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Abstract— Golden space-time trellis coded modulation (GST-
TCM) scheme was proposed in [1] for a high rate 2×2 multiple-
input multiple-output (MIMO) system over slow fading channels.
In this paper, we present the design criteria of GST-TCM over
general block fading channels, where the channel matrix is
constant over a fraction of the codeword length and varies
from one fraction to another independently. However, the code
construction and optimization can be difficult to implement. We
therefore analyze the performance of GST-TCM for slow fading
over block fading channels. The impact of the block fading
channel on the code performance is analyzed using a truncated
Union Bound technique. We finally show both analytically and by
simulation that the GST-TCM designed for slow fading channels
are indeed robust to various channel conditions. This feature
is particularly useful for transmission over multipath channels
using multicarrier modulation such as OFDM.

I. INTRODUCTION

The Golden code was proposed in [2] as a full rate and full
diversity code for 2×2 multiple-input multiple-output (MIMO)
systems with non-vanishing minimum determinant (NVD). It
was shown in [3] how this property guarantees to achieve the
diversity-multiplexing gain trade-off.

In order to enhance the coding gain, a first attempt to
concatenate the Golden code with an outer trellis code was
made in [4]. However, the resulting ad hoc scheme suffered
from a high trellis complexity.

In [1, 6], a Golden space-time trellis coded modulation
(GST-TCM) scheme was designed for slow fading channels.
The NVD property of the inner Golden code is essential for
a TCM scheme where a constellation expansion is usually
required. This property guarantees that it will not suffer from
a reduction of the minimum determinant [2].

The systematic design approach proposed in [1, 6], is based
on set partitioning of the Golden code in order to increase
the minimum determinant. An outer trellis code is used to
increase the Hamming distance between the codewords. The
Viterbi algorithm is used for trellis decoding, where the branch
metrics are computed by using a lattice sphere decoder [8] for
the inner Golden code.

In this paper, we extend the analysis of the GST-TCM
scheme to block fading channels [5]. The block fading channel
model represents a simple and powerful tool to describe a
variety of fading channels ranging from fast to slow. We show
the design criteria for the block fading channel and note that

code construction and optimization can be hard to realize.
Hence, we derive the performance analysis for GST-TCM over
block fading channels. The impact of the block fading channel
on the code performance is analyzed using a truncated union
bound technique. We finally show by simulation that the GST-
TCM designed for slow fading channels are indeed robust to
various channel conditions.

The rest of the paper is organized as follows. Section II
introduces and motivates the system model for block fading
channels. Section III presents the design criteria of GST-
TCM over block fading channels. In Section IV, the impact
of various channel conditions on the performance of GST-
TCM designed for slow fading is analyzed. Section V shows
simulation results. Conclusions are drawn in Section VI.

The following notations are used in the paper. Let T denote
transpose and † Hermitian transpose. Let Z, C and Z[i] denote
the ring of rational integers, the field of complex numbers, and
the ring of Gaussian integers, respectively, where i2 = −1.
Also, we let min(a, b) represent the minimum of a and b.

II. SYSTEM MODEL AND BLOCK FADING

Let us consider a 2×2 MIMO system (nT = 2 transmit and
nR = 2 receive antennas) over a slow fading channel where
the Golden code G is used. The 2×2 Golden codeword X ∈ G
is transmitted over two channel uses where the channel matrix
H is constant and we receive

Y = HX + Z (1)

where Z is the complex white Gaussian noise matrix 2 × 2
matrix. The Golden code was shown to be optimal for this
system [2].

In this paper we will consider codes of length L over an
alphabet G, i.e., the transmitted codewords can be written as
X = (X1, . . . , Xt, . . . , XL) ∈ C2×2L, where Xt ∈ G is given
by [2]

Xt =
1√
5

[
α (at + btθ) α (ct + dtθ)
iᾱ

(
ct + dtθ̄

)
ᾱ

(
at + btθ̄

)
]

(2)

where at, bt, ct, dt ∈ Z[i] are the information symbols, θ =
1− θ̄ = 1+

√
5

2 , α = 1+ i− iθ, ᾱ = 1+ i(1− θ̄), and the factor
1/
√

5 is used to normalize energy [2]. Q-QAM constellations
are used, where Q = 2q as information symbols in (2). We
assume the constellation is carved from Z[i] and shifted in
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1/2 + i/2. When no outer coding is applied, we have the
uncoded Golden code, while if a trellis outer code is used, we
have a GST-TCM [1, 6].

The received signal matrix Y = (Y1, . . . , Yt, . . . , YL) ∈
C2×2L, is given by

Yt = HtXt + Zt t = 1, . . . , L (3)

where each channel matrix Ht ∈ C2×2 is assumed to be con-
stant for at least two channel uses. In (3), Z = (Z1, . . . , ZL) ∈
C2×2L is the complex white Gaussian noise matrix with i.i.d.
samples distributed as NC(0, N0). The elements of Ht are
assumed to be i.i.d. circularly symmetric Gaussian random
variables ∼ NC(0, 1).

In a block fading channel, the matrices Ht ∈ C2×2 are
assumed to be constant in a block of N consecutive alphabet
symbols in G (i.e., 2N channel uses) and vary independently
from one block to another, i.e.,

HkN+1 = · · · = H(k+1)N for k = 0, . . . , L/N − 1

where we assume for convenience that N divides L. For N =
L we say we have a slow fading channel and for N = 1 a
fast fading channel.

The block fading channel model is well suited to describe
frequency selective channels that appear in indoor wireless
local area networks (WLANs). These systems make use of
the orthogonal frequency-division multiplexing (OFDM) tech-
nique, where each subcarrier signal is designed to go through a
flat fading subchannel. The MIMO extension of these systems
makes use of Space-Frequency codes, where each antenna
transmits OFDM symbols [9].

Let W denote the total channel bandwidth and T` denote
the maximum latency that can be tolerated by the real time
applications. Let Tc be the channel coherence time and Bc

the channel coherence bandwidth. The block fading model
describes a channel where the coefficients are approximately
constant over a frame of duration Tc and vary independently
from one frame to another. Similarly, in the frequency domain,
the channel transfer function is approximately constant over
a subband of width Bc and varies independently from one
subband to another.

Indoor wireless channels are mostly impaired by multipath,
which results in a relatively small Bc. On the other hand the
reduced mobility within the indoor environment results in a
relatively large Tc. Using the OFDM technique we discretize
the time-frequency plane (T`,W ) into time-frequency slots of
size (∆t,∆f). Let Nt = T`/∆t denote the number of OFDM
symbols that can be transmitted in a frame and Nf = W/∆f
denotes the number of subcarriers within each OFDM symbol.

In this scenario, it is common practice to design systems
where T` ≤ Tc and ∆f ≈ Bc, which results in a slow fading
in time and a fast fading in frequency (see Figs. 1 and 2).
With this choice each transmitted frame will go through a non
time-varying channel with transfer function H(f, t) = H(f).

Depending on the application, a coded system will employ
a certain number Ns of time-frequency slots within a frame
to transmit one codeword. We will assume that Ns divides
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Fig. 1. Space-Time-Frequency codeword allocation in a 2×2 MIMO system:
the codeword is transmitted through a slow fading channel.
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Fig. 2. Space-Time-Frequency codeword allocation in a 2×2 MIMO system:
the codeword is transmitted through a fast fading channel.

exactly the total number NtNf of time-frequency slots within
a frame, i.e., NtNf = KNs, where K is the number of
codewords per frame.

In the 2 × 2 MIMO case, when the antenna separation is
sufficiently large, we have nT nR = 4 independent channels
that can be exploited to gain diversity. In order to transmit a
2 × 2 Golden codeword X we need Ns = 2 time-frequency
slots. Since the Golden code is a space-time code designed
for a slow fading channel in (1), we must choose two slots
in consecutive OFDM symbols that have a non time-varying
channel.

Assume we want to transmit codewords X = [X1, . . . , XL]
which are obtained by concatenating the Golden code with
some outer code. The first row of X contains the time-
frequency samples of the signal X1(f, t) and is sent over
the first antenna. The second row of X contains the time-
frequency samples of the signal X2(f, t) and is sent over the
second antenna. We have different options for positioning the
components of X in the time-frequency frame.

Figure 1 shows the case where K = Nf codewords are
sent over 2L consecutive time slots within the same OFDM
frequency subband. If 2L∆t ≈ Tc we have the slow fading
channel in each subband described by the following relation

Y = HkX + Z, k = 1, . . . , Nf (4)

where Z ∈ C2×2L is the complex white Gaussian noise matrix.
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Figure 2 shows the case where each codeword is sent within
two consecutive OFDM symbols. A total of K = Nt/2
codewords are sent over L frequency slots. If ∆f ≈ Bc

we have the fast fading channel given by (3). In practice,
a frequency interleaver is often inserted in order to provide
better independence between the channel coefficient matrices
Hk in different subbands. For convenience we will assume
that L = Nf , nevertheless other lengths can be easily adapted
to the frame if L is an integer fraction or multiple of Nf .

Other allocations of the codeword in the time-frequency
plane will result in a general N -block fading channel model.

In this paper, we assume that the channel is known at the
receiver. This can be obtained by sending some pilot symbols
to estimate the channel at the receiver. Note that at least one
reference/pilot OFDM symbol per coherence time is needed
in order to track the channel variations.

III. CODE DESIGN CRITERIA OF GST-TCM FOR BLOCK
FADING CHANNELS

Assuming that a codeword Xt is transmitted, the maximum-
likelihood receiver might decide erroneously in favor of an-
other codeword X̂t, resulting in a pairwise error event. Let r
denote the rank of the codeword difference matrix Xt − X̂t.
Let At = (Xt − X̂t)(Xt − X̂t)† be the codeword distance
matrix. The pairwise error probability (PEP) depends on the
determinant det(At) and r [7].

The union bound (UB) gives an upper bound to the perfor-
mance of the STBC, while a truncated UB gives an asymptotic
approximation [10]. The dominant term in the UB is the
pairwise error probability (PEP) that depends on the minimum
determinant of the codeword distance matrix

∆min = min
Xt 6=X̂t

det (At)

Following the code design criteria for space-time coding in
[7] that is based on the minimization of the dominant term in
the UB, we call nT nR the diversity gain and (∆min)1/nT the
coding gain.

In this paper we will focus on the Golden code which is
linear and full rank (i.e., r = nT = 2 for all At = XtX

†
t s)

and we will consider the truncated UB with two terms

P (e) ≈ Ns1P (∆′
1) + Ns2P (∆′

2) (5)

where the P (∆′
i), i = 1, 2, are the approximate PEPs of the

two dominating events and Nsi the corresponding multiplici-
ties. Note that ∆′

min = min(∆′
1, ∆

′
2).

As we have seen, in a block fading channel Ht is constant
for 2N channel uses. This implies that the number of blocks
within a codeword experiencing independent fading channels
is B = L/N .

In the case of linear codes, we simply consider the distance
from the all-zero codeword matrix. For a given codeword X,
we define

F` =
`N∑

t=(`−1)N+1

XtX
†
t ` = 1, . . . , B (6)

We then have

∆min = min
det(F`)6=0

B∏

`=1

det(F`) (7)

A code design criterion attempting to maximize ∆min is hard
to exploit, due to the non-additive nature of the determinant
metric in (7). Since XtX

†
t are positive definite matrices, we

use the following determinant inequality [11]

det(F`) ≥
`N∑

t=(`−1)N+1

det
(
XtX

†
t

)
= a` (8)

and

∆min ≥ min
a` 6=0

B∏

`=1

a` = ∆′
min (9)

In order to maximize ∆′
min to design good codes, we should

• design set partitioning that maximize the a` in (8);
• design trellis codes to increase the minimum number of

non zero terms a`.
This design approach is hard to realize, since we cannot

easily control the a`s. Instead, we focus on the design criteria
of GST-TCM for slow fading in [1, 6]. We show how it can
also provide a good performance for an arbitrary block fading
channel. In fact, we will see that the codes designed in [1, 6]
are robust to any type of block fading channel ranging from
slow to fast.

IV. PERFORMANCE ANALYSIS OF GST-TCM ON BLOCK
FADING CHANNELS

The aim of this section is to analyze the impact of different
block fading channel conditions on the code performance of
GST-TCM. This will provide the intuition about the robustness
of the system when channel ranges from slow fading to fast.
Although the analysis is based on several approximations, it
does agree with the simulation results.

Given a GST-TCM, let S denote the length of the shortest
simple error event in the corresponding trellis diagram [1]. A
GST-TCM codeword spans L Golden code alphabet symbols,
hence we can have Ns = L − S + 1 simple error events.
Assuming the codeword spans B = L/N independent fading
blocks of length N , the simple error events will appear in
different blocks depending on their position and length. We
have that a simple error event is either crossing

1) n1 = bS/Nc consecutive blocks
2) n2 = bS/Nc+ 1 consecutive blocks

where bxc denotes the maximum integer smaller or equal to
x. The corresponding numbers of simple error events in case
1 and case 2 are respectively

Ns1 = (B′ − 1)× r

Ns2 = B′ × (N − r)

where
B′ = B −

⌊
S − 1

N

⌋
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Fig. 3. Comparison of 4-state trellis codes using 16-QAM constellation at
the rate 7 bpcu form a three level partition Z8/E8 (S = 2).
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Fig. 4. Comparison of 16-state trellis codes using 16-QAM constellation at
the rate 7 bpcu form a three level partition Z8/E8 (S = 3).

is the number of blocks not interested by edge effects,

r = S −
⌊

S − 1
N

⌋
×N − 1

and Ns = Ns1 + Ns2 .
In order to evaluate the dominant terms in (5) we look at the

contribution of the simple error events in the trellis together
with their multiplicity. We get Ns1 terms with

∆′
1 = min

`

n1−1∏
n=0

a`+n

and Ns2 terms with

∆′
2 = min

`

n2−1∏
n=0

a`+n

Depending on the length and structure of the simple er-
ror events, the ∆′

1 and ∆′
2 together with their multiplicity

Ns1 , Ns2 will dominate the performance of the coding scheme.
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Fig. 5. Comparison of 16-state trellis codes using 16-QAM constellation at
the rate 6 bpcu form a three level partition Z8/L8 (S = 3).
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Fig. 6. Comparison of 64-state trellis codes using 16-QAM constellation at
the rate 6 bpcu form a three level partition Z8/L8 (S = 4).

Even if we have ∆′
2 smaller than ∆′

1 its contribution to the
overall performance can be mitigated by the fact that Ns1 À
Ns2 . We will see in the following section how the a` are
affected by the trellis code structure.

V. SIMULATION RESULTS

In this section we show the performance of different GST-
TCM schemes over block fading channels. Signal to noise ratio
(SNR) is defined as SNR = nT Eb/N0, where Eb = Es/q is
the energy per bit and q denotes the number of information
bits per QAM symbol of energy Es.

We consider two types of GST-TCM based on the two
and three level partitions Z8/E8 and Z8/L8 in [1]. For each
case we consider trellises with 4 or 16 states and 16 or 64
states, respectively. The length of the simple error events is
S = 2, 3, 4 for 4,16 and 64 states, respectively. We assume the
codeword length is L = 120 and the block fading channels
are characterized by N = 1, 3, 5, 20, 40, 120. The GST-TCM
were optimized in [1] for the slow fading channel, i.e., for
N = 120.
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S step 1 step 2 step 3 step 4
2 δ 2δ
3 2δ δ 2δ
3 4δ δ 2δ
4 4δ δ 2δ 4δ

TABLE I
SEQUENCES OF DET(XtX

†
t ) FOR THE SIMPLE ERROR EVENTS OF THE

GST-TCMS IN FIGS. 3-6 (δ = 1/5).

St. N Ns1 Ns2 n1 n2 ∆′1 ∆′2
4 1 119 − 2 − 2δ2 −
4 3 80 39 1 2 3δ 2δ2

4 5 96 23 1 2 3δ 2δ2

4 20 114 5 1 2 3δ 2δ2

4 40 117 2 1 2 3δ 2δ2

4 120 119 − 1 − 3δ −
16 1 118 − 3 − 4δ3 −
16 3 40 78 1 2 5δ 2δ2 + 2δ
16 5 72 46 1 2 5δ 2δ2 + 2δ
16 20 108 10 1 2 5δ 2δ2 + 2δ
16 40 114 4 1 2 5δ 2δ2 + 2δ
16 120 118 − 1 − 5δ −

TABLE II
SIMPLE ERROR EVENTS FOR 4, 16 STATES Z8/E8 GST-TCM, S = 2, 3

AND DIFFERENT BLOCK FADING CHANNELS (N = 1, 3, 5, 20, 40, 120).

In Figures 3-6 we can see that the best performance is
obtained in the slow fading case (N = 120), for which
the codes were explicitly optimized. The worst performance
appears in the fast fading case (N = 1) although the difference
is about 1.5-2dB a 10−2 and only about 1dB a 10−3. The
slow and fast fading curves will eventually cross since the fast
fading offers a higher diversity order. The intermediate cases
of block fading, between fast and slow, exhibit a degrading
performance as N decreases.

Let us analyze these simulation results using the truncated
UB. The sequences of det(XtX

†
t ) of the simple error events

of the GST-TCMs in Figs. 3-6 are given in Table I, where
δ = 1/5 is the minimum determinant of the Golden code.

Tables II-III show the parameters for Figs. 3-6. When N =
1 or N = 120, the term ∆′

1 and its multiplicity Ns1 dominate
the performance. We see that ∆′

1 for N = 120 is always
greater than that for N = 1, provided δ = 1/5 and a fixed
Ns1 . This results in a better performance when N = 120. The
same observation can be found for 64-state GST-TCM when
N = 3.

For the other cases, we note that ∆′
2 is always smaller than

∆′
1 since δ = 1/5. As N increases the multiplicity Ns2 of

the ∆′
2 term decreases, while Ns1 of the ∆′

1 term increases,
which results in a better performance. All these results agree
with the performance analysis.

VI. CONCLUSIONS

In this paper, we present the design criteria of GST-
TCM over general block fading channels. Since the code

St. N Ns1 Ns2 n1 n2 ∆′1 ∆′2
16 1 118 − 3 − 8δ3 −
16 3 40 78 1 2 7δ 4δ2 + 2δ
16 5 72 46 1 2 7δ 4δ2 + 2δ
16 20 108 10 1 2 7δ 4δ2 + 2δ
16 40 114 4 1 2 7δ 4δ2 + 2δ
16 120 118 − 1 − 7δ −
64 1 117 − 4 − 32δ4 −
64 3 117 − 2 − 28δ2, 40δ2 −
64 5 48 69 1 2 11δ 28δ2, 40δ2

64 20 102 15 1 2 11δ 28δ2, 40δ2

64 40 111 6 1 2 11δ 28δ2, 40δ2

64 120 117 − 1 − 11δ −

TABLE III
SIMPLE ERROR EVENTS FOR 16, 64 STATES Z8/L8 GST-TCM, S = 3, 4

AND DIFFERENT BLOCK FADING CHANNELS (N = 1, 3, 5, 20, 40, 120).

construction and optimization can be difficult to implement,
we analyze the impact of the block fading channel on the code
performance by using a truncated Union Bound technique.
The analysis shows that the performance of the GST-TCM
designed for slow fading channel varies slightly if the channel
condition varies from slow to fast. It is further demonstrated
by simulation that the performance degrades at most 1 dB at
the FER of 10−3 when block fading varies from slow to fast.
This robust coding scheme can be particularly beneficial for
high rate WLANs transmission.
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