70 
for modes from -2 to +2 and for a range of d/X from 0 to 8. 

7. CONCLUSIONS 

In this paper we have studied the diffraction of a plane wave. with an arbitrary 
angle of incidence, on an infinite strip grating formed by strips and gaps of 
equal width. 
We have obtained an exact solution by using the Wiener-Hopf technique; the 
analytical expression for the TE modes scattering matrix, in terms of infinite 
series has been derived. Particular cases have been considered and very accurate 
results have been obtained. 
By using Bsbinet's principle [ I l l .  the scattering matrix for TM modes can be 
derived from the TE matrix. 
These results are valid in a large range of frequencies ; they can be used to 
study more complicated structures. obtained by cascading two or more simple 
parallel screens, placed at a finite distance and arbitrarily shifted. 
This work can be developed in two directions: 
- to estabilish the properties of the scattering matrix of a zero thickness 
metallic screen ( a work in this sense is under publication); 
- to study the screen shorn in fig. 1 with atc; in fact this case can be 
obtained by considering two coincident shifted screens with a==. D
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DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 

Figure 4.0: Plot of the modulus Figure 4.2: Plot of the modulus 
of the reflection coefficient of of the transmissian coefficient 
mode 0, when the field Ei(r) of mode I, when the field B i (r) 
incides (see 11, with a0 10. incides (see 1). with a0 - 1u. 

Figure 4.1: Plot of the modulus 
of the transmission coefficjent 
of mode 0 ,  when the field ~'(r) 
incides (see I), with 0 = 10. 

0 

Figure 1.3: Plot of the modulus 
of the transmission coeffic!ent 
of mode -1 .  when the field EL(=) 
incides (see 1). with a. = 10. 
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V. DANIELE ET AL. 

Figure 1.4: Plot of the modulus 

of the transmission coefficient 
i 

of mode 2, when the field E (r) 

incides (see 1). with Qo = 10. 

Figure 1.5: Plot of the modulus 
af the transmission coefficient 

i 
of mode -2, vhen the field E ( r )  
incides (see 1). with k10 = 10. 

Figure 5.0: Plot of the modulus 
of the reflection coefficient of 

i 
mode 0, vhen the field E (r) 
incides (see 1). with kl = 30. 

0 

Figure 5.1: Plot of the modulus 
of the transmission coefficient 
of mode 0, when the field FAi(=) 
incides (see 1). with k10 = 30. 
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Figure 5 . 2 :  Plot of the modulus 
of the transmission coefficient 

i 
of mode 1. when the field B (r) 
incides (see 1). with Bo = 30. 

Figure 5.3: Plot of the modulus 
of the transmission coefficient 
of mode -1, when the field Bi(r) 
incides (see 1). with Oo = 30. 

Figure 5 . 4 :  Plot of the modulus 
of the transmission coefficient 
of mode 2 ,  when the field Bi(r) 
incides (see 1). with B0 - 30. 

Figure 5.5: Plot of the modulus 
of the transmission coefficient 

i 
of mode - 2 ,  when the field B (r) 
incides (see 1). with B0 = 30. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
0
:
4
6
 
1
4
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



V. DANIELE ET AL. 

Figure 6.0: Plot of the modulus 
of the reflection coefficient of 
mode 0. when the field ~'(r) 
incides (see 1). with O0 - 50. 

Figure 6.1: Plot of the modulus 
of the transmission coefficient 
of mode 0, when the field Ei(r) 
incides (see l), with O = 50. 

0 

Pfgure 6.2: Plot of the-modulus 
of the transmission coefficient 

i of mode 1, when the field E (r) 
incides (see 11, with O0 = 50. 

Figure 6.3: Plot of the modulus 
of the transmission coefficient 

of mode -1, when the field ~'(r) 
incides (see 1). with O = 50. 

0 
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Figure 6.4: Plot of the modulus 
of the transmission coefficient 

i 
of mode 2, when the field B (r) 
incides (see 1). with go - 50. 

Figure 6:s: Plot of the modulus 
of the transmission coefficient 

i 
of mode -2, when the field B (r) 
incides (see 1). with 0 = 50. 

0 

Figure 7.0: Plot of the modulus 
of the reflection coefficient of 
mode 0, when the field Bi(r) 
incides (see 1). with O0 70. 

Figure 7.1: Plot of the modulus 
of the transmission coefficjent 
of mode 0, when the field B1(r) 
incides (see l), with Oo - 70. 
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V. DANIELE ET AL. 

Figure 7 . 2 :  Plot of the modulus 
of the transmission coefficient 

i of mode 1, when the field E (r) 
incides (see 1). with Oo = 7 0 .  

Figure 7 . 3 :  Plot of the modulus 
of the transmission coefficignt 
of mode -1, when the field E1ir) 

incides (see 1). with O = 7 0 .  
0 

Figure 7 . 4 :  Plot of the modulus 
of the transmission coefficient 
of mode 2, when the field d ( r )  
incides (see 1). with 0 = 7 0 .  

0 

Figure 7.5: Plot of the modulus 
of the transmission coefficient 
of mode - 2 ,  when the field E1(r) 
incidcs (see 1). with Oo = 7 0 .  

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
0
:
4
6
 
1
4
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



DIFFRACTION OF A PLANE WAVE BY A STRIP GRATING 

REFERENCES 

[l] V.Daniele: "On the factorization of Wiener-Hopf matrices in problems 
solvable with Hurd's method" IEEE Trans.Antennas Propag.,@,pp.614-616,1978. 

[21 L.B.Felsen and N.Marcuvitz: "Radiation and Scattering of Waves", Prentice- 
Hall Inc.. Englewood, New Jersey, 1973. 

[3]G.L.Baldwin and A.E.Heins: "On the diffraction of a plane wave by an infinite 
plane grating", Math.Scand.,~,pp103-118,1954. 

[4] L.A.Weinstein: "The theory of diffraction and the factorization method", The 
Golem Press,Boulder. Colorado. 1969. 

[5] E.Luneburg and K.Westpfah1: "Diffraction of plane waves by an infinite Strip 
Grating". Annalen der Physik.7.Polge.Band 27. Heft 3.pp.257-288,1971. 

[61 V.D.Luk'yanov: "Exact solution of the problem of diffraction of an obliquely 
incident plane wave at a grating", Sov.Phys.Dokl., 25(11), November 1980. 

I7lR.Mittra and S.W.Lee."Analytical Techniques in the Theory of Guided Waves" , 
The MacMillan Company, New York.pp 104-113, 1971. 

I8lR.Mittra and S.W.Lee."Analytical Techniques in the Theory of Guided Waves" . 
The MacMillan Company. New York,pp 82-84. 1971. 

[gIR.Mittra and S.W.Lee,"Analytical Techniques in the Theory of Guided Waves" . 
The MecMillan Company. New York. pag. 91. 1971. 

[lO]R.Mittra and S.W.Lee."Analytical Techniques in the Theory of Guided Waves" . 
The MscMillan Company, New York. pp. 207-208, 1971. 

[ll]D.S.Jones. "Theory of electromagnetism". Pergamen Press. Oxford-London 
New York-Paris. pp569-573.. 1964 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
o
n
a
s
h
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
0
:
4
6
 
1
4
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0


