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Abstract— We study the error probability performance of
rotated lattice constellations in frequency-flat block-fading chan-
nels. In particular, we use the sphere lower bound on the
underlying infinite lattice as a performance benchmark. We
show that the sphere lower bound has full diversity. We observe
that optimally rotated lattices with largest known minimum
product distance perform very close to the lower bound, while
the ensemble of random rotations is shown to lack diversity
and perform far from it. We furthermore use the bound in the
multiple-antenna case, and we observe that the Golden code, the
optimal full-rate full-diversity 2×2 space-time block code, is also
very close to the lower bound.

I. INTRODUCTION

In this paper, we study the family of full rate multidimen-

sional signal constellations carved from lattices in frequency-

flat fading channels with N degrees of freedom. In particular,

we consider the uncoded case, i.e., no time redundancy is

added to the transmitted signal. Current best constellations are

designed to achieve full diversity and maximize the minimum

product distance [1], [2], [3]. Unfortunately, to date, there

exists no benchmark to compare the performance of rotated

lattice constellations. Recent reference [4] gives an approxima-

tion to the error probability of multidimensional constellations

in fading channels. Unfortunately, the approximation is not

tight and does not have full diversity.

In this paper, we use the sphere lower bound2 (SLB), as

a benchmark for the performance of such uncoded lattice

constellations. The SLB dates back to Shannon’s work [6],

and gives a lower bound to the error probability of spherical

codes with a given length in the additive white Gaussian

noise (AWGN) channel. The application of the SLB to infinite

lattices and lattice codes was studied in [7], [8] for the

AWGN channel. This SLB yields a lower bound to the error

probability of infinite lattices regardless of the lattice struc-

ture. An approximated SLB was derived in [9] for spherical

codes over the Rayleigh fading channel. Fozunbal et al. [10]

extended the SLB to coded communication over the multiple-

antenna block-fading channel. A remarkable result of [10] is
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programme of the European Commission.

2Literature commonly refers to such bound as sphere-packing bound. In
order to avoid possible confusion with lattice terminology, we will refer to
it as sphere lower bound, since its computation is not based on the packing
radius of the lattice [5].

that, for a fixed number of antennas and blocks, as the code

length grows, the SLB converges to the outage probability

of the channel with Gaussian inputs [11]. Unfortunately, the

outage probability [12], [11] and the SLB of [10] are very far

from the actual error probability of uncoded multidimensional

constellations. Moreover, as the block length increases, the

performance of uncoded modulations degrades, and therefore,

the outage probability and the SLB of [10] are not very useful

as performance benchmarks.

In this paper, we use the SLB of the infinite lattice as a

benchmark for comparing multidimensional constellations in

the block-fading channel with single and multiple antennas.

We first show that the SLB of infinite lattice rotations for the

block-fading channel has full diversity regardless of the block

length. We illustrate that as the block length increases, the SLB

increases as well. We also show that multidimensional constel-

lations obtained by algebraic rotations with largest minimum

product distance obtained from pairwise error probability

criteria [1], [2], [3] perform very close to the lower bound and

that the ensemble of random rotations does not achieve full

diversity. We furthermore use the SLB in N × N multiple-

input multiple-output (MIMO) channels, in order to assess

the performance of full-rate full-diversity algebraic space-time

block codes (STBC) [13], [14], [15]. In particular we observe

that the Golden code [14], the optimal full-rate full-diversity

2 × 2 space-time block code, is very close to the bound.

II. SYSTEM MODEL

We first consider a single-antenna flat fading channel whose

discrete-time received signal vector is given by

y� = Hx� + z�, � = 1, · · · , L (1)

where y� ∈ R
N is the N -dimensional real received signal

vector, x� ∈ R
N is the N -dimensional real transmitted signal

vector, H = diag(h) ∈ R
N×N , with h = (h1, . . . , hN ) ∈

RN , is the flat fading diagonal matrix, and z ∈ R
N is the

Gaussian noise vector with pdf

p(z) = (2πσ2)−
N
2 exp

(
−‖z‖2

2σ2

)
A frame is composed of L, N -dimensional modulation sym-

bols or of NL one-dimensional channel uses. The case of

complex signals obtained from 2 orthogonal real signals can

be similarly modeled by (1) by replacing L with L′ = 2L.

We assume that the fading matrix H is constant during

one frame and it changes independently from frame to frame.
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(a) (b)

Fig. 1. The decision regions of the rotated Z2 lattice: (a) before fading, (b)
after fading h = (1, 0.5).

This corresponds to the block-fading channel with N blocks

[12]. We further assume perfect channel state information

(CSI) at the receiver, i.e., the receiver perfectly knows the

fading coefficients. Therefore, for a given fading realization,

the channel transition probabilities are given by

p(y|x,H) = (2πσ2)−
N
2 exp

(
− 1

2σ2
‖y − Hx‖2

)
Moreover, we assume that the real fading coefficients are

Rayleigh-distributed. For future use, we define the coefficients

γn = h2
n for n = 1, . . . , N , which correspond to the fading

power gains with distribution

p(γ) = e−
�N

n=1 γn .

Finally, we define the signal-to-noise ratio (SNR) as ρ = 1/σ2.

A. Multidimensional Lattice Constellations

We assume that the transmitted signal vectors x belong to

an N -dimensional signal constellation S ⊆ R
N . We consider

signal constellations S that are generated as a finite subset

of points of the infinite lattice Λ = {Mu : u ∈ Z
N} with

full rank generator matrix M ∈ R
N×N [5]. For normalization

purposes we fix det(M) = 1. For a given channel realization,

we define the faded lattice as the lattice Λ′ = {M′u : u ∈
Z

N}, whose generator matrix is given by M′ = HM.

In order to simplify the labeling operation, constellations

are of the type S = {Mu + x0 : u ∈ Z
N
m}, where Zm =

{0, 1, . . . , m− 1} = (m−PAM)N, log2(m) is the number of

bits per dimension and x0 is an offset vector which minimizes

the average transmitted energy. Therefore, the rate of such

constellations is R = log2 m bit/dimension. This is usually

referred to as full-rate uncoded transmission.

In order to avoid shaping loss it is convenient to use cubic
lattice constellations, so that M should be an orthogonal

matrix (MMT = I) [1], [2]. Nevertheless, this will not be

required in the calculation of the SLB.

B. Maximum Likelihood Decoding Error Probability

At a given �, a maximum likelihood (ML) decoder with

perfect CSI makes an error whenever

‖y� − Hw‖2 ≤ ‖y� − Hx‖2 (2)

for some w ∈ S, w �= x. These inequalities define the so

called decision region around x (see Figure 1). Under ML

decoding, the frame error probability is then given by

Pf(ρ) = E[Pf(ρ|h)] = E
[
1 − (1 − Ps(ρ|h))L

]
(3)

where Pf(ρ|h) and Ps(ρ|h) are the frame and N -dimensional

symbol error probabilities for a given channel realization and

the average is taken over the fading distribution. For a given

constellation S, we can write that

Ps(ρ|h) = E[Ps(ρ|x,h)] =
1
|S|

∑
x∈S

∫
y/∈V(x,h)

p(y|x,h)dy

where V(x,h) is the decision region or Voronoi region for a

given multidimensional lattice constellation point x and fading

H (see Figure 1). Computing the regions V(x,h) and the exact

error probability is in general a very hard problem [7]. In this

paper we use the SLB [6] as a lower bound on Pf .

We define the diversity order as the asymptotic (for large

SNR) slope of Pf versus SNR in a log-log scale, namely,

d = − lim
ρ→∞

log Pf(ρ)
log ρ

. (4)

In words, the diversity order is the maximum number of deep

fades that a signal constellation can support, i.e., the ML

decoder will decode correctly in presence of d−1 deep fades.

We say that a constellation S has full diversity if d = N .

III. SPHERE LOWER BOUND OF A FADED LATTICE

In this section, we recall the basics of the SLB for infinite

lattices S = Λ [7], [8] and we apply it to bound Pf(ρ).
The first simplification stems from the geometrical unifor-

mity of lattices [7], [8], i.e.,

V(x,h) = V(w,h) ∀x,w ∈ Λ

namely, for a given fading realization, the Voronoi regions of

all lattice points are equal. Let VΛ(h) denote such Voronoi

region of the faded lattice. Therefore, and without loss of

generality, we safely assume the transmission of the all-zero

codeword, i.e., x� = 0 , � = 1, . . . , L. Then, the error

probability is given by

Pf(ρ) = 1 − E

⎡⎣(
1 −

∫
z/∈VΛ(h)

p(z)dz

)L
⎤⎦ . (5)

Due to the circular symmetry of the Gaussian noise, replacing

VΛ(h) by an N -dimensional sphere B(h) (see Figure 1) of ra-

dius R(h) with the same volume [6], yields the corresponding

SLB on the lattice performance [7], [8]

Pf(ρ) ≥ Pslb(ρ) ∆= 1 − E

⎡⎣(
1 −

∫
z/∈B(h)

p(z)dz

)L
⎤⎦ (6)

Since the volume of B(h) is [5]

vol(B(h)) =
π

N
2 R(h)N

Γ(N
2 + 1)

(7)

with

Γ(x) ∆=
∫ ∞

0

tx−1e−tdt (8)

being the Gamma function [16]. Equating (7) to the funda-

mental volume of the lattice (volume of the Voronoi region)

given by

vol(VΛ(h)) = det(HM) =
N∏

n=1

hn
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we obtain the sphere radius

R(h)2 =
1
π

Γ
(

N

2
+ 1

) 2
N

(
N∏

n=1

γn

)1/N

(9)

The probability that the noise brings the received point outside

the sphere in (6) is simply expressed as [6], [7], [8]

Pslb(ρ) = 1 − E

[(
1 − Γ

(
N

2
,
R(h)2

2
ρ

))L
]

(10)

where

Γ(a, x) =
1

Γ(a)

∫ ∞

x

ta−1e−tdt

is the incomplete gamma function [16].

We are now ready for the following result:

Theorem 1: In a single-antenna block-fading channel with

N fading blocks, the sphere lower bound on error probability

given in (10) has full diversity for any L ≥ 1, i.e.,

d = − lim
ρ→∞

log Pslb(ρ)
log ρ

= N.

Proof: The proof is omitted for the sake of space

limitation.

The previous theorem asserts that the best lattice in a

channel with N fading blocks cannot have diversity larger

than N . This result is non-trivial, and very important for

constellation design. Pairwise error probability analysis yields

that full diversity lattices can achieve full diversity [1], [2],

[3], but no converse based on the lattice structure has been

proved so far for any L. Clearly, if we construct our signal

constellation S as a subset of points of an N -dimensional

lattice, S cannot have diversity larger than N either.

In order to evaluate (10), we need to perform a multidi-

mensional numerical integral over the joint distribution p(γ).
However, by carefully observing the expression of R(h)2, we

can see that we only need to know the pdf of the product

of fading coefficients. It is not difficult to show that the

characteristic function of the random variable

ζ = log
N∏

n=1

γn =
N∑

n=1

log γn (11)

is given by

Gζ(f) = Γ(1 − j2πf)N . (12)

For N > 1, unfortunately, the closed form inverse transform of

this function is not available, but we can nevertheless compute

the pdf pζ(z) numerically by using an inverse fast Fourier

transform (FFT). As an example, Figure 2 shows the SLB for

N = 2, 4, 8, 16, 32, 64 and L = 1. As anticipated by Theorem

1, the curves get steeper as N increases. Moreover, Figure 3

shows the SLB for N = 2, 4 and L = 1, 10, 100, 1000. For a

given N , all curves have the same diversity. We note that the

SNR ρ = 1/σ2 is relative to the infinite lattice with vol(Λ) =
1, since average transmitted energy cannot be defined.
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Fig. 2. Sphere lower bound Pslb(ρ) for N = 2, 4, 8, 16, 32, 64 and L = 1.
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Fig. 3. Sphere lower bound Pslb(ρ) for N = 2, 4 and L = 1 (continuous),
L = 10 (dashed), L = 100 (dashed-dotted) and L = 1000 (dotted).

IV. PERFORMANCE OF ROTATED LATTICES

In this section, we give a number of examples that use the

SLB as a benchmark for comparing some lattices obtained by

algebraic rotations, as explained in section II-A. In particular,

we will use the best known or optimal algebraically rotated

Z
N lattices in terms of largest minimum product distance [1],

[2], [17], [3]. As we shall see, these rotations perform very

close to the lower bound. Furthermore, we will show that the

ensemble of random rotations does not have full diversity.

Hence, specific constructions that guarantee full diversity and

largest minimum product distance are very important.

To illustrate this, Figures 4 and 5 compare the frame error

probability Pf(ρ) of some rotations (obtained by simulation

of the infinite lattice using a Schnorr-Euchner decoder [18])

with the Pslb(ρ) for N = 2, 4 and L = 1, 100. We compare

the optimal rotations with largest minimum product distance

of dimension N = 2, 4, namely, the cyclotomic rotation of

dimension N = 2 and the Krüskemper rotation for N = 4
(see [1], [2], [17] for more information on these constructions).

The corresponding rotation matrices are also available in [3].

We compare by simulation the performance of these full-
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diversity algebraic rotations with the average performance of

the ensemble of random rotations. At every frame, we generate

a random matrix A with zero mean and unit variance i.i.d.

Gaussian entries. We then performe a A = QR decomposition

and let M = Q. This is the simplest way of generating

the ensemble of random rotations (orthogonal matrices) with

the Haar distribution [19]. As we observe, algebraic rotations

perform very close to Pslb(ρ). On the other hand, the average

error probability over the ensemble of random rotations, lacks

of the full diversity and exhibits bad performance.

As N increases, algebraic rotations with largest minimum

product distance show some gap to Pslb(ρ). This is due to the

fact that for large N , the minimum product distance is not the

only relevant design parameter for optimizing the coding gain.
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Fig. 4. Frame error probability Pf(ρ) and sphere lower bound Pslb(ρ) for
N = 2 and L = 1, 100.
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Fig. 5. Frame error probability Pf(ρ) and sphere lower bound Pslb(ρ) for
N = 4 and L = 1, 100.

V. PERFORMANCE OF MULTIDIMENSIONAL SIGNAL SETS

So far, we have seen that the performance of algebraic

rotations is very close to the lower bound Pslb(ρ). In practical

communications systems, we shall use finite signal alphabets

and the performance of the infinite rotated lattice should serve

mainly as a guideline. Unfortunately, we do not have a bound

similar to Pslb(ρ) for the finite case to take into account the

boundary effects. We have the following conjecture regarding

the performance of multidimensional finite signal sets.

Conjecture 1: The best multidimensional signal set using

m-PAM is the one whose performance of the infinite rotated

lattice with the same generator matrix M is closest to Pslb(ρ).
As we shall see in the following example, as m increases,

the performance of the multidimensional signal constellation

approaches that of the infinite rotated lattice, despite the

boundary effects. This is precisely the continuity argument

used in [8] for lattice codes. Indeed, Figures 6 and 7 show

the performance for N = 2, 4 and L = 1, 100 of the

signal constellations obtained from m-PAM with the optimal

algebraic rotation. In the comparison with the infinite lattice

(circles) and Pslb(ρ), we observe all curves are within 1.5 dB.

Note that the SNR axis does not take into account the

different average energies of the finite constellations and that

we assume that the minimum distance of the m-PAM is 1 for

comparison to the infinite lattice lower bound. In order to plot

the performance in terms of Eb

N0
= Eb

2 ρ it is enough to shift

the curves by

10 log10

(
m2 − 1

24 log2 m

)
dB.
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Fig. 6. Frame error probability Pf(ρ) of the finite constellation generated
with 4, 8, 16, 32-PAM, Pf(ρ) of the infinite lattice and sphere lower bound
Pslb(ρ) for N = 2 and L = 1, 100 with the cyclotomic rotation.

VI. APPLICATION TO N × N MIMO CHANNELS

In this section we show how the SLB can be applied to

give a lower bound on the performance of algebraic STBCs

[13], [14], [15] over N × N MIMO fading channels. Due to

their lattice structure, these STBC constructions are based on

a rotated real Z
2N2

lattice, and admit an equivalent vectorized

real channel model [13], [14], [15],

y� = H̃Mx� + z� � = 1, · · · , L (13)

where y�,x�, z� ∈ R
2N2

and H̃,M ∈ R
2N2×2N2

are obtained

from the complex channel matrix H ∈ C
N×N and the specific

code construction [13], [14], [15]. Model (13) is used at the

decoding side with a 2N2-dimensional real lattice decoder.
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with 4, 8, 16, 32-PAM, Pf(ρ) of the infinite lattice and sphere lower bound
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Therefore, the SLB can be directly applied in the MIMO case

by replacing N by 2N2 in (10) and by letting

vol(VΛ(H)) = det(H̃) = |det(H)|2N

We have the following

Theorem 2: In a N × N MIMO channel the sphere lower

bound on the error probability has full diversity for any L ≥ 1,

i.e.,

d = − lim
ρ→∞

log Pslb(ρ)
log ρ

= N2.

In the following, we illustrate with an example the SLB

and simulated performance of the Golden code [14]. The

matrices H̃ and R for the Golden code are given in [3].

The Golden code is the optimal full-rate full-diversity 2 × 2
algebraic STBC. The Golden code has the largest minimum

non-vanishing determinant [14] and therefore achieves the

diversity-multiplexing tradeoff of [20]. Figure 8 shows the

SLB Pslb(ρ) and the Golden code simulation in a 2×2 MIMO

with L = 1, 100. Once again, we observe that the simulation

is very close to the bound.
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Fig. 8. Frame error probability Pf(ρ) of the infinite lattice generated by the
Golden code and sphere lower bound Pslb(ρ) for L = 1, 100 in a 2 × 2
multiple antenna channel.

VII. CONCLUSIONS

In this paper we have studied the performance of multidi-

mensional rotated lattice constellations. We have applied the

sphere lower bound for the infinite lattice to the block-fading

channel and proved that the bound has full diversity. We have

shown that optimally rotated algebraic lattices perform very

close to the bound, while the average over the ensemble of

random rotations does not. Furthermore, we have shown that

finite constellations obtained from the rotation of {m−PAM}N

constellations perform close to the bound as m gets large.

We have conjectured that optimal multidimensional signal sets

with m-PAM constellation are obtained from rotated lattices

whose performance is closest to the sphere lower bound. We

have finally shown the applicability of the above results to the

multiple antenna case.
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