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Abstract— In this paper, we consider the downlink of a
space time block coded multiuser multiple-input multiple-output
(MIMO) system. We propose a transmission scheme to support
highest possible data rate and full diversity for multiuser MIMO
systems. For this, threaded algebraic space-time block codes and
perfect space-time block codes are employed. Different spreading
matrices are used to separate the data streams of multiple users.
After despreading the signal sequence at the receiver of each user,
the maximum likelihood decoding is obtained by a lattice decoder.
Performance of the multiuser MIMO system in the presence of
multiple access interference is evaluated by simulations in terms
of block error rate.

Keywords: Perfect STBC, TAST codes, MIMO, multiuser,

downlink

I. INTRODUCTION

Space-time coding was proposed in [1] by combining chan-

nel coding and transmit diversity techniques in order to achieve

diversity and coding gains. In the coherent scenario, where the

channel state information (CSI) is available at the receiver,

the design criteria for full diversity space-time codes in quasi-

static fading channels were developed [1]. Space-time block

codes (STBCs) attract a lot interests due to the low complexity

of linear decoding, full diversity gain, and high transmission

rates with low delay.

Orthogonal STBCs in [2, 3] and diagonal algebraic space-

time (DAST) block codes in [4, 5] were proposed to achieve

full diversity with a low complexity receiver. However, these

codes do not achieve all the potential full transmission rates.

In [6], threaded algebraic space-time (TAST) block codes

were proposed for arbitrary numbers of transmit and receive

antennas. In [7], full rate and full rank linear dispersion STBCs

were designed using cyclic division algebra.

However, the minimum determinants of the codeword differ-

ence matrix for the above constructions vanish for increasing

size of the signal constellation. In [8–10], full rate and full

diversity codes, named Perfect STBCs, with non-vanishing

minimum determinants were proposed.

In the downlink of a multiple-input multiple-output (MIMO)

multiuser system, a base station simultaneously transmits

signals for many different users. Multiple antennas at both

transmitters and receivers ensure high data rates, which are

required in the next generation wireless communication sys-

tems. Hence it is natural to combine STBCs with downlink

transmission schemes for a MIMO multiuser system. Recent

work in [14] uses orthogonal STBCs in the downlink of a

Direct Sequence Code Division Multiple Access (DS-CDMA)

system, where the multiple-input single-output (MISO) case

was considered.

In our paper, we consider CDMA as a multiplexing scheme.

We show how to use TAST codes and perfect STBCs in the

downlink of a MIMO multiuser system. Different orthogonal

spreading matrices are used to separate the data streams of

multiple users. At the receiver of each user, after despreading

the received signal sequence, the maximum likelihood decod-

ing is obtained by a lattice decoder. The performance of the

downlink system is evaluated by simulation in terms of block

error rate (BLER). Due to multipath propagation, different

time delayed versions of the transmitted signal may result in

multiple access interference (MAI). The impact of MAI on

the system performance is also analyzed by simulation.

The rest of the paper is organized as follows. Section II

introduces the system model. Section III presents how to apply

TAST block codes and perfect STBCs to the downlink of

MIMO multiuser systems. In Section IV, lattice decoding for

this space-time block coded MIMO multiuser system is shown.

Section V shows simulation results. Finally, conclusions are

drawn in Section VI.

II. SYSTEM MODEL

The following notations are used in the paper: T denotes

transpose and † denotes transpose conjugate. Let Z, Q, C

and Z[j] denote the ring of rational integers, the field of

rational numbers, the field of complex numbers, and the ring of

Gaussian integers, where j2 = −1. Let S and S2 denote PAM

and QAM constellation sets, respectively. Let Q(θ) denote an

algebraic number field generated by the primitive element θ.

The m×m dimensional identity matrix is denoted by Im. The

matrix 1m is defined as an all ones m × m matrix. Given a

m dimension vector v, V = diag(v) is the m × m diagonal

matrix with Vi,i = vi and Vi,k = 0 for all i, k = 1, . . . ,m,

and i �= k.

We consider the downlink of a K user MIMO multiuser

system, as shown in Fig. 1. We assume that the base station

has nT transmit antennas, where nT =
∑K

k=1 nR
(k) and nR

(k)

denotes the number of receive antennas for k−th user. This

enables to support terminals with different receiver complexity.
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Fig. 1. A MIMO Multiuser System

Since the encoder and decoder structures for any user are

similar, we only consider the general code construction and

lattice decoding for an arbitrary k−th user. The superscript k
is thus omitted for brevity.

For any k−th user, the base station transmits the nT × nR

QAM information symbol matrix

B =
[

b1 b2 · · · bnR

]

=

⎡
⎢⎣

b1,1 b1,2 · · · b1,nR

...
...

. . .
...

bnT ,1 bnT ,2 · · · bnT ,nR

⎤
⎥⎦ (1)

where bi,l ∈ Z[j], i = 1, . . . , nT , l = 1, . . . , nR.

In this paper, we consider square linear dispersion STBCs

[9, 10] with full rate and full diversity. The QAM information

symbols are encoded by such STBCs into an nT × nT code-

word matrix X = {xi,l} ∈ C, i, l = 1, . . . , nT . The codeword

matrices for each user are separated by orthogonal spreading

matrices. Let U ∈ CnT ×KnT be the orthogonal spreading

matrix for user k and U(l) ∈ CnT ×KnT be the one for another

user l, where l �= k. We have

UU† = InT
U(l)U† = 0,

The orthogonal signature matrices can be chosen, for example,

as submatrices of a discrete Fourier transform (DFT) matrix

or Hadamard matrix.

We assume that perfect CSI is known at the receiver of each

user. The k-th user receives the signal matrix Y ∈ CnR×KnT ,

which is given by

Y = HXU + H

⎛
⎝ K∑

l=1,l �=k

X(l)U(l)

⎞
⎠ + Z, (2)

where X(l) is the codeword matrix for the l−th user.

In (2), Z is the complex i.i.d. Gaussian noise matrix with

entries CN (0, N0) and H ∈ CnR×nT is the independent

Rayleigh fading channel matrix with complex i.i.d. entries

CN (0, 1), which is given by

H =

⎡
⎢⎢⎢⎣

h1

h2

...

hnR

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h1,1 h1,2 · · · h1,nT

h2,1 h2,2 · · · h2,nT

...
...

. . .
...

hnR,1 hnR,2 · · · hnR,nT

⎤
⎥⎥⎥⎦ .

We assume that the channel matrix H is constant during one

STBC block and varies from one block to another indepen-

dently.

III. STBCS FOR MIMO MULTIUSER SYSTEMS

In this section, we first recall the rank and determinant

criteria for STBC design. We show how to use TAST codes

and perfect STBCs for the downlink of MIMO multiuser

systems.

A. Rank and Determinant Criteria

For the k−th user, we assume that a codeword X is

transmitted. The maximum-likelihood receiver might decide

erroneously in favor of another codeword X̂. Let r denote the

rank of the codeword difference matrix C = X − X̂, and

λi, i = 1, . . . , r, be the eigenvalues of the codeword distance

matrix A = CC†.

Then the pairwise error probability (PWEP) is upper

bounded by

P
(
X → X̂

)
≤

(
r∏

i=1

λi

)−nR (
Es

N0

)−rnR

(3)

where Es is the average energy of QAM information symbols

and Es

N0
denotes the signal-to-noise ratio (SNR) per transmit

antenna.

In (3), we call the minimum value of rnR the diversity gain.

We call the minimum value of

(
r∏

i=1

λi

)1/r

the coding gain. In

order to minimize the PWEP, the rank and determinant criteria

in [1] were proposed as follows:
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• Rank Criterion: The minimum rank r of the codeword

difference matrix should be maximized;

• Determinant Criterion: The minimum determinant
r∏

i=1

λi

should be maximized.

In our MIMO multiuser system, we consider the TAST and

perfect STBCs that achieve full diversity nRnT and full rate

of nT QAM symbols per channel use.

B. TAST Codes for the Downlink of Multiuser MIMO Systems

We recall TAST codes from [6]. The TAST codes are

constructed by transmitting a scaled DAST code in each layer

(or thread) l, where l = 1, . . . , nR, i.e.

xl = φlMbl, (4)

where xl are the encoded symbols, bl, are the complex QAM

symbol vectors defined in (1), and φl is chosen to ensure

full diversity and maximize the coding gain of the component

codes. In [6], φl is given by

φl = φ(l−1)/nT , (5)

where φ = eiλ and λ �= 0 is either an algebraic number or

transcendental number [6].

In (4), M ∈ CnT ×nT is a rotation matrix defining a DAST

code. Let s = [s1, . . . , snT
]T = Mb and ŝ = [ŝ1, . . . , ŝnT

]T

= Mb̂ be two different DAST codewords, where b and b̂ are

two different information symbol vectors. The rotation matrix

M is chosen to maximize the associated minimum product

distance dp, defined as [11],

dp = min
s�=ŝ

nT∏
i=1

|si − ŝi| . (6)

Thus one can easily verify that DAST codes achieve full

diversity, and their coding gains are proportional to the mini-

mum product distance associated with the rotations used. The

rotation matrix M is constructed from an algebraic number

field Q(θ) of degree nT [6, 12].

For L layers, where L = nR for the system in this paper,

we can write the TAST codeword matrix as

X =
nR∑
l=1

(
φlel−1

)
diag (Mbl) , (7)

where

e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
... 0 1 0 · · · 0
...

...
. . .

. . .
. . .

...

0 0 0 0 1 0
0 0 0 0 · · · 1
1 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

C. Perfect STBCs for the Downlink of Multiuser MIMO Sys-
tems

For the special cases of nT = 3, 4, 6, perfect STBCs was

proposed in [9, 10]. The perfect STBCs are constructed based

on cyclic division algebras, where the codeword is given by

[9, 10],

X =
nT∑
l=1

el−1diag (Mbl) , (9)

where

e =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
... 0 1 0

...
...

. . .
...

0 0 0 0 1
γ 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (10)

and γ is chosen from Z[j] in order to achieve the full diversity

and non-vanishing determinant [9]. Comparing to TAST codes,

we have a different e matrix and φ = 1.

In this case, we only consider subcodes of the perfect

STBCs with a reduced number of layers nR, i.e.,

X =
nR∑
l=1

el−1diag (Mbl) .

IV. LATTICE DECODER FOR THE DOWNLINK OF MIMO

MULTIUSER SYSTEMS

The k−th user received signal matrix Y in (2) is despread

by multiplying U†, which yields

Ŷ = YU† =HX + Ẑ, (11)

where

Ŷ =

⎡
⎢⎣

ŷ1,1 ŷ1,2 · · · ŷ1,nT

...
...

. . .
...

ŷnR,1 ŷnR,2 · · · ŷnR,nT

⎤
⎥⎦ (12)

and

Ẑ = ZU† =

⎡
⎢⎣

ẑ1,1 ẑ1,2 · · · ẑ1,nT

...
...

. . .
...

ẑnR,1 ẑnR,2 · · · ẑnR,nT

⎤
⎥⎦ . (13)

Let us define

M̃ = M⊗InR
X̃ = M̃ × vec(B), (14)

where ⊗ denotes matrix Kronecker product and

vec(B) =

⎡
⎢⎢⎢⎣

b1

b2

...

bnR

⎤
⎥⎥⎥⎦ . (15)

Vectorizing (11) yields

vec
(
Ŷ

)
= vec (HX) + vec

(
Ẑ

)
, (16)

where

vec
(
Ŷ

)
= [ŷ1,1, . . . , ŷ1,nT

, . . . , ŷnR,1, . . . , ŷnR,nT
]T ,
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Fig. 2. The Downlink of MIMO Multiuser System 1

vec
(
Ẑ

)
= [ẑ1,1, . . . , ẑ1,nT

, . . . , ẑnR,1, . . . , ẑnR,nT
]T ,

and vec (HX) = H̃X̃ is given in (17). For perfect STBC, e
is given in (10) and φ = 1.

Substituting (14) and (17) into (16) yields

vec
(
Ŷ

)
= T̃vec(B) + vec

(
Ẑ

)
, (18)

where T̃ = H̃M̃.

Let us define

Y =
[
�

(
vec

(
Ŷ

))
�

(
vec

(
Ŷ

))]T

,

where �(·) and �(·) denote the real and imaginary part of the

symbol vectors. Let us define

B = [� (vec(B))� (vec(B))]T

and

H =

⎡
⎣ �

(
T̃

)
−�

(
T̃

)
�

(
T̃

)
�

(
T̃

)
⎤
⎦

Lattice decoding can be employed to decode the k−th user

QAM symbols B̂, i.e.

B̂ = arg
B∈Sn

min
∥∥∥Ŷ − HB̂

∥∥∥2

, (19)

where n = 2 × nT × nR.

Remark: The choice of the nR layers within the codeword

X is irrelevant, since this corresponds to a permutation of the

blocks in the matrix H̃ which yields an equivalent code.

8 10 12 14 16 18 20 22 24 26
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
lo

ck
 E

rr
or

 R
at

e

User1
User2

Fig. 3. The Downlink of MIMO Multiuser System 2

V. SIMULATION RESULTS

In the simulations, we show performance of the downlink

MIMO system employing perfect STBCs. Performance is

evaluated in terms of BLER by Monte Carlo simulation. The

SNR per user is defined as SNR=nREs/N0. In the simulation,

we consider two different systems as below.

System 1: We assume that the base station has four transmit

antennas. There are two users, each of which has two receive

antennas and 16-QAM symbols are used. We assume each

STBC block consists of 8 symbols per user.

We choose 4 × 4 perfect STBC using two layers, where

the rotation matrix M is given in [9, 10] and γ2 = −1. This

provides full diversity and highest possible rate of nRnT = 8
symbols per block per user. We choose Hadamard matrices as

the spreading matrices.

Performance of System 1 is shown in Fig. 2 together

with the diversity gain slope. Due to multipath propagation,

different time delayed versions of the transmitted signal may

result in MAI, which destroys the orthogonality of the spread-

ing codes. In Fig. 2, we show the impact of MAI on the

code performance. For User 1, after despreading, we have

U(2)U(1) = α1nT
, where the MAI interference coefficient

is chosen to be α = 0.01, 0.03, 0.05, respectively. We can see

an error floor appears when α > 0.

System 2: We assume that the base station has four transmit

antennas. There are two users: User 1 has one receive antenna,

User 2 has three receive antennas, and 16-QAM symbols are

used.

The total transmission rate per block is 16 symbols. The

transmitted codeword consists of one layer perfect STBC for

User 1 (4 QAM symbols), and three layer perfect STBC for

User 2 (12 QAM symbols). The performance of System 2

is shown in Fig. 3. We notice that User 2 achieves better
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vec(HX) = H̃X̃=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

diag (h1) (diag (h1)φe)T · · · (
diag (h1)φnR−1enR−1

)T

...
...

. . .
...

diag (hl) (diag (hl)φe)T · · · (
diag (hl)φnR−1enR−1

)T

...
...

. . .
...

diag (hnR
) (diag (hnR

)φe)T (
diag (hnR

)φnR−1enR−1
)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1

x1,2

...

x1,nT

...

xl,1

xl,2

...

xl,nT

...

xnR,1

xnR,2

...

xnR,nT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

performance at higher SNRs thanks to its receive antenna

diversity, even if its rate is three times the rate of User 1.

Remarks: To the authors’ knowledge, no comparable

scheme was found in the literature for comparison. The

proposed scheme offers great flexibility in the number of

terminal receive antennas.

VI. CONCLUSION

We consider space time block codes for the downlink of

a multiuser MIMO system in this paper. We show how to

use TAST block codes and perfect STBCs for such systems

in order to achieve the highest possible transmission rate and

full diversity gain. Orthogonal spreading matrices are used to

separate the data streams of multiple users. At the receiver of

each user, maximum likelihood decoding is obtained by using

a lattice decoder. Performance of the space-time block coded

system with different MAI is evaluated by simulations. It is

shown that the system has good performance when the interfer-

ence coefficient α = 0, otherwise, an error floor appears. The

proposed scheme is suitable to a network supporting different

types of terminals due to its flexibility.
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