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Abstract— Permutation codes are special spherical codes
designed for the band-limited Gaussian channel. Here, we
investigatetheir application to fading channels: we presenta
simple maximum lik elihood decodingalgorithm and compute
expressionsfor the codeword error probability.

Keywords: Permutationmodulation, fast fading, slow
fading.

I. INTRODUCTION

Permutationmodulation has been proposedby David
Slepianin 1965 [3]. A Variant| permutationmodulation
is the set of codevords (signals) obtainedby taking all
permutationsof an initial vector in the n-dimensional
Euclideanspace.A Variant Il permutationmodulationis
the set of codevords obtainedby taking all permutations
and sign changesof the componentsof an initial vector
in the n-dimensionalEuclideanspace.Good permutation
modulationsmay be designedby appropriatelyselecting
theinitial vectorandmay be very efficiently decodedn the
AWGN channeby essentiallyapplyinga sortingalgorithm
to the receved signal vector [3]. In the literature the
performancef suchmodulationsvasanalyzedor AWGN
channelsonly, in this paperwe study their performance
over fastandslow fading channels.

This article is organized as follows: the next section
recalls the basic notation of permutation modulations;
Sectionlll providesan efficient algorithmfor mappingand
demappingoermutationcodes;a descriptionof the consid-
ered channelmodelsis given in SectionlV. In Section
V the Maximum Likelihood (ML) decodingalgorithm for
AWGN channelis recalled;in SectionsVI and VIl a ML
decodingalgorithm for fast fading channelsand its ana-
Iytical performanceare derived. Moreover, in sectionVIl|
a Zero Forcing (ZF) suboptimalapproachis considered.
Finally the performanceof permutationmodulationsfor
slow fadingchannelsareanalyzedn sectionIX. Examples
of performancen termsof error probability arethengiven
in sectionX, alongwith conclusve remarks.

Il. BASIC DEFINITIONS
Let {y1,..., i} beasetof distinct real numberswith
0<p1 <pe<---<pugandlet {m,...,my;} beaset
of positive integerssuchthatn = Zle m;. Considerthe
initial vectorwith componentssortedin ascendingorder

XO:[/’le"'a,u'h/an"'a,u?a 7,u'k:"'a,u’k}' (1)
—_—— —_——
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A Variant | permutationcode consistsof the set § of
vectorsobtainedby permutingthe component®f theinitial
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vector xg. The total numberof codavordsin sucha code

IS

n!

M = (2

my!mal - my!
The Variantl codewith k =2, m; =n —1, my =1 and
11 =0 is the well known PPM or orthogonalmodulation.

A Variant Il permutationcode consistsof the set§ of
vectors obtainedby permutingand applying all possible
sign changesto the componentsof the initial vector xg.
The total numberof codevordsin this codeis

h
M = #H ()
mypMmao. - M-

whereh =n —maq, if y1 =0 andh =mn, if y1 > 0. The
Variant Il codewith & = 2, m;y =n—1, my = 1 and
11 = 0 resultsin the well known biorthogonalmodulation.
The Variantll codewith k£ = 1, m; = n, p; # 0 yieldsan
n-bit PCM. In this casethe pointsof § correspondo the
2" verticesof ann dimensionalhypercubeof edgelength
2411, centeredat the origin.

It is clear that all codevords of both Variant| and Il
codeslie on a hyperspheref radiusv/nP centeredat the
origin, whereP = 1 25:1 m;s.

I1l. MAPPING AND DEMAPPING

Let us considerthe permutationcode§ with parameters
n, k with x specifiedby p = [u1, ..., pg] with multi-
plicities m = [my, ..., my]. The total numberof available
codevords M = |§| corresponddo a theoreticalspectral
efficiengy of log, M /n bit/s/Hz.In generalsinceM is not
a power of 2, a maximumof B = |log, M| bits canbe
mappedto eachcodevord yielding a spectralefficiency of
B/n bit/s/Hz. The M — 28 remainingcodavords will be
purged from the codebook.

In the following we presenta mapping/demappingl-
gorithm that uniquely associates vectorb = [by,. .., bg]
containingB binarydigitsto a codevord of the permutation
code.This algorithmis basedon the factthatthe elements
of p areorderedin increasingorderandit is possibleto
list all the codavordsin lexicographicorder as shavn in
Figurel. In practicethefirst elementof thelist, with index
0is

XO:[/J/la"'a,u/la"'au’ka"'a,uk] (4)
—_—— —_——
my my
while the last oneis
X]\/f—l:[Mka---sﬂka'-'aﬂla--'aul] (5)
——— ———
myg mq
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and hasindex M — 1. The mapping/demappinglgorithm
associatethe ¢™" codavord of thelist with the binaryvector
b whosedecimalrepresentatiois ¢, for¢g = 0,1,...,25 —
1. Clearly, the last M — 28 elementsof the list cannotbe
mappedor demapped.

A. Mapping

Giventhe codevord index ¢, correspondingdo the binary
vector b, the mappingfunction works sequentiallyin n
steps,finding one by one the codevord componentsin
the first step the algorithm splits the orderedlist in k&
contiguous subsetslabeled §;, for j = 1,...,k, each
one characterizedy the first componentf the codevord.
That is, the subsetS; containsall codevords whosefirst
componenis (;, asshavn in Figure 1. The cardinality of
the subsets; is

S = =D My
(m; —1)! Hi:l,i;éj m;! "

that correspondgo the number of codevords of a per
mutation code with parameters: — 1, k£ with multiplicity
[m1,...,m; —1,...,my]. Moreover from (6) notice that
|8 ;| canbe simply written asa function of the total number
of permutation)M .

The subsets; containscodevordswith indexesgq in the

range
Jj—1 J
STsil<a<dy I8 -1, @
=1 i=1

so, if ¢ is in this range then the first elementof the
correspondingcodavord is ;.

Supposenow that the subsetS; containsthe index g,
then the first componentof the codevord, 1 = p;, is
known. The next step proceedsby searchingthroughthe
set§; andneglectingthefirst elementof the codavords.In
practiceit focuseson the setof codevords corresponding
to a permutationcode with parametersn — 1, k, p =
[ty .., p] and multiplicities [mq,...,m; — 1,...,my],
whichis denotedby Sj, in thefigure. This repeatauntil the
last elementof the codevord is found.

The pseudacodecorrespondingo the mappingfunction
is given below:

Functionx = Mappingg)

Letm =m

Let M) = M
fori=1,...,n
let s; = q— 22:1 mpy M@ /(n — i)
l=0,....,k—1
j = argmin(s;), s >0
Ti = Ky
q=5j

MY = m; MO /(n —4)
m; =1m; — 1
end

This function has an averagecompleity proportionalto
nk/2.
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Fig. 1. Codevords of the permutationcode 8 orderedin lexicographic
order

A similar mapping/demappinglgorithmfor permutation
modulationshas beenproposedin [2]. However, because
of (6), the algorithm proposedn this paperdoesnot need
the storageof the coeficients |.S;| that would require an
amountof memoryexponentialwith k.

B. Demapping

The demappingalgorithm finds the codevord index
q given the codevord x. As well as for the mapping
algorithm it proceedsin n stepsthroughthe elementsof
x. If the first elementof the codevord is z; = p; then
the codaevord x lies in the set§; andtheindex ¢ is in the
rangedefinedby (7). The searchthenproceedghroughthe
subsetS; by reducingat eachstepthe cardinality of the
subsetthat containsthe codevord x until the index ¢ is
found. The correspondingpseudocode of this algorithm
is:

Function ¢ = Demappi ng( x)
Let m=m
Let MM =M
Let ¢=0
for i=1,...,n
for j=1,...,k
if a; ==pu; then break
end '
let g=q+ Y7 muM®/(n—i)

MY =, M@ /(0 — 1)
m; =m; —1



end

The demappingfunction has an average compleity
proportionalto nk/2.

IV. CHANNEL MODELS

Digital transmissiorover the band-limitedfading chan-
nel is commonlymodeledin the n-dimensionalEuclidean
spaceR" as

y=Hx+n

wherey is the receved signalvector x = [x1,...,2,] IS
the transmittedsignal vector (or codevord) taken from a
finite signal constellation(or codebook)s, n ~ N(0, %I)
is a real Gaussianrandom vector with i.i.d. components
andH = diagh4, ..., h,) is the diagonalchannelfading
matrix. We distinguishtwo cases:

« slow fading, wherethe fading matrix is H = hI and
h changesindependentlyfrom one codevord to the
next;

« fast fading, where the fading coeficients h; change
independentlyin eachcomponent.

Finally, we notethatwhenH = I is constantwe fall back
into the AWGN channelmodel.Assumingthat the channel
stateinformationis available at the recever, ML detection
is given by

x = agmin |y — Hx||> = arg min [y —x'|[* (8)
x€eS8 x'e8’

where 8’ is the “fadedsignal constellation”HS. We note
thatthe compleity of the ML recever greatlydependson
the structureof the code 8. In the worst casea total of
M = |8 Euclideandistancesnustbe computed For large
valuesof M this may be impractical,henceit is common
to trade someof the performanceor a reduceddecoding
compl«ity. Many classicalforward error correctingcodes
have been selectedfor applications becausethey have
simpledecodingalgorithms.In the caseof AWGN channel
an efficient decodingalgorithm, recalledin the following
section,was proposedby Slepianin [3].

V. ML DECODING FOR AWGN CHANNEL

Let us considerML decodingof Variant| codes.We
needto find the minimum of the the quantities

ly —xil1> = lylI> + nP — 2(y, %) )

for i = 0,...,M — 1 where (y,x;) denotesthe scalar
productof the two vectors.Since ||y|| is independenbf
the ML decodermay simply maximizethe scalarproduct
betweenthe received vector and the codevords, i.e.

X = al Y. 10
X rgr?g?;xkyk (10)

This maximization problem may be solved as follows.
Given the receved vector y, replace the smallest m;
componentdy the valuesy,, replacethe smallestm, re-
mainingcomponentsvith -, etc. Until all the components
have beenreplaced.

For Variant Il codesML decodingcan be performedas
follows.

1) Take the absolutevalue of the componentsof the
receved vectory, i.e. let

y/ = Hy1|v |y2|7‘yn”

2) Apply the decoderof Variant! codesto y’ to make
a first decisionx’.
3) Thefinal decisionis given by

X = [Sgr(yl)xlla Sgr(yQ)I/27 LR SQr(yn)l’;l]

where sgn(x)
x < 0.

It canbe shavn that the above algorithmis equivalentto
solving the maximizationproblem(10).

The compleity of thesedecodingalgorithmsis rather
small if comparedo the brute force exhaustve search.n
particular it is enoughto perform a sorting algorithm on
the n component®f the receved vectorandto keeptrack
of the final index permutation.This permutationuniquely
identifiesthe ML decodedcodevord andthe corresponding
information bit label may be easily recovered by the
demappingalgorithm. Sorting can be performedwith a
compleity of O(nlog(n)), whereasexhaustve decoding
requiresMn multiplicationsand M (n — 1) additions.

The averagecodevord error probability with ML detec-
tion in the AWGN channelis given by

= +1, if x > 0 andsgn(z) = —1, if

M1 e lIx—xi[?/(20%)

M Z / Grooyr (D)

where R; = R™\R; is the complementof the decision
region correspondingo the codevord x;, definedas
Ri={zeR" : |z—xi| <llz—x;ll, Vj#i}. (12)

Theseregionsarealsoknown asminimumdistanceor ML
regions.

V1. ML DECODING FOR FAST FADING CHANNELS
In a fast fading channelthe ML estimatex of the
transmittedcodevord x canbe found by computing

n
X = i — Hx||? = i i (; 13
arg min |y — Hx|| argglelg; i(z)  (13)

where

A
Ai(wi) = Jyi — hiwi|” = yi + hix? — 2yihis (14)
is the contritution of thei-th componento thetotal metric.

In this paperwe restrict our investigation to the case
k =2, with m = [m1, ms] and pu = [u1, uz]. We consider
both Variant! and Il permutationmodulation.



A. Variant | permutation modulation
For Variant! modulationsz; € {u1, u2}, S0owe have

Ni(z:) = {yzz +hZpd = 2yihipn  if z = (15)

Y + hips — 2yihipe i @i = po

If we subtracta constantor we divide by a constantthe
argumentof (13) the resultdoesnot change thatis,

n

X — i 5\1 ZT; 16
% = argmin ; () (16)
where \ N
Rifar) 2 22~ Aile) a7)
M2 — H1
Now we have
- 0 if x; =
Nlr) =1, : Hr 1g)
hi(po 4 p1) — 2y:hs  if x5 = po

Sincechoosingz; = w1 givesno contrikution to the total
metric, the minimization of (13) is obtainedby setting
I; = pe for the indexes ¢ that correspondto the ms
smallest metrics 5\1'(/12). For the remaining m; indexes
we setz; = up. In practicewe find a permutationr that
sortsthe metrichi(pz) in non decreasingrder suchthat
Ar(p2) < Arp(p2) < oo < Ax,_y(2) < Ar, (p2) and
we set

. {ug for 1=1,...,m9 (19)

A ]
¢ pwy for i=mao+1,...,n

Theorem 1. The above algorithm producesa ML esti-
mate.

Proof: Supposethat the solution found by the de-
scribedalgorithm doesnot minimize the metric (13). Then
there exists at leasta permutationof two indexes ¢ and
j that further reducethe metric. If X is the total metric
given by the algorithm, the nev metric becomes)’ =
A — Ni(p2) + Aj(u2) < A By solving the inequality
we obtain A;(u2) > Aj(u2). But since we have chosen
Ai(p2) < Xj(p2), this contradictsthe hypothesis. [

B. Variant Il permutation modulations

The considerationdor Variant| modulationshold Vari-
antll. However, in this case,z; € {£p1, +us} and

Y2 + h2pd — 2yihipn i @i =+
)y RHE + 2yihip i 3=
)\z(rl) - 2 2 2 . (20)
yi +hips —2yihipe  if xi =+
yi + hius + 2yihipe  if x; = —po
Clearly, sincey? + h?u? andy? + h?u3 are positive, the
sign of z; that minimizesthesemetricsis

sgn(@;) = sgny;). (21)
The metric for Variant!l modulationsthenreduceso

Y7+ hips = 2lyilhips  if 20 = sg(yi) e
(22)

andasin Variant!|

< 0 if x; = Sgr(y,;),u,l
Ai(zi) =9 5 .
hi (a2 + p1) = 2|yslhy  if ;= sgn(y;)pe
(23)
The decodingalgorithm procedesas for Variant Il using
first the metrics(23) andthe decidingon the signesusing
(21).
The pseudocode of the decodingalgorithm is given
below:

Function x = Decodi ng(y)
for i=1,...,n

Ai(p2) = B3 (2 + pa) — 2yihy (V. 1) or
Ai(p2) = B3 (p2 + pa) — 2[yslhi (V. 11)
end
A = sort(\)
for i=1,...,mo

Tr, =p2 (V. 1) or

Try =SGN(Yr, )z (V. 11)
end
for i=mo+1,...,n

Tr, =1 (V. 1) or

Tr, =sGN(Yr )1 (V. 11)
end

The compleity of this algorithmis O(nlogn) (i.e the
compleity of the sorting function).

VIlI. THE CODEWORD ERROR PROBABILITY WITH FAST
FADING

We presenthere the closed form expressionfor the
codevord error probability for £ = 2 and Variant |
modulations.We consideran arbitrary permutationof the
initial vectorx, representedby the vectorx; = m;(x¢) =
[z15,..., 2, ;] andwe denoteby J; the setof indexes i
for which z; ; = p; andby J the set of indexes i for
which z; ; = p2. Moreover, in the following, we denote
by fe(s) and F¢(s) the probability density function (pdf)
and the cumulatve density function (cdf) of the random
variable¢, respecitiely.

We wantto computethe averagecodevord error proba-
bility with respectto the channel,i.e.,

M-1
Pr(e) = o ;O E[Pr (efh, ;)] (24)

Thefollowing lemmagreatlysimplifiesthe evaluationof
(24).

Lemma 1: For ary permutationcode § = {x; =
m;(x0)|m; € G} given by the orbit of an initial vectorxg
undera permutationgroup G [1],

Pr(e) = IE, [Pr (e|h,x0)] (25)

if the fading coeficients h; are mutually independent.

Proof: This lemma implies that it is possible to
computethe word error probability by only assumingthe
initial vector xq is transmitted,similarly to the case of
group codesfor AWGN channel[4].



Letregion R = {0 < hy < hy < --- < h,} be asubset
of the positive orthant (R")™ and S,, be the symmetric
groupof degreen andorder|S,,| = n!. We have

U o®)=®")"

ocES,

whereo(R) = {0 < hg(l) < hg(g) << ho(n)} is the
region with vector componentpermutedby o. The error
probability is then

' /Pr (elow o m;(h), xo) f(h) dh
R

‘ /Pr(e|ag(h),x0)f(h)dh
R

_ /  Pr(elb, x0) f(h) db = E [Pr (e[h,o)]
(26)

wherewe usedthe following facts:i) the compositionof
permutationss;, o m; = o, runsthrough S, since§ is a
subgroupof S,,, ii) f(h) = [T f(h:) = f(or(h)). =
As shawvn in the previous sections,the ML detection
algorithm makes decisionsusing the metrics \; = \; (112).
The codevord x; is successfullydecodedf all the metrics
associatedvith the indexesi € J, (i.e wherez; = u»)
are lower thanthe metricswith indexesi € J, (i.e. where
x; = u1). In otherwordsif we define
¢ 2 min A and n 2 max A (27)
1€J, i€Jg
the error probability given that the codevord x; is trans-
mitted and conditionedto h, is given by

Pr(elh,x;) =1—Pr(n < (lh,x;). (28)

From (28) and (25) we have

Pr(e)=1—TF Um Pr (5 < zlh) fen() dz] (29)

h -0

where,dueto the independencef fading,

Pr(n<zh) = [] Fn(2) (30)
i€Jo
fans) = LTI B @Y

i€Jq

Thenwe canwrite the codavord error probability by using
(29) andthe metricscdf F},,,, as

+o0
Pre = 1+/ HEF)\“L

i€Jq hi

L (1-ElBune >]) d= (@32)

ZEJ

wherethe equality derives from the mutual independence
of the h;’s.

For Variant | permutationmodulations); = h2(u, +
u1) — 2y;h;. Then, for a given h;, y; is a Gaussian
random variable with distribution y; ~ N(h;u;, No/2),
hencethe metrics \; arealsonormally distributedas \; ~
N(v;,2h?Ny) where,by letting § = pa — p1,

{—f—h?(g for i€, (Q"Z = [1/1)
vV; =

33
—h?é for 1€y (l‘i:,uz) ( )

The averageof the cdf of the i-th metric, with respectto
the i-th componenichannelfading ; is

+oo fh, (:L‘j: h25)2
/ / 21u/7rz\f0 xp <_ ANoh? )dxdh
(34)

where in the caseof Rayleigh fading channeleach co-
efficient h; is Rayleigh distributed with pdf f,(h) =
2hexp(—h?), sothat E[h?] = 1.

After somealgebrawe obtain

Fy(2) = ¢y exp(b12) it z<0 for icd
’ 14+ coexp(bez) if 2>0 e
(35)

Py (2) = —coexp(—baz) if z<0 for icd
Ai 1—ciexp(—b1z) ifz2>0 2
(36)

where

6 + /4Ny + 62
by = 0+ valNo + 07 (>0)
2N,
0 — /4Ngy + 62
by = T aN, (<0)
: (> 0)
6 = ——
! by /AN, + 02
1
= — (<0
2 bavVANy + 62 ( )

Finally, by plugging (35) and (36) in (32) the codevord
error probability becomes

Pre) = 1-—
mi—1 mi—1 —a k
my(—cg)™? Z ( ( : )( ) -

=0 k’—|—1)/017m2/62

k
ml 1
Z k/Cl m1/02 (37)
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Fig. 2. Performanceof the Variantl permutationmodulationwith k =2, n =9, m = [7,2], « =0

It is corvenientto write the coeficients ¢; and c; as a
function of the signalto noiseratio E,/Ny, where E; =
mip?+mop3. In fact,if wesetu; = aus, with0 < a < 1
a systemparameterwe obtain

_1 |_Py _
Cl—§<1— 4+ﬁ’\/)’ 62—01—1, (38)

Es

No

A few commentsareappropriatehereaboutthe choiceof
the codeparametersiVe first notethatPr(e) is adecreasing
function of 3+, henceit is corvenientto minimize 3. For
fixedmy, mo the bestchoiceis a = 0, whichimplies u; =
0. For a given « anda given M = n!/(m1!ms!), the best
choicefor mq,my is whenm; > msy. This fact implies
that codeshaving codevords with higher peakto average
power ratio perform betterin fastfading.

where

B=(1-a)?/(ma®+ms), v (39)

VIII. A ZERO FORCING DECODER FOR FAST FADING

For a fast fading channelthe ZF approachclearly rep-
resentsa suboptimaland simpler solutioncomparedo the
ML algorithm.In orderto provide a comparisonwith the

ML performancejn this sectionwe derive the analytical
expressionof its P(e).
The ZF approachinvertsthe channelby computing

z=H 'ly=x+H !'n

where,for a given h;, the randomvariable z; = y;/h; is
normally distributedwith meanz; andvarianceNy/(2h?).
The estimate of the transmitted codavord is given by
minimizing
% = argmin ||z — x|
xES
This problem can be solved by applying the decoding

algorithmfor AWGN channeldescribedn [3] thatprovides
the codevord error probability

“+o00
! +/_oo H % [sz‘hb(z)] ’

i€Jq

LI (1 —g[in(z)l) dz

i€Jg

= 1+/+oot<z+ A/ﬂ>ml

—0o0

Pr(e) =

d M
(40)



wheret(z) = 3 (1+ T ) and g and ~ are defined
in (39). In terms of compleity the ZF algorithm differs
from the ML algorithmonly in the metric computationIn
both cases however, the compleity remainsproportional

to O(nlogn).

IX. ERROR PROBABILITY FOR SLOW FADING CHANNEL

In the presenceof slow fading channelthe fading co-
efficient h remainsconstantwithin the codevord, that is
y = hx+n wherey; ~ N(hzi, Ny/2). The probability of
error is then given by

Pr(e) = 1
+°°E d
] H Fyan(2) o H (1= Fyn(2) dz
i€Jdq i€Jg
ng oo _,2 mo—1
— 1 _ z 1 _ meo .
e )

+oo 5 m1
: / he=""t (z + h\/ﬁ/ﬁ) dhdz (41)
0

wheret(z) = 3(1 + erf(2)).
X. SIMULATION RESULTS

Figure 2 shavs the performanceof the Variant | per
mutation modulation with parametersn = 9, k = 2,
m = [7,2] and a« = 0, for various channels.The solid
lines are obtainedby the exact computationof (37) in the
ML fastfading case,and by numericalintegration of (40)
and (41) for the ZF fast fading and slow fading cases,
respectrely. The points superimposedo the solid lines
have beenobtainedby simulation.The performanceof the
AWGN caseis alsoshavn. Notice that the ML algorithm
for fastfadingchannelprovidesa non negligible gain with

respectto the ZF approacheven at very low signal-to-
noiseratio. The performancefor the slow fading channel
is similar to the ZF fast fading case. We obsere that
permutation modulations exhibit a modulation diversity
L = 2, sincethe minimum Hammingdistancebetweerary
two codevords is 2, when they are obtainedby ary two
componenexchangd5]. With fastfadingthefull diversity
canbe exploited only if ML decodingis performed.

XI|. CONCLUSIONS

In this paper we have presentedsome new results
on permutationmodulationsfor transmissionover fading
channelslin the casek = 2 we have devised an efficient
ML decoderof Variant! and Il permutationmodulations
in fast fading. An exact expression for the codevord
error probability of Variant| permutationmodulationsfor
independenRayleighfading channelsis given. A similar
resultis expectedfor Variantll permutationmodulations.

Futurework will concentrateon extendingtheseresults
to permutationmodulationswith k& > 2.
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