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Abstract— The recently proposed Golden code is an optimal
space-time block for 2 2 Multiple Input Multiple Output (MIMO)
system, to be used in wireless transmission to achieve high
reliability and throughput.

The aim of this work is the design of a VLSI decoder for a
MIMO system coded with the Golden code. This architecture is
based on the Sphere Decoding algorithm that allows Maximum
Likelihood decoding performance, with polynomial search com-
plexity. The proposed architecture exhibits an inherent flexibility
with respect to different modulation schemes (4, 16, 64-QAM),
which makes it particularly suitable for adaptive modulation
schemes.

I. INTRODUCTION

Designing very high data rate wireless channels with im-
proved quality of service is one of nowadays greatest engi-
neering and research challenges as proved by the increasing
number of standards to regulate Wireless Local Area Networks
(LAN) and Metropolitan Area Networks (MAN) (e.g. 802.11
and 802.16). In particular research is focused on two main
objectives: high data rate and improved reliability.

Multiple Input Multiple Output (MIMO) systems by means
of transmit antenna diversity combined with space-time coding
are able to reach both these results [1]–[5].

This work is focused in the decoding of a 2×2 MIMO signal
coded with Golden code [3], which is a recently proposed
code, chosen for being a full-rate and full-diversity code
with optimal energy properties. A Sphere Decoder with a
new simple architecture has been implemented to decode the
Golden code.

A. Golden code

The Golden code is a Space-Time code for a 2×2 coherent
MIMO channel; it was found independently by [3]–[5]. It
is one of the new full-rate and full-diversity codes able to
achieve the best trade-off between data rate and diversity
gain. Differently from previously found codes, that suffer
from a loss of spectral efficiency with the increase of the
signal constellation, it can be used also with higher order
modulations. For this reason it can be successfully employed
in systems with adaptive selection of the modulation.

The codewords X of the Golden code are 2 × 2 complex
matrices of the following form :

X =
1√
5

[

α[a+ bθ] α[c+ dθ]
iσ(α)[c+ cσ(θ)] σ(α)[a+ bσ(θ)]

]

(1)

where a, b, c, d are the information symbols chosen in a Q2-
QAM constellation, i=

√
−1, θ=(1+

√
5)/2 = 1.618... (Golden

number), σ(θ)= 1-θ, α= 1 + i σ(θ), σ(α) = 1 + iθ [6].

B. The 2 × 2 MIMO System Model

Golden code is applied to 2-transmit 2-receive antenna
MIMO systems and requires two channel uses to transmit a
codeword. In order to model the 2 × 2 MIMO channel, its
impulse response can be used. Assuming hij as the time-
varying channel fading coefficients between the j-th transmit
antenna and the i-th receive antenna, the MIMO channel is
described through a 2×2 matrix:

H =

[

h11 h12

h21 h22

]

(2)

where hij ∼ Nc(0, 1). Assuming the “Block Fading” channel
model, each transmitted codeword will be affected by an
independently varying channel matrix H. Then, the 2 × 2
received matrix is

Y = HX + Z

where Z is the additive white Gaussian noise matrix with
entries ∼ Nc(0, N0).

The codeword X can be represented in vectorized form
where, furthermore, real and imaginary components are sep-
arated, resulting in a 8 × 1 real vector x. It can be seen that
x = Bs, where B is a 8× 8 orthogonal matrix (B−1 = BT )
and s = (<a,=a,<b,=b,<c,=c,<d,=d), [6].

Channel matrix H consequently can be rearranged in a 8×8
real-valued matrix H .

The Golden coded system model can so be expressed as:

y = Hx + z (3)

where y is the 8×1 received real vector and z is a 8-
dimensional i.i.d. zero mean Gaussian noise real vector.

Decoding the Golden code is equivalent to decoding an
8-dimensional lattice with generator matrix M = HB.
Provided that H is perfectly known at the receiver, the optimal
detector for a MIMO channel, which minimizes the codeword
error rate, is the maximum likelihood (ML) detector that solves
the following equation:

ŝ = arg min
s∈Qn

‖y − Ms‖2 (4)

where Qn is the cardinality of the search space and n = 8.
The above expression represents a least-square (LS) min-

imization problem. Exhaustive search of the ML solution
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has exponential complexity and in this particular case it has
2nlog2Q possible solutions. Sphere decoding algorithms have
then been proposed with the purpose of decreasing the decoder
complexity.

II. SPHERE DECODING ALGORITHM

Sphere Decoding Algorithms [7] aims at finding the ML
solution by analyzing only a subset of the solution space.
While minimization (4) for an arbitrary M and y is NP-hard,
it has been shown [8] that, in a certain range of parameters,
which is not too far from those of real systems, the average
complexity of sphere decoder is polynomial.

A hypersphere is constructed around the received vector and
only points inside it are taken into account. since the others
are actually too far. This constraint can be written as:

‖y − Ms‖2 ≤ C0 (5)

where C0 is the radius of the hypersphere. This algorithm can
be viewed compound by two phases.

1) Tree construction: With a linear transformation of the
M matrix, such as QR or Cholesky decomposition, it is
possible to rewrite it as a product of two matrices, one of
which upper triangular [7]. In this work, QR decomposition
has been employed so that, imposing M = QR, (4) can be
rewritten as:

arg min
s∈Qn

‖y − QRs‖2
= arg min

s∈Qn

∥

∥QT y − Rs
∥

∥

2

= arg min
s∈Qn

‖ỹ − Rs‖2 (6)

where we have exploited the orthogonality of Q and ỹ =
QT y represents the “zero-forcing” (ZF) solution. The upper
triangular structure of the factored matrix enables to take every
component separately into account for the computation of
the distance between the two points. This distance d2(s) =
‖ỹ − Rs‖2 can so be decomposed recursively as:

l = 1, . . . , n+ 1

Tl(s
(l)) =































0 if l = n + 1

Tl+1(s
(l+1)) + |ỹl −

∑n

j=lRljsj |2
= Tl+1(s

(l+1)) + |ỹl −
∑n

j=l+1Rljsj −Rllsl|2
= Tl+1(s

(l+1)) + |ψl+1 −Rllsl|2
otherwise

(7)
where s(l) = [sl sl+1 . . . sn], T1(s) = d2(s) and
ψl+1 = ỹl −

∑n

j=l+1Rljsj , in particular ψN+1 = ỹl.
One of the most interesting consequences of this interpreta-

tion is that the exploration of the lattice can be thought as a tree
traversal. This tree has N levels and every node at each level
has Q sons. At every level the radius constraint (5) must be
verified and satisfied, otherwise the branch is pruned. Figure
1 depicts a two level tree for a QPSK modulation. Tl is the
distance metric at level l in (7). It can be noticed that at the
deepest level ψ3 has been substituted by it initial value ỹ2. At
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∥

∥

∥

∥

ỹ − R

[

−1
−1

]
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∥

∥

∥
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∥

∥

∥

∥
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∥

∥
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∥

∥

2

Fig. 1. Two level set partitioning of Λ, output label s2 selects the first level
and s1 selects the second level in the partition tree.

the lowest level final metrics are explicitly calculated for this
simple case.

2) Tree exploration: Several algorithms have been studied
in order to make the tree traversal efficient. First algorithm,
proposed by Pohst in [9] needs to chose explicitly an initial
radius. This is a very critical choice: if a too large radius is
chosen, too many points fall into the hypersphere, while for a
too small radius no points are left inside it. A more efficient
algorithm, which does not need the choice of the initial radius,
has been proposed by Schnorr and Euchner (SE) [10]. An
infinite initial radius is selected and, following the direction
of the zero-forcing solution ỹ, a depth-first traversal of the
tree is performed. Radius is progressively reduced every time
a leaf is reached and distance between two points is smaller
than current radius. Originally thought for infinite lattices, this
algorithm has been adapted to finite lattices [7].

III. HARDWARE IMPLEMENTATION

The decoding phase of a Golden code MIMO system is
mainly constituted by three blocks: QR decomposition, column
reordering and tree search. While column reordering option-
ally reduces the tree-search complexity, QR decomposition is
mandatory because it allows constructing the tree and finding
the ZF solution of the LS minimization problem.

These two blocks perform preprocessing tasks, working
on the lattice generator matrix M = HB; since the code
generator matrix B is constant, they require to be applied
at the channel estimation update frequency. The refresh fre-
quency of the channel estimation can terribly change, from one
application to another, in order to fit the standard purposes
and scenarios, but it is generally almost one or two orders
of magnitude lower than the signal rate. For this reason the
column reordering and the QR decomposition blocks are not
the critical components in the decoder architecture.

Main focus of this work is on the hardware design of the
tree-search algorithm for the detection of the Golden code,
which is the most computational intensive block.

Two are the main implementation requirements taken into
account in the design of the proposed architecture. On one
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hand, the decoder has been conceived with the purpose of
supporting a certain degree of flexibility with respect to the
choice of the modulation scheme and to the size of the
search space. On the other hand, the achievement of high
decoding throughputs has been taken as the second basic
design objective.

The block scheme of the SE tree-traversal circuit is depicted
in Figure 2. Three fundamental blocks can be identified in the
shown architecture:

• U psi unit, which selects the most probable son of the
current node and computes updated ψl

• U psi step unit, which selects an alternative node to be
expanded and computes for this node the same amount

• Metric compute, which computes metric of the current
node Tl (7).

The core of the traversal algorithm is constituted by another
essential block, represented in Figure 2 as C.U. (Control Unit)
and devoted to properly select the correct tree search direction.
Moreover it has also two additional tasks: to verify pruning
conditions and to properly dispatch data between involved
units, on the basis of the performed verification.

U_psi Unit U_psi_step Unit

C.U.

Metric_compute

Memory
Psi

Memory
Metric

Fig. 2. Sphere Decoder block scheme.

Comparing this architecture to other implementations [11],
it can be observed that a single metric computation is per-
formed at each cycle, instead of multiple parallel metric com-
putations. This characteristic justifies the reduced complexity
that will be shown in Section IV and it also enables the
inherent flexibility of the proposed architecture.

The direct implementation of eq. (7), that is the computation
of the ψl−Rllsl value for all possible values of sl, in order to
select the best son for the considered node, tends to become
infeasible when the order of the modulation increases, due
to the large number of required operations. In order to avoid
this limitation, the computation in (7) was rearranged in two
consecutive steps. In the first step, U psi Unit exploits the
knowledge of the previous value of ψl to compute the division
ψl/Rll and to retrieve the value of sl for the analyzed “father
node”. This allows obtaining the updated ψl+1 values for
the candidate sons (Fig. 3) and selecting the one with the
minimum value. At the second step, the actual metric value,
Tl, is computed for the selected node (Metric compute unit).

The need for multiple metric computation is avoided by
means of this two-step approach. This solution achieves low
complexity and, at the same time, flexibility in terms of
supported modulation schemes.

It is worth noting that we do not need to compute the exact
solution of division ψl/Rll, since we are only interested in
some specific values of the signal sl, i.e. the integer values (
-3, -1, 1, 3, . . . ). Thus, we find the closest integer solution of
the division and if the approximation is by defect or by excess:
this computation is easily performed, as it only requires shifts
and subtractions.

The addressed requirements of reduced complexity and
flexibility cannot be achieved at the expenses of processing
throughput. In previous published approaches, high throughput
is obtained resorting to parallel architectures and two different
kinds of parallelism are usually employed:

• Parallelism at the level of tree exploration
• Parallelism at the level of the metric computation for all

sons of a given node and in the selection of the most
probable son.

The first technique can be used only with some suboptimal
algorithms [12] and it becomes unfeasible when optimal
algorithms are adopted, since it requires large amounts of
hardware resources. The second approach is feasible only in
small QAM modulation schemes as it implies many concurrent
multiplications. Thus these techniques are not viable for the
implementation of flexible architectures. As a consequence, in
this work, parallelism relies on a pipelining–like approach.

During tree exploration, while the metrics of a given father
node are evaluated by the Metric Compute Unit, two “candi-
date” nodes are concurrently computed: the first one is a direct
son of the considered node (if the father node is a leaf we
avoid this evaluation), while the second one is an “alternative”
node. This alternative node may be at the same level as the
father node or even at a deeper level in the tree. While the first
elaboration is performed by the U psi unit, the alternative node
computation is concurrently performed by the U psi step sub-
circuit (see Figure 2) and both of them compute novel ψl+1

values for the next step in the tree traversal. Depending on
the values assumed by the father node metric, the algorithm
descends along the tree, reaching the son node, or it moves to
the alternative node.
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Fig. 3. U psi Unit datapath
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TABLE I
SYNTHESIS RESULTS

Reference [11] [13] This work

Antennas 4×4 4×4 2×2 per two channel uses

Modulation 16-QAM 16-QAM 4,16,64-QAM 16-QAM

Detector depth-first K-best depth-first
sphere sphere sphere

BER Perf. ML Quasi-ML ML

Tech. [µm] 0.25 0.35 0.13 0.25

Core Area 117k 91k 68k 56k
[GE] +preproc. +preproc. +preproc. +preproc.

Max. Clock 51 MHz 100 MHz 208 MHz 109 MHz

Throughput 73 Mbps 52 Mbps 145.1 Mbps 83 Mbps
@SNR=20 dB [16-QAM]

IV. RESULTS

The proposed architecture has been extensively simulated.
System performance are reported in Figure 4 in terms of bit
error rate(BER) vs. SNR, for 4, 16 and 64-QAM modulations.
Fixed-point results are also plotted for the same modulation
schemes: finite precision data have been derived adopting a
16 bits datapath, with 7 bits devoted to the mantissa and 9
bits for the fractional part. In the plots no performance loss
can be appreciated with respect to floating-point simulations,
here introduced for comparison purposes. We note that the 16
bits precision is enough also for the most critical 64 QAM
modulation.

Fig. 4. Proposed system performance with different modulations.

The proposed architecture has then been synthesized on both
0.13µm and 0.25µm CMOS Standard Cell technologies.

In order to enable the direct comparison with existing
hardware realizations [11], [13], a 16 bits datapath has been
chosen and the overall decoder has also been simulated with
the V BLAST 4×4 MIMO system and throughput figures
reported in table I refer to this configuration.

Analyzing data in Table I, it can be noticed that our rear-
ranged approach with a single metric computation per cycle,
allows a significant complexity reduction (approx. 50% for 16

QAM modulation) with respect to parallel structures. At the
same time, thanks to the adopted pipelined architecture, we can
achieve remarkable average decoding throughput without any
highly specialized structure. Moreover, our flexible decoder is
not limited to a single modulation scheme, but it can adapt to
different modulations (4, 16 and 64-QAM).

V. CONCLUSION

A novel Golden code MIMO decoder based on a rearranged
SE Sphere Decoding algorithm has been proposed. It achieves
an average throughput of 83 Mbps on a 0.25 µm Standard
Cell CMOS technology for a 16-QAM modulation and an
overall complexity limited to 56 kGates. The flexible version
of the designed architecture is able to sustain multiple modu-
lation schemes and requires 68 kGates, achieving an average
throughput of 145 Mbps on a commercial 0.13 µm Standard
Cell technology.
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