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ABSTRACT The irregular sampling theory is concerned with the problem
We consider wireless sensor networks whose nodes are randomly of recovering a bandlimited signal from a sequence of samples,
deployed and, thus, provide an irregular sampling of the sensed which may be taken in an irregular way. Several reconstruction
field. The field is assumed to be bandlimited; a sink node col- algorithms have been proposed in the literature (see e.g., [1]) and
lects the data gathered by the sensors and reconstructs the field by have found application in a variety of fields, such as digital medical
using a technique based on linear filtering. By taking the mean imaging [2,3], geophysics [4], weather forecast [5], astronomy, and
square error (MSE) as performance metric, we evaluate the effect oceanography [6].
of quasi-equally spaced sensor layouts on the quality of the recon- Recently, a great deal of attention has been devoted to sensor net-
structed signal. The MSE is derived through asymptotic analysis works, whose nodes sample a physical field, like air temperature,
for different sensor spatial distributions, and for two of them we light intensity, pollution levels or rain falls, and report the data to
are able to obtain an approximate closed form expression. The case a common processing unit (sink node). The sink node is in charge
of uniformly distributed sensors is also considered for the sake of of reconstructing the sensed field. In general, sensors are not reg-
comparison. The validity of our asymptotic analysis is shown by ularly deployed in the area of interest and, if not synchronized to
comparison against numerical results and it is proven to hold even a common reference, their sampling time also differ. As a result
for a small number of nodes. Finally, with the help of a simple ex- the physical field is not equally-spaced sampled both in the space
ample, we show the key role that our results play in the deployment and in the time domain. If the field is bandlimited in both domains,
of sensor networks. then an estimate of the discrete spectrum can be provided, although

high sampling irregularities typically result in a degradation of the
reconstructed signal. The work in [7] investigates this issue show-

Categories and Subject Descriptors ing how irregular spatio-temporal sampling affects the performance
C.2.1 [Computer Systems Organization]: Computer-Communi- in sensor networks. Other interesting studies can be found in [8]
cation Networks Network Architecture and Design; G. 1.0 [Mathe- and [9], just to name a few, which address the perturbations of reg-
matics of computing]: Numerical Analysis General; G.3 [Mathe- ular sampling in shift-invariant spaces [8] and the reconstruction of
matics of computing]: Probability and Statistics irregularly sampled images in presence of measure noise [9]. Some

conditions on the irregular topology of a sensor network, which al-

General Terms low for a successful signal reconstruction, are identified in [10].
There, however, it is assumed that the reconstruction algorithm has

Performance, Theory perfect knowledge of the sensors position and measures are noise
free: the failure in reconstruction is only due to the finite machine

Keywords precision. Such assumptions are removed in [11] where sensors are
uniformly distributed over the spatial observation interval and may

Signal reconstruction, Sensor networks, Irregular sampling, Perfor- move around a known average location; the effects of noisy mea-

sures and jittered positions are analyzed when linear reconstruction
techniques are employed.

1. INTRODUCTION Similarly to [10, 11], in this work we consider wireless sensor
The reconstruction of bandlimited, regularly sampled (or equally networks and investigate a reconstruction technique that follows the

spaced sampled) signals is a very deeply understood technique; work by Feichtinger [1]. Such a technique does not require interpo-
on the contrary, the reconstruction of irregularly (or non-equally lation and can be viewed as a generalization of the classical discrete
spaced) sampled signals is a topic still under investigation. Fourier transform (DFT) to irregularly sampled signals. Although

the theory applies to fields in any dimension, for simplicity, we
study the unidimensional case in the space domain, i.e., we assume
that sensors are deployed irregularly on a finite spatial interval. As
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personal or classroom use is granted without fee provided that copies are is straightforward. We consider that the field samples are corrupted
not made or distributed for profit or commercial advantage and that copies by additive noise, due to quantization, round-off errors or quality
bear this notice and the full citation on the first page. To copy otherwise, to of the sensing devices. Moreover, the sink does not have perfect
republish, to post on servers or to redistribute to lists, requires prior specific knweg oftesno .oiin,a stecshnte r
permission and/or a fee.-
IPSN'07, April 25-27, 2007, Cambridge, Massachusetts, USA. estimated through a localization technique [12-14].
Copyright 2007 ACM 978-1-59593-638-7/07/0004 ..$5.00.
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Notice that, differently from our previous work in [ 1], here sen- in the multidimensional case, the relation between field spectrum
sors are fixed and their position is known at the sink with some and samples is similar to (1), with a different structure of the ma-
error. Furthermore, our goal in this work is to evaluate the perfor- trix G,. We therefore limit our investigation to the unidimensional
mance of the considered reconstruction technique in the presence of case, since the extension to multidimensional fields is straightfor-
quasi-equally spaced sensor layouts. The motivation for consider- ward and considerations similar to the unidimensional case can be
ing such network topologies is that typically terrain conditions and drawn.
deployment practicality make regular sensors placement unfeasi- When the measures provided by sensors are affected by noise,
ble. For the sake of comparison, we also study the case of sensors we can write:
randomly distributed in the network area with a uniform distribu- t
tion. Through asymptotic analysis, we derive the mean square er- p s + nl Ga + n (3)
ror (MSE) on the reconstructed signal, as a function of the network where the noise is represented by the r-size, zero-mean random
characteristics. Different network topologies are considered and vector n, with covariance matrix IE[nnt =7212M+1. Let us de-
compared; in particular, for two of them, under some assumptions fine:
on matrix freeness we find an approximate closed form expression

0
_2

of the MSE, which proved to be very tight. SNRm - 2 -
We highlight that our results play a key role in the design of 0Jn °t

sensor networks and that, to the best of our knowledge, no previous as the signal-to-noise ratio on the measure.
work has analytically studied the impact of irregular sensor layouts Measures are sent to the so-called sink node whose task is to pro-
on field reconstruction. vide an accurate field reconstruction; data transmissions between
The rest of the paper is organized as follows. Section 2 intro- nodes and sink are considered to be error free. However, we as-

duces the system model, Section 3 defines our performance metric sume that the sink does not have perfect knowledge of the network
and gives some details on the field reconstruction technique. In topology and that an estimate of the sensors position is given by:
Section 4 we present the asymptotic analysis of the system perfor-
mance, and validate the analytical results through numerical simu- x x + 6
lations. Finally, Section 5 concludes the paper. where the vector 6 represents the position error. The entries of 6

are modeled as independent and identically distributed, zero-mean
2. SYSTEM MODEL random variables with probability density function f6 (x), variance

22
A unidimensional bandlimited physical field, described by 2M+ 0-,, and covariance matrix E[[66 t = U3I2M+1. The random vec-

1 harmonics, can be written as tors 6, n, and a are assumed to be uncorrelated.
Both the noise n and the position error 6 affect the quality of

1 -j27kx the reconstructed field. In practice, high reconstruction quality is
S(x) =3 ak2I expected when the standard deviation is small compared to the

k=-M average sensor separation. Since r sensors are deployed in the in-
The field is sampled in the space domain by r sensors, which are terval [-1/2, 1/2), the average sensor separation is 1/r. We there-
deployed in the normalized interval [- 1/2, 1/2). The sensor posi- fore define the parameter
tionsaregivenbythevectorx [=i[XI, ,xr]T,xq C [-1/2,1/2), c
q = 1, ....,r. Then, let s = [s(XI), . .,s(X)]T. The discrete P l/ (4)
spectrum of s(x) is denoted by the random column vector a =

[a-M,7. . . a+M] T and we assume E[ Ia 2] = 72I1l. as a measure of the uncertainty on the network topology at the sink;
We define f as the ratio of the number of complex harmonics when p = 0, we have perfect knowledge of the topology.

that describe the field to the number of sensors:

2M + 1 3. PERFORMANCE METRIC AND RECON-
-r STRUCTION TECHNIQUES

Notice that for equally spaced sensors the sampling theorem is sat- The task of the reconstruction algorithm is to compute an esti-
isfied for f < 1, we therefore focus our analysis on this range of mate a of the spectrum a. Given a, the estimate s(x) of the field
values. s(x) can be obtained as:

Following [1], the values of the field at positions x are given by
thesizercolumnnvector 1 M j27rk2

s G~~~~~a (1)~~~~~~(x) -2-M + 1 Z etke~Gt =Ga k1=-M

where (.)t is the conjugate transpose operator and Gx is the (2M+ As a reconstruction performance metric we consider the MSE of
1) x r matrix defined as: the field estimate which, for any given x is defined as:

(Gx)kq - 2M ±1 MSEX E 1S(x) - s(x) 2 d1 ~~~~~~~~i27rkxq ~~~~~~~~~~a,n~,6 []Ix
e-j27rkXq (2) 2.1/ 1 a,[ 2]

2M+T1 a,E, A-
for q =1,. . .,randk =-M,...,+M. Notice that, ifthe posi-
tin'qar qal spce (.e. xq (q - )-12, the where the operator IE[*] averages with respect to the subscripted
/IGX is unitary (i.e., /3 GXGx = I) [15]. It can be shown that, randmvcos

_______________________ ~~~~~~~~Forlinear models such as (3), several estimation techniques based
'E[-] is the average operator and the identity matrix is denoted by I on linear filtering are available in the literature [16]. The idea is to
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employ a suitable filter B such that the estimate of the field spec- ......

trum is given by the linear operation
Uniform-2

a Btp (6) Gaussian,,
Uniform-1

where B is an r x (2M + 1) matrix. Here we focus on the linear
filter providing the best performance in terms of MSE, that is, the
linear minimum MSE (LMMSE) filter. In our case this is given
by [16]: G ,, (

0
q Xq +2Bl=at (Rx, + cl) - (7) 0) l xq +a+2,

where Rx GxGt is Toeplitz and Hermitian. Notice that (7) Figure 1: Qualitative representations of the pdfs Uniform-i,
requires the knowledge of x, which is not available at the sink. Fifore 1: Q u ssian
Therefore we use the only available information and replace x Uniform-2 and Gaussian
its estimate x, and employ the filter

B = Gt (Rx + cl) (8) the distribution variance is small, the effect of such operation is

The matrix G^ is defined as in (2), where xq is replaced by ±q, and negligible.
Rx~~= ,Gt.We furter assue that he valu of SNR = a-' In the following the three distributions are compared in terms of

GXGI. We further assume that the value of SNRm the MSE that is obtained on the reconstructed field.
is known. Substituting (6) in (5) and using (3), after some algebra,
we write the MSE as:
MSEX- t,n,'5[ + n)-a2 4. ASYMPTOTIC ANALYSIS OF THE MSE

2M + 1 a,nF B 'G ' 2] A simple and effective tool to evaluate the performance of large
2 r finite systems is asymptotic analysis. In our case, we let the field

=2M 1 Tr E GxGt (Rx +Gt number of harmonics 2M + 1 and the number of samples r grow
to infinity, while the ratio f

= (2M + 1)/r is kept constant. The
+a IS [R (Rx + eI>2] + I results show the validity of our asymptotic analysis, even for small

values of M and r.
2X1tE [GGt(R^ + oI)1l 'l~'l (9) To carry out our asymptotic analysis, we consider as perfor-

t
[X
xx x J J mance metric the asymptotic per-sample average MSE, normalized

to 02where Tr{ } and R{ } are the trace and real part operator, respec- a

tively. Clearly (9) is a function of a given network topology de- MSEo= lim E[MSEx]
fined by x. In a more general case we consider the topology to be °° M,r-±+o0 a x

random, with independent positions Xq having probability density 0

functions (pdf) fq (x), q = 1 ... r. In particular, in this work we Also, for simplicity of notation we introduce the linear functional [17]
compare different topology distributions, labeled as follows (see 1
Figure 1): (y(X) = n-li Tr{E[X]}

* Uniform-i: where XCq has zero mean and is uniformly dis-
tributed in [-1/2, 1/2); where the argument X is an n x n random square matrix. The func-

tional 0(5) has many interesting properties; here we report those
* Uniform-2: where x q has mean bCq (q- 1/2)/r-1/2, and that will be useful in the following analysis:

is uniformly distributed in [sCq - , sbq + 2, with variance
2

. r J() = I1, (9g(X)) = IE [g(0)]I
* Gaussian: where xq has mean q = (q - 1/2)/r - 1/2, + X2) =15(Xi) + (X2) (aX) = 5(a>y(X)

and is Gaussian distributed with mean $Cq and variance =g. a

Similarly to (4), it is useful to write u7 in terms of the average where ( is the random variable with the asymptotic eigenvalue
sensor separation 1/r through the parameter 71, that is og - distribution of X, g(Q) is an analytic function2, and a is a scalar

/r2. (see [17] for further details). From (9) and using the above defini-
The Uniform-] distribution assumes that sensors are deployed with tions, we obtain

uniform distribution over the entire sampling region. One of the MSEO = _ + oIj)2GkG) + 1
reasons for analyzing this distribution is that, among all others, it x

has the highest possible variance and, as will be clear in Section 4, +± 0 (R^ (R^ + -,)-2) 2XO (GXGt(R* + agI)1)
provides the worst performance. Instead, Uniform-2 and Gaussian x

reflect the attempt to deploy sensors in a quasi-equally spaced man- (10)
ner. This is the case when a regular sensors placement is desirable
but, due to terrain conditions or deployment practicality, it turns 4.1 Uniform-1 topology
out to be not achievable. Notice that the support of the Gaussian Clearly (10) depends on the distribution of x. We first analyze
distribution is infinite and, thus, with a non zero probability some the Uniform-] distribution, i.e., the case where Xq U4[-1/2, + 1/2).
Of the samples Xq fall outside the range [-1/2, 1/2). In principle ___________
such values should be discarded. In practice, we consider them as 2Note the small abuse of notation when using g (.) for both scalar
valid sampling points by wrapping them around. Note that, when and matrix argument
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Then, the following results hold: given the excellent match between analytical and simulation re-
sults). Then, O(CP1R2)RP (CP1)>(RP2) for any positive in-

x - x) (1) tegers P1, P2, and the final expression of the asymptotic MSE be-
O(GxGt R) = (GkGtRPx) (12) comes:

(GxGt G:Gt = (GkGtRPGxGt) (13) MSEA = (CtC)E KA 2 l

where p is a positive integer (the proofs are given in Appendix A).
(A a-'2

Moreover in Appendix B it is shown that: + (I + O-(CtC)) E [(A ±A3)2l
E [Gk] = CGX (14) A

E[GtGkI] = GtCtCGx+vI (15) +1- 2(({C}) F. [A + (17)
where A is a random variable with pdf fA (x, f3), distributed as the

where v= 1-Tr{CtC}/(2M+1) andthe (2M+1) x (2M+1) asymptotic eigenvalues of fRx. Looking at (17), we make the
diagonal matrix C has entries given by: following remarks.

(C)kk = C6(-j2wrk) (i) The distribution of A depends on the parameter f, since A
appears in the definition of Rx. Thus, in the analysis of the

for k =-M, ... ., M, and with C3(s) f exp(sx)f()df MSE the function f\(x, f3) completely defines the topology
being the characteristicjfunction of the random variable d. distribution.
From (11) it follows that, if the function g(Rk) admits a power

series in the variable Rx (i.e., g(Rk) = °o ciR'), then, thanks (ii) Equation (17) shows that the effects on the MSE induced by
to the linearity of the functional ( *), we have: the random topology distribution fA (x, f3) and by the rel-

ative noise level a can be decoupled from the effects due
Q75(g(Rk)) = i(g(Rx)) to imperfect knowledge of the network topology at the sink

By defining g(Rk) = RX(RX + aI)-2, the second term of (10) (represented by the matrix C).
simplifies to ao(Rx(Rx + aI>2). Similarly, for the first and (iii) For the evaluation of the averages in (17) a closed form ex-
fourth term of (10) we obtain, respectively, pression of f\ (x, f3) would be required. To the best of our

O(GxGtg(Rk)G Gt) = O(GGtg(Rx)GxGt) knowledge such expression is still unknown, although [10]
xxX x provides an algorithm to evaluate the moments of A in closed

and form. We compute the averages in (17) numerically.

((GxGtg(Rk)) = ((GkGtg(Rx)) Figure 2 shows the histograms of fA(\x, f) for the Uniform-]
Then, the asymptotic MSE reduces to topology distribution and different values of f. Observe that, for

f = 0 (r -) o0, while keeping M constant), the matrix Rx tends
MSEO = G(GXG t(Rx + oaIY)2GxGt) + 1 to the identity matrix and, thus, fA(x, 0) = (x - 1) with 6Q)x x being the Dirac's delta.

+±oa (Rx(Rx + aI)-2) -2RO (GXGt(RX + o1l)12'
(16) 13=0.15, r=1260, M=94

3=0.25, r=724, M=90
Applying the definition of 5(.), the properties of the trace operator 1 P=0.35, r=500, M=87
and (15) to the first term of (16), we have: 3=0.45, r=380, M=85

3=0.55, r=380, M=104
4> (GXGI(RX + IY)2GxGt)0.8

(GXGtGkGtRX aIY2)Rx 0.6

-=~ (GxE[GtGk]Gt(Rx + aI)-2) 0.4

- 41 (Gx (GtCtCGx + MI) Gt(RX + aIY2) 0.2

= CtCRx (RX + I) -22Rx)v
- 2I(CtCRC(RX + R(R) 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

+ (1- 5(CtC)) b (Rx(Rx + aI>)-) x

Using (15), the fourth term of (16) can be rewritten as:
Figure 2: Histograms of fA (x, 3) for different values of /

zb (GXGxC(RX + a1) =) (E[Gx]Gx(Rx + I )
6 ~~~~~~~~Asfor the matrix C we observe that, when the error vector 6 is

= ¢ (CRx(Rx + oaI) -1) Gaussian distributed with zero mean and variance oQ,2, its character-
istic function, C3s(s), is given by:

Let us assume that C and Rx are asymptotically free matrices [17]
(later in the paper, we will show that this is a fair assumption, C3(s) =exp(oQ,s2/2)
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In this case the matrix C is real and, for a constant p = osr and the validity of the asymptotic analysis as well as the correctness of
any integer p, we have: our assumptions about freeness. As a last remark, we mention that

1 Tr{C~} similar results have been obtained for any value of .
¢,(CP) = lim Tr{Cp }MAl,r-+o 2M + 1 4.2 Uniform-2 and Gaussian topologies

+M For distributions other than Uniform-], equalities (11), (12), and
lim E (C,(-j27k))P (13) do not hold anymore. As an example, below we provide the

M,r+oc)2M + I k -M closed form expression of O(RW). When x follows the Uniform-
+M 1 distribution and the error vector 6 is Gaussian distributed, we

iim 1 Z exp(-2w2p2Qk2) have [10]:

,/ Z~~~=-M O(R2) = ,(R2) =1+f

M=r-A-lom 2M
1
E exp -27 Pr2) When x follows the Uniform-2 distribution, we have:

urn ~ ~~ ~ ~~~~~~~~~~ ~2 1+/3/2
p+1/2 ___

]+ / exp (-272pp2/32z2) dz 32(RX) = 32
1/2 ( sinc2 (f3z, - /3Z2) e(47r2P202(z1-Z2)2) dzi dZ2

- ~~~~erf (wBn 18
/2ir32p2p 22) and

In particular, for p -) +o0 (no knowledge of the network topology) 2R 1 + 3 1 ff .
O5(CP) = 0, while for p = 0 (perfect knowledge of the topology) x /32 - 13 sinc (f3Zi - fz2) dzi dz2 (19)
~y(CP) =1. Also, we have: 1irn0 ~y(CP) =1, for any p.Figure= 3 Alsho,wseMSve:obtained when t w hfor -

. while, when the entries of x follow the Gaussian distribution, weFigure 3 shows the MSE obtained when the network has a Uniform- obtin
1 topology distribution and the LMMSE filter (8) is employed. A obtain:
Gaussian distribution of the position error 6 is assumed. The solid +(R ) = 3
curves were obtained by computing (17) and averaging over the x /32
eigenvalues of 200 realizations of the matrix Rx, with 3 = 0.2 f (47r2f2B (ZI Z2

)( 4723 P (ZIfZ2) ) d dz

and M = 200. The markers represent the average MSE obtained 13 Ai e d Z2
by computing (5) and averaging over 200 realizations of the mea-
sures p, with /3 = 0.2 and M = 20. The curves are parameterized and
by p. The figure also shows the asymptotic results p = 0 (lower 2 1 + /3 1 f 472Tq232(z1z2)2)
bound); the corresponding expressions of the MSE,O is given by: x(Rx) - 13I e dzidz2 (20)

lim MSE= E [ '/3 where the set A E R2 is defined as

A={(ZI,Z2) Zl[E- 2' 2) Z2 [ ZI2) '}Z2

101 _ The proof is omitted but can be easily obtained using the defini-
tions of 0(5) and Rx. Notice that the approximation O(R2)

10°o i-(R2) is tight when exp (-42/32p22(XI - X2)2) 1, i.e., for
p <K 2/(7/3). Under this condition, we observed that also the ap-

- 1t\ _ _ A\ A A A A A _ A ZX proximations:; v ~~~~~~~~~~~~~~~~~~~~~~~~~~(WPA) 0 (RP
10~

S 10-2 - D ~~~~~~~~~~~~~~~~~~~~~~(GxGtARW) (G:X,G t RP)
10-3 (>~~~~~~~~~(Gx(t WP^Gx~,Gt) (Gx~Gt RPGxGt^)

MSE, p=2 A , 2 Lv 3 r C ; 2 are tight, we therefore conclude that the asymptotic MSE can be
4 MSE, p=1/2 o approximated by (17), with the appropriate distribution of A.

MSE, p=1/8 g p=0 < ~ _ Figure 4 shows histograms of f\ (x, /) for / = 0.25, 0.50, 0.70
MSE, p=1/32 x X ~ when the entries of x follow the Uniform-2 (solid lines) and Gaus-

0-5 -10 0 10 20 30 40 50 0 sian (dashed lines) distributions. For the Gaussian distribution we
SNRm [dB] set 12 2= so as to obtain the same variance as in the Uniform-221case (i.e., g = 122). The histogram of the two distributions of A

look very similar: they are concentrated around x 1 even for high
Figure 3: Uniform-i distribution: MSEOO and MSE as a func- values of /3. On the contrary, as depicted in Figure 2, the Uniform-]
tion of SNRm (dB) and parameterized by p, with 3 = 0.2 distribution shows a significant fraction of eigenvalues close to zero

as /3 increases. The reason for such different behavior is that distri-
Looking at the plot in Figure 3, we observe that, as expected, a butions Uniform-2 and Gaussian guarantee a more regular sensor

better knowledge of the network topology results in a lower MSE. deployment. Recall that a perfectly regular (equally spaced) distri-
Furthermore, the tight match between asymptotical results and fi- bution of sensors results in Rx =I/3 and fA (x, /) = ((- 1).
nite system simulation, even for small values ofM and r, confirms For example, a realization of x in the interval [1/2, 1/2) such that

278



5 101
Uniform-2

4.5 Gaussian
1001

4

3.5

35 A. V A A=7 0 A-I(4Arimf.-
io-I

2.5 ~~~~~~~~~~~~~~~~2 &-Figure2.5 Histogram3of for z= 0.25, 0.50, 0.70, for Figur0.25 6: Uniform-1, 3=0.2-ciee by the -im ad ---2ds--
2 Uniform-1, 3=0.4 El 0.6 0. and p = 1/10

1.5zq<0 o ,... ,i ieyt apnfrteUnfr- So,epcal o ihSR.Frhg asUniform-1, 3=0.6 t
Uniform-1, 3=0.8 -A--- u

tu , 3r t eUniform-2, 3=0.2
---

X cX form X----

10- Uniform-2, 3=0.4 --a
0.5I3T I I iS dominated by thetermE[1/A],=0.70Uniform-2, 3=0.6 -- ho

0 d Uniform-2, 3=0.835
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 105III I

-20 -10 0 10 20 30 40 50 60
x SNRm [dB]

Figure 4: Histograms of fA (x, f) for 0.25,0.50, 0.70, for Figure 6: MSEOQ achieved by the Uniform-i and Uniform-2 dis-
the Uniform-2 and Gaussian distributions tributions for 0.2,0.4,0.6,0.8 and p 1 10

all xq < 0, for q 1..... r, is likely to happen for the Uniform-] MSE, especially for high SNRm. For high values of f, the
distribution, while it is impossible for the Uniform-2 distribution MSE,G of the Uniform-] grows unbounded as SNRm o0. In-
and very unlikely in the case of the Gaussian distribution. Unfor- deed, using (17) we notice that
tunately, for these network topologies a closed form expression of
fA(x, f3) is unknown and therefore (17) must be computed numer- lrn MSEOQ O5(CtC) + (I - O5(CtC)~F.[E
ically. -0 LAj

+1 - 20( 1 2C})
101

is dominated by the term E[I/A], which in [11] has been shown to

100 diverge for /13> 0.35.
100 I~~~~~~~~~~~~~~~~~~~~~~~~0

10.1~~~~~~~~~~~~~~~~~~~~~~~~0
100

Fiue5 Mnfom2dsrbtinESo n MEa uc 10.1z -o o l 0 0 4 0 e>

MSgurp5shw8h S bandwhntentoktplg

2~~~~~~~~~~~~~~~~~

ingMSE_ 3. H
MSE, p=l/

mpe a 3=0.4, p3=10o/

cae /7)31.vrimiaeuto5 thsobandohGaussian, distribution0 E

-20 -10 0 10 20 30 40 50 60 2 Gaussin, 3=0.4, 21
SNRm [dB] 10. 2

Gaussian, 3=0.4, rj =1/12 -

Fig curve5: veUniformn2 distuteduion: MSE7) and MSth aistaifutionc- Goteathatu712= oressianu ir=0.4, 11 =0
Figue 5:Unifrm-2distibuton: SE,,and SE a a fnc--20 -10 0 10 20 30 40 50 60

tion of SNRm and for different values of p SNRm [dB]

Figure 5 shows the MSE obtained when the network topology
follows the Uniform-2 distribution. We used the same parameter Figure 7: MSEpa achieved by the Gaussian topology distribu-
setting as in Figure 3. Here the MSEO2 has been attained through tion for 3 0.4, p =1/10, and r]2 0,1/12,1,10
(17), which is an approximation of the true asymptotic MSE; how-
ever, the match between the numerical evaluation of the MSE and Figure 7 shows the MSEOO achieved by the Gaussian topology
the results computed through (17) is very tight. Recall that the con- distribution, for /1 =0.4, p =1/10, and r72 =0, 1/12, 1, 10.
dition that guarantees a tight approximation is p « 2/(w/1); in our For the same values of /1 and p, the Uniform-2 distribution gives
case: 2/(w/1) -_3.18. very similar results to those obtained for the Gaussian distribution



a Gaussian deployment with T12 = 1/12 is negligible. The above 101
observations hold for any value of 13.

4.3 Closed form approximation 100
To derive a closed form approximation of (17), a closed form

approximation of f\(x, /3) is required. Figure 4 shows that, for 10o-
the Uniform-2 and Gaussian network topologies, the shape of the 8
empirical pdf of A is well approximated by a triangle with vertices o12\
atcoordinates {(1-a, 0), (1+ a, 0), (0, 1/a)}, where 0 < a < 1
is a parameter. Such triangular distribution is defined by the pdf 3 nUiform-2, 3=0.2

-1 + a)/a2 1-a < x < 1 Uniform-2, 3=0.4 _

ft(X, 3) (I- x̂1 + a)/a2 < x < I + a 10-4 -Uiom2[=.
10 elsewhere Uniform-2, 3=0.7 A

Triangle

which has average P4t = 1 and variance o2t = 6 . The condi- 10--20 -10 0 10 20 30 40 50 60
tion a < 1 is required in order to avoid negative eigenvalues. The SNRm [dB]
variance of A is given by

A E[A2] E[A]2 = (/2RX)-(/Rx)2 Figure 8: Uniform-2 distribution: MSE,O given by (17) and
Since 5(fRx) = 1 for any topology distribution, solving (19) its triangular approximation (21), for p = 1/10, and X =
and (20), the variance of A can be written as: 0.2, 0.4, 0.6, 0.7

2 2 cos2 (7w ) - 2 + Ci(27w3) - ln(27w|1) -a
wa2 To conclude, below we give an example of how our results can

2-Si(27. ) be used to deploy sensors so as to obtain the desired quality of the
S2 reconstructed field.

for the Uniform-2, and as
Example: A network characterized by 13= 0.4, p= 1/10,

2 _ erf(27/3r7) 1 - exp(-4w2/T32r72) and SNRm = 30dB is deployed by an airplane throwing
A

=

-1 2 /wrn 472 73r2 sensors at equally spaced time instants. The unpredictable

for the Gaussian distribution. The functions Ci(.) and Si(.), and effects of winds result in a non perfectly equally spaced de-

the constant -y are the cosine integral, the sine integral and the ployment on the ground. The distribution of the deployment
Euler-Mascheroni constant [18], respectively. For low values of error is assumed to be Gaussian with parameter ri. We want

1tvi e Aa epi e y2 2 to determine how accurate the sensor deployment need to

2,th aaceo Acnba18 be, i.e., the maximum i7 for which the network provides an
Uniform-2 distribution, and by u72 23 72/33 for the Gaussian MSE not larger than 5 10-3.
distribution.
The parameter a of the triangular pdf can be obtained by setting By looking at Figure 7, we observe that for SNRm = 30 dB

2
=

2 it is sufficient to have 12 < 10 so as to provide the required
MSE. Interestingly, we note that a perfectly equally spaced

a = H6 (and very expensive) deployment, i.e., r12 0, does not pro-
vide an MSE lower than 2 10-3.

Using the triangular distribution, the asymptotic MSE (17) is ap-
proximated by

MSEOC 3(CtC)I1 + 12i3 (1 + a - O(CtC)) 5. CONCLUSIONS
We considered randomly deployed sensor networks sampling a

+1 - 2I30(R{C}) (21) bandlimited field, and we analyzed their performance in terms of
where the integrals over the support A of the triangular pdf the MSE obtained on the reconstructed field. In particular, by using

asymptotic analysis, we studied the case of uniformly distributed
xz2 sensors and then we focused on quasi-equally spaced sensor lay-

IA(X + )2ft(,13)dx outs. For the latter, we were able to derive approximate closed
r z form expressions of the MSE, which was shown to be very tight.

12 ] ( + 2 ft(X, 3) dx Finally, we gave an example of how useful our results can be for
the design of sensor networks.
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Therefore Cx (-j27wk) = 1 for k = 0, and Cx (-j 27k) = 0 for
k 7? 0. It follows that

APPENDIX Cx(-j27w-k)C6(-j27k) = Cx(-j27k)CC(0) = Cx(-j27k)
A. PROOFS OF (11)-(13) since C6(0) = 1 by definition of the characteristic function. ItA. PROOFSOF (11)(13) ~~~~~~~~~turnsout that

Here we provide the proof of claims (11)-(13). Concerning (11),
from the definition of ), we have IE [e F ikxE [e i2 k6 . [eF i2kx]

1 and by consequence F.[Tr{RP^}] =F.[Tr{RP }], so that y(RPA)=
M,r-p+ooM+ The proof of (12) and (13) can be given in a similar way.
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B. PROOF OF (14) AND (15)
From the definition in (2), we have:

Ir [(Gk)kq] I2M + 1 6[ 7

= 1 e-j27rkxq E[e-j27k6q]
V2~M+ 6

I e-j27rkxq C<s (-j21k)

- (C)kk(Gx)kq

where C3(s) f+ exp(sx)f3(x) dx is the characteristic func-
tion of 6 and C is a diagonal matrix with entries given by (C)kk
C3(-j27k). We conclude that:

E [Gx] = CGx
6

Similarly,

E [(C' x:k)qq/
+M

k, q
2 k-2.1>1 E[ej 7Tke- Tkq,

2M+1I 6

21f ij27rk(xq xq) I j27k(6q-6
2M +1

k=-M

If q #? q',

21V[1 ei2k(qq) E [e 2k~ E [e qk3

E (GxctcGX) qq
2M + 1 6' [j7 6q]g[-26/

If q=q'

E [(G~Gk)qq]

1 j272kxk(qxq q) E[eJ27k(3q-6)]

2M+1 Z=-M 6
M

1 1
2M+ 1 M

k=_M

- 1

Since (GxCtCGx) qq = Tr{Ct C}, we obtain:

IE[Gt Gx] - Gt CtCGX + (1 2Tr Ct
6 x 2M2+ I)


