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Abstract— In this paper, we first present a modified code–
spread code-division multiple-access (CS–CDMA) scheme, named
phase-scrambling CDMA (PS–CDMA), for a Gaussian multiple
access channel (MAC). In PS–CDMA, we realize the code–
spreading using a low-rate serially concatenated code consisting
of a convolutional code and a repetition code. Then, we use
complex user-specific algebraic-phase scrambling sequences to
distinguish users. The receiver is based on the iterative multiuser
decoding suggested in [5, 8]. Next, we design complex algebraic-
phase scrambling sequences to mitigate multiple access inter-
ferences for overloaded PS–CDMA, i.e., the number of users
is greater than the spreading factor. By analyzing extrinsic
information transfer (EXIT) curves and the trajectories, we
demonstrate that PS–CDMA using the proposed scrambling
sequences has faster iterative decoding convergency and better
system performance, when compared to the PS–CDMA using
random-phase scrambling sequences and some previously known
multiple access schemes.

I. INTRODUCTION

In code-division multiple-access (CDMA), Viterbi and Hui

[1, 2] independently proposed the idea of using low-rate codes

alone for bandwidth expansion in order to achieve the maxi-

mum theoretical performance of the multiple access system.

Motivated by the above, authors of [3] proposed code-

spread CDMA (CS-CDMA) by making use of a class of low-

rate convolutional codes [4], followed by ideal interleavers,

user–specific pseudorandom scrambling sequences and hard-

decision decoding combined with interference cancellation.

Recently, a chip-interleaved CDMA was proposed in [7],

which admits a transmitter structure similar to that of CS–

CDMA, but with user–specific interleavers to distinguish users.

At the receiver, a joint soft–input soft–output (SISO) iterative

multiuser decoding was adopted. This multiple access scheme

was also proposed in [8] under the name of interleave-division

multiple-access (IDMA).

In this paper, we present a modified CS–CDMA, named

phase–scrambling CDMA (PS–CDMA), over a Gaussian mul-

tiple access channel (MAC). At the transmitter of each user,

we use a low-rate serially concatenated code consisting of a

convolutional code and a repetition code for code-spreading.

Then, we use complex user–specific algebraic-phase scram-

bling sequences to distinguish users from each other. At the

receiver, we employ a joint iterative soft-input soft-output

(SISO) MMSE-filtered parallel interference cancellation (PIC)

multiuser detection (MUD) [5, 8], phase–remover, and channel

decoders.

Conventional complex scrambling sequences were mainly

designed for asynchronous CDMA with the aim of low auto-

correlation sidelobes and low crosscorrelation [9–11]. Unlike

these sequences in [9, 11], in our paper, we aim at designing

complex scrambling sequences for a synchronous overloaded

PS–CDMA, i.e., the number of users is greater than the

spreading-sequence length. In particular, we construct such

sequences to mitigate multiple access interferences (MAIs)

for overloaded PS–CDMA. By analyzing extrinsic information

transfer (EXIT) charts and trajectories, we show that PS–

CDMA using the proposed scrambling sequences has faster

iterative decoding convergence and better bit error rate (BER)

performance, when compare to that using random–phase

scrambling sequences and IDMA [7, 8]. Finally, we remark

that our scrambling sequence design can be also easily adapted

to any multiple access system with different number of users

and various spreading factors.

The outline of this paper is organized as follows. Section II

introduces the proposed PS-CDMA. In Section III we present

the design of algebraic-phase scrambling sequences for PS-

CDMA. In Section , we compare EXIT charts and trajectories,

as well as the BER performance of PS–CDMA using different

scrambling sequences and IDMA systems. Finally, conclusions

are drawn in Section V.

Notations: Let E[·] and Var[·] denote mean and variance

of a random variable. Let �(·) be the real part of a complex

number.

II. PS–CDMA

We consider a synchronous CS-CDMA system with K
users transmitting with equal power over a MAC using BPSK

modulation. Fig. 1(a) shows the transmitter structure for user

k, where k = 1, . . . , K. The input data sequence dk =
[dk(1), . . ., dk(i), . . ., dk(Nb)], is encoded by a convolutional

code with rate R1, producing bk = [bk(1), . . ., bk(l), . . .,
bk(L)]. We note that Nb = R1L. The convolutionally encoded

sequence bk is further encoded (spreaded) by a low-rate

repetition code with rate R2 = 1/S, generating ck = [ck(1),
. . ., ck(j), . . . , ck(J)], where J = SL. The coded sequence ck

is multiplied by an algebraic–phase scrambling sequence, i.e.,

user– and chip–specific phase rotation {ejθ
(k)
i }, k = 1, . . . , K,
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Fig. 1. The PS–CDMA transmitter (a) and receiver (b) structures for user k.

i = 1, . . ., J , producing xk = [xk(1), . . ., xk(J)], where

we denote the components of xk as chips and the condition

J > K is assumed in the paper. We call such a multiple access

scheme phase–scrambling CDMA (PS–CDMA). The system

load of PS–CDMA is defined as α = K
S [6].

At the receiver chip-matched filtering is performed, provid-

ing a sequence of chip-level observables,

y(i) =
K∑

k=1

hk(i)xk(i) + n(i), i = 1, . . . , J, (1)

where hk(i) is the channel coefficient for user k at chip i and

n(i) denotes the sample of an additive white Gaussian noise

(AWGN) process with variance σ2 = N0/2. A Gaussian MAC

is assumed in the paper, i.e., hk(i) = 1, ∀k and ∀i.

In PS–CDMA systems, we employ user–specific and chip–

specific phase rotations, i.e., ejθ
(k)
i �= ejθ

(k′)
i′ for k �= k′

and i �= i′. Assuming the phase–rotations are generated

independently for all users, the adjacent chips in the sequence

x(k) are approximately uncorrelated. Therefore a simplified

version of the SISO MMSE-filtered PIC MUD in [5] can be

adopted at the receiver.

The receiver structure for user k is shown in Fig. 1(b), where

the MUD is concatenated with one phase-remover and two a
posteriori probability (APP) channel decoders for repetition

code (despreading) and convolutional code, respectively. The

multiple-access constraints and code constraints are considered

separately by the MUD, the phase-remover, and the channel

decoders.

Following the derivations in [7, 8], the received signal in (1)

can be rewritten as

y(i) = hk(i)xk(i) +
∑
k′ �=k

hk′(i)xk′(i) + n(i)

= hk(i)xk(i) + Vk(i), (2)

where

Vk(i) �
∑
k′ �=k

hk′(i)xk′(i) + n(i)

is the sum of the multiple-access interference and noise terms

of the received sample y(i), when detecting user k. For a large

number of users, it follows from the central limit theorem that

Vk(i) is approximately Gaussian distributed. Let us define

E[y(i)] �
K∑

k=1

hk(i)E[xk(i)]

and

Var[y(i)] �
K∑

k=1

|hk(i)|2Var[xk(i)] + σ2

It follows that Vk(i) has mean

μk(i) � E[Vk(i)] = E[y(i)] − hk(i)E[xk(i)]

and variance

νk(i) � Var[Vk(i)] = Var[y(i)] − |hk(i)|2Var[xk(i)]

The joint SISO MUD and phase–remover are employed to

calculate the extrinsic log-likelihood ratio (LLR) of the coded

bit ck(i) using [5]

LM
e (k, i) = log

p (y(i)|ck(i) = +1)
p (y(i)|ck(i) = −1)

= 2hk(i)�
(

y(i) − μk(i)
νk(i)

e−jθ
(k)
i

)

= 2hk(i)�
(

zk(i)
νk(i)

e−jθ
(k)
i

)
(3)

and zk(i) = y(i) − μk(i), i = 1, . . . , J . The extrinsic

LLRs LM
e (k, i), ∀i are further forwarded to the SISO channel

decoder.
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At the receiver for user k, we employ the two APP decoders

mentioned above. Considering decoding of the repetition code,

recall that for the convolutionally encoded bit bk(1), we have

ck(j) = bk(1) for j = 1, . . . , S. We can then compute the a
posteriori LLR of dk(1) as

LR(k, 1) =
S∑

j=1

LM
e (k, j)

The APP decoder of the repetition code can be seen as a

despreading operation, and in the same manner, we compute

LR(k, �), � = 1, . . . , L. Then the convolutional SISO decoder

computers the LLRs LC(k, �) of the information bits dk(�).
Given the first bit dk(1) of user k, the a posteriori LLR

LC(k, 1) is repeated S times to perform the spreading opera-

tion. We then compute the extrinsic LLRs of the corresponding

coded bits ck(j), j = 1, . . . , S, using

LD
e (k, j) = LC(k, 1) − LM

e (k, j) j = 1, . . . , S. (4)

In the same manner, we compute all the extrinsic LLRs

LD
e (k, i) , i = 1, . . . , SL. The above extrinsic LLRs

LD
e (k, i) ,∀i are further multiplied by phase–rotations, updat-

ing the a priori LLRs in the SISO MUD block using

E[xk(i)] = hk(i) · tanh
(
LD

e (k, i)/2
) · ejθ

(k)
i

and

Var[xk(i)] = |hk(i)|2 − |E[xk(i)]|2

Note that at the first iteration, assuming equally likely chips,

we have E[xk(i)] = 0 and Var[xk(i)] = 1, k = 1, . . . , K,

i = 1, . . . , J . This completes one iteration of the joint SISO

detection and decoding process.

III. PHASE–ROTATION SCRAMBLING SEQUENCES DESIGN

Let us consider a K×J phase–scrambling sequence matrix

Φ �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ejθ
(1)
1 · · · ejθ

(1)
J

...
...

ejθ
(k)
1 · · · ejθ

(k)
J

...
...

ejθ
(K)
1 · · · ejθ

(K)
J

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5)

We consider two cases:

1) Random-phases: the phases θ
(k)
i are selected randomly

in the interval [0, 2π].
2) Algebraic-phases: the phases are selected as θ

(k)
i =

2πs(k − 1)(i − 1)/n, i = 1, . . . , J , for some integers

s and n.

In the latter case, we choose the integers s, n according to

the following Lemma.

Lemma 1: Assuming a frame length J � n and s coprime

to n, if n divides J then the matrix Φ is unitary (i.e., the user–

specific phase scrambling codes are orthogonal); if n does not

divide J then the user–specific phase scrambling codes are

approximately orthogonal. �

Proof. Consider the complex scalar product of two rows, k
and k′, of Φ:

γ =
J−1∑
i=0

ej2πs(k−1)i/ne−j2πs(k′−1)i/n =
ej2πs(k−k′)iJ/n − 1
ej2πs(k−k′)i/n − 1

(6)

Since s is coprime to n, when J/n is an integer we have

γ =
{

0 k �= k′

J k = k′

If J = qn + r for some integers q and r, then

γ =

⎧⎨
⎩

ej2πs(k−k′)ir/n − 1
ej2πs(k−k′)i/n − 1

k �= k′

qn k = k′

When J � n for k �= k′ we have |γ| < r � qn, which results

in a practically orthogonal matrix Φ for sufficiently large J .

�
We now analyze the relation between the spreading factor S

and the choice on the parameter n. In particular, we distinguish

two cases: (i) K < S and (ii) K > S (overloaded system).

For K < S it is usual to take orthogonal signature waveforms

at the bit level. This is achieved by letting n = S which guar-

antees orthogonality within each coded bit interval of all the

users. In the overloaded case (K > S) bit level orthogonality

among all signature waveforms cannot be guaranteed, but we

observed how the choice of letting n = aS for some integer

a is beneficial as illustrated by the following

Lemma 2: Let n = aS for some integer a and consider

the matrix Φ′ consisting of the first S columns of Φ in (5)

then the K row vectors of Φ′ satisfy the following property:

• the row vectors in the set Ka,b with index 1 ≤ a�+b ≤ K
are mutually orthogonal for a fixed integer 1 ≤ b < a and

� = 0, 1, . . ..
• the vectors in different sets Ka,b and Ka,b′ are not

orthogonal. �
Proof. Consider the complex scalar product of two rows of

Φ′ with indexes k = a� + b and k′ = a�′ + b with � �= �′:
n/a−1∑

i=0

ej2πs(k−k′)i/n =
ej2πs(�−�′)i − 1

ej2πs(�−�′)ia/n − 1
= 0 (7)

Consider the complex scalar product of two rows of Φ′ with

indexes k = a�+b and k′ = a�′ +b′ with b �= b′ and any �, �′:
n/a−1∑

i=0

ej2πs(k−k′)i/n =
ej2πs(b−b′)i/a − 1
ej2πs(k−k′)i/n − 1

�= 0 (8)

�
In particular, for a = 2 we find the best performance, since,

in the case of K > S, the iterative detection of one user will

suffer at most from the interference of K/2 other users. In

order to illustrate the above design, we present an example as

follows.

Example: Under Gaussian MACs, we consider an over-

loaded PS–CDMA system with K = 30, S = 16, system

load α = 1.875, the rate R1 = 1/2, (23, 35)8 convolutional
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Fig. 2. EXIT chart with trajectory of PS-CDMA, K = 30, S = 16,
information bits length Nb = 256 bits, Eb/N0 varies from 3dB to 3.5dB,
(23, 35)8 convolutional code with rate R1 = 1/2, good scrambling sequences
with s = 11, n = 32.

code at the transmitter, and the scrambling sequences based

on algebraic-phase rotations. With s = 11, n = 32, and

J = 2 × 16 × 256, we can see this choice fulfills Lemmas

1 and 2. This implies that the matrix Φ is unitary. �
In the following Section, using EXIT charts and trajectories,

we analyze the iterative decoding convergency of the above

example, and show that PS–CDMA using properly designed

algebraic–phase scrambling sequences leads to better iterative

decoding convergency, when compared to IDMA.

IV. EXIT CHARTS AND TRAJECTORIES, BER

PERFORMANCE

In the section, for PS–CDMA using different scrambling se-

quences and IDMA, we compare EXIT charts and trajectories,

as well as BER performance.

Let Ia and Ie denote the a priori and extrinsic mutual

information of the decoding processes. Assuming infinitely

long codewords of each user, we have the following two EXIT

curves:

1) IMUD
e = fM

(
IMUD
a , Ich

)
describes the mutual infor-

mation corresponding to the extrinsic output of the joint

MUD and phase-remover process, given the a priori
mutual information from MUD IMUD

a and from channel

observation Ich;

2) IDec
e = fD

(
IDec
a

)
describes the mutual information

corresponding to the extrinsic output of the joint de-

coding process of the concatenated code.

Both computations of fM
(
IMUD
a , Ich

)
and fD

(
IDec
a

)
are

given in [12, 13], respectively. Let Eb/N0 be

Eb

N0
� Es

N0
× 1

R1

where Eb and Es denote the system received energy-per-bit

and energy-per-symbol, respectively.
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Fig. 3. EXIT chart with trajectory of PS-CDMA, K = 30, S = 16,
scrambling sequences with random phases, Nb = 256 bits, Eb/N0 varies
from 3dB to 3.5dB, (23, 35)8 convolutional code with rate R1 = 1/2.
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Fig. 4. EXIT chart with trajectory of IDMA, K = 30, S = 16, Nb = 256
bits, Eb/N0 varies from 3dB to 3.5dB, (23, 35)8 convolutional code with
rate R1 = 1/2.

Now we compare EXIT charts and trajectories of the

overloaded PS–CDMA with properly designed scrambling

sequences in the Example, PS–CDMA with random–phase

scrambling sequences, and IDMA, respectively, when Eb/N0

varies from 3dB to 3.5dB. In EXIT chart computation, we use

50 blocks of information bits per user in both PS–CDMA and

IDMA, respectively. We use the same system setting as that

of the Example in Section III.

In Figs. 2 and 3 we compare the corresponding EXIT charts

and the trajectories of PS–CDMA using algebraic scrambling

sequences and random–phase scrambling sequences, respec-

tively. In both figures, we present the EXIT curves for the
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Fig. 5. Performance of PS–CDMA with the proposed scrambling sequences,
random scrambling sequences, and IDMA, Nb = 256 bits, (23, 35)8
convolutional code with rate R1 = 1/2, S = 16, K = 30.

joint MUD and phase-remover process (solid line), the joint

APP decoding of the repetition code and convolutional code

(dashed-dotted line), respectively. We show their trajectories

using dotted line. We observe that PS–CDMAs using both

scrambling sequences have similar iterative decoding conver-

gency, i.e., the joint iterative detection and decoding converges

when Eb/N0 ≥ 3dB.

In Figs. 2 and 5 we compare iterative decoding convergency

behaviors of PS–CDMA using properly designed algebraic-

phase scrambling sequences and that of IDMA. We see that

the joint iterative detection and decoding of IDMA can not

converge when Eb/N0 varies from 3dB to 3.5dB, while, in

contrast, the PS–CDMA can converge.

In Fig. 5 we compare the BER performance of PS–

CDMA using properly designed algebraic–phase scrambling

sequences, random–phase scrambling sequences and the

IDMA. It is shown that PS–CDMA using properly designed

algebraic–phase scrambling sequences has the best BER per-

formance and converges to single user performance at the

fastest speed.

V. CONCLUSION

In this paper, we consider complex scrambling sequences

for overloaded PS–CDMA, where the information sequence of

each user is encoded by a low-rate serially concatenated code

(a convolutional code and a repetition code) and the iterative

multiuser decoding MMSE–PIC scheme, proposed in [5, 8],

was adopted at the receiver.

We design quasi-orthogonal complex algebraic–scrambling

sequences specifically to mitigate MAIs for overloaded PS–

CDMA. We show that the PS–CDMA using properly designed

algebraic-scrambling sequences has faster iterative decoding

convergency and better BER performance, when compared to

that of IDMA and PS–CDMA using random–phase scrambling

sequences, respectively.

Finally, we remark that our orthogonal spreading sequence

design can be easily adapted to any multiple access system

with different number of users and various code rates.

ACKNOWLEDGMENT

The work of E. Viterbo was supported by the STREP

project No. IST-026905 (MASCOT) within FP6 of the

European Commission. The work of S. Shamai was supported

by the European Commission in the framework of the

FP7 Network of Excellence in Wireless COMmunications

NEWCOM++. Dr Yi Hong’s work was sponsored by The

Royal Academy of Engineering, UK.

REFERENCES

[1] A.J. Viterbi, “Very low rate convolution codes for maximum theoretical
performance of spread-spectrum multiple-access channels,” IEEE J. Sel.
Areas Commun., vol. 8, pp. 641–649, May 1990.

[2] J.Y.N. Hui, “Throughput analysis for code division multiple accessing
of the spread spectrum channel,” IEEE J. Sel. Areas Commun., vol. 8,
pp. 482–486, July 1984.

[3] P. K. Frenger, P. Orten, and T. Ottosson, “Code-spread CDMA with in-
terference cancellation,” IEEE J. Sel. Areas Commun., vol. 17, pp. 2090–
2095, Dec. 1999.

[4] P. K. Frenger, P. Orten, and T. Ottosson, “Code-spread CDMA using
maximum free distance low-rate convolutional codes,” IEEE Trans.
Commun., vol. 48, pp. 135–144, Jan. 2000.

[5] X. Wang and H. V. Poor, “Iterative (turbo) soft interference calcellation
and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47,
pp. 1046–1061, Jul. 1999.
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