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Abstract—We consider a time division duplex (TDD) nt × nr

multiple-input multiple-output (MIMO) system with known
channel state information (CSI) at both transmitter and receiver.
Using singular value decomposition (SVD) precoding at the
transmitter, the MIMO channels are transformed into parallel
subchannels. To improve the low diversity order, we propose
X- and Y-Codes, prior to SVD precoding, to pair subchannels
having different diversity orders. Specifically, a pair of channels is
jointly encoded using a 2× 2 real matrix, which is fixed a priori
and does not change with each channel realization. Moreover,
we propose X-, Y-Precoders with the same encoding matrices
as X-, Y-Codes, which adapt to each channel realization. The
optimal encoding matrices for X- and Y-Codes/Precoders are
derived analytically to minimize the average error probability.
Finally, we see that X-, Y-Codes/Precoders indeed achieve higher
diversity gains at very low encoding/decoding complexity for both
well- and ill-conditioned channels, respectively, when compared
to other precoding schemes in the literature. We also observe that
for the Rayleigh fading channel model X- and Y-Codes/Precoders
exhibit the best average error performance.

Index Terms—TDD MIMO, precoding, SVD, diversity

I. INTRODUCTION

We consider time division duplex (TDD) nt×nr multiple-

input multiple-output (MIMO) systems with known channel

state information (CSI) at both transmitter and receiver. Pre-

coding techniques are used to provide large performance gains

in such scenarios [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

In this paper we propose X- and Y-Codes, which achieve

both full rate and high diversity gain at low encoding and

decoding complexity. The proposed codes are based upon

singular value decomposition (SVD) of the MIMO channel,

which transforms it into parallel subchannels. However, the

diversity gain with simple SVD precoding is limited by the

smallest singular value, and is therefore low. To improve on

this, we use simple linear codes prior to SVD precoding.

These codes are named X- and Y-Codes due to the structure of

the encoder matrix, which pairs subchannels having different

diversity orders. The 2× 2 encoder matrices for each pair are

fixed a priori and do not change with each channel realization.

At the receiver, maximum likelihood decoding (MLD) is used.

For X-Codes, the encoder matrices are 2×2 real orthogonal

matrices and thus parameterized by a single angle. It is shown

that X-Codes have better error performance than other pre-

coders. The MLD comprises of nr 2-dimensional real sphere
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decoders (SDs). However the performance of X-Codes and

other precoders is observed to degrade when the subchannel

pairs are ill-conditioned. This degradation along with the

motivation of further complexity reduction leads us to Y-

Codes, which are based on a 2×2 upper left triangular encoder

matrices. Y-Codes are parameterized with 2 parameters related

to the power allocated to the two subchannels. The MLD

complexity of Y-Codes is shown to be the same as that of

a scalar channel (i.e, same as the linear precoders in [7],

[8]). For X- and Y-Codes, the parameters of the encoder

matrices are optimized analytically to minimize the average

error probability.

Moreover, we propose the X- and Y-Precoders, employing

the same pairing structure of X- and Y-Codes, where the

encoder matrices are adapted in order to minimize error

probability with each channel realization. It is observed that

X- and Y-Codes/Precoders perform better than other low com-

plexity precoders for both well- and ill-conditioned channels,

irrespective of the channel fading distribution.

Another precoding scheme with similar structure as X-

Codes, named E-dmin, has been recently proposed in [12].

However, E-dmin is only optimized for 4-QAM symbols,

and suffers from loss in power efficiency with higher order

modulation. The error performance and decoding complexity

of X- and Y-Codes are shown to be better than those of E-dmin

at a lower decoding complexity.

Notations: The fields of complex numbers, real numbers

and non-negative real numbers are denoted by C, R and R
+,

respectively. The real and imaginary components of a complex

argument are denoted by �(·) and �(·). Superscripts T and †

denote transposition and Hermitian transposition, respectively.

The n×n identity matrix is denoted by In, and the zero matrix

is denoted by 0. E[·] is the expectation operator, ‖ · ‖ denotes

the Euclidean norm, and | · | denotes the absolute value of a

complex number. Furthermore, �c� denotes the largest integer

less than c. The set of integers {a ≤ k ≤ b} is denoted by

[a, b].

II. SYSTEM MODEL AND SVD PRECODING

We consider a TDD nt ×nr MIMO (nr ≤ nt) with perfect

knowledge of CSI at both transmitter and receiver. Let x =
(x1, . . . , xnt)

T be the vector of symbols transmitted by the

nt transmit antennas, and let H = {hij}, i = 1, . . . , nr, j =
1, . . . , nt, be the nr × nt channel coefficient matrix, with hij

as the complex channel gain between the j-th transmit antenna

and the i-th receive antenna. The standard Rayleigh flat fading

model is assumed with hij ∼ Nc(0, 1), i.e., i.i.d. complex
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Gaussian random variables with zero mean and unit variance.

The received vector with nr components is given by

y = Hx + n (1)

where n is a spatially uncorrelated Gaussian noise vector

such that E[nn†] = N0Inr
. Such a system has a maximum

multiplexing gain of nr. Let the number of transmitted in-
formation symbols be ns (ns ≤ nr). The information bits

are first mapped to the information symbol vector u =
(u1, . . . , uns

)T ∈ C
ns , which is then mapped to the coded

symbols z = (z1, . . . , zns)
T ∈ C

ns using a ns ×ns matrix G,

i.e., z = Gu + u0, where u0 ∈ C
ns is a displacement vector

used to reduce the average transmitted power. Let T be the

nt × ns precoding matrix yielding x = Tz. The transmission

power constraint is given by E[‖x‖2] = PT and we define the

signal-to-noise ratio (SNR) as γ � PT /N0.

Since the proposed codes are based upon SVD precoding,

we briefly illustrate it in the following. Taking the SVD of

the MIMO channel yields H = UΛV, where U ∈ C
nr×nr ,

Λ ∈ C
nr×nr , V ∈ C

nr×nt , and UU† = VV† = Inr
, Λ =

diag(λ1, . . . , λnr
), with λ1 ≥ λ2 · · · ≥ λnr

≥ 0. Let Ṽ ∈
C

ns×nt be the submatrix with the first ns rows of V. The

standard SVD precoder uses T = Ṽ†, G = Ins
, u0 = 0

and the receiver gets y = HTu + n. Let Ũ ∈ C
nr×ns be

the submatrix with the first ns columns of U. The receiver

computes

r = Ũ†y = Λ̃u + w (2)

where w ∈ C
ns is still an uncorrelated Gaussian noise vector

with E[ww†] = N0Ins , Λ̃ Δ= diag(λ1, λ2, · · ·λns), and

r = (r1, . . . , rns
)T . Therefore the channel is transformed by

SVD precoding into ns parallel channels ri = λiui + wi,

i = 1, . . . , ns, with non-negative fading coefficients λi. The

overall error performance is dominated by the minimum

singular value λns
, (see e.g. [2]). When ns = nr = nt,

the diversity order is only 1. We therefore propose pairing

of subchannels as a general technique to improve significantly

the diversity gain.

III. PAIRING GOOD AND BAD SUBCHANNELS

Without loss of generality, we consider only the full-rate

SVD precoding scheme with even nr and ns = nr. The matrix

G ∈ C
nr×nr is now used to pair different subchannels so as to

improve the overall diversity gain. Using the precoding matrix

T = V† ∈ C
nt×nr , the transmitted vector x is given by

x = V†(Gu + u0) (3)

where G is fully characterized by the list of pairings and the

2 × 2 encoder matrices for each pair. Let the list of pairings

be {(ik, jk) ∈ [1, nr] × [1, nr], ik < jk, k = 1, . . . nr/2}. The

information symbols the k-th pair uik
and ujk

are jointly coded

using a real 2 × 2 matrix Ak � {ak,i,j}, i, j ∈ [1, 2]. Each

Ak is a submatrix of the code matrix G � {gi,j}, i.e.,

gik,ik
= ak,1,1 gik,jk

= ak,1,2

gjk,ik
= ak,2,1 gjk,jk

= ak,2,2
(4)

We shall see later, that an optimal pairing in terms of overall

diversity order is one in which the k-th subchannel is paired

with the (nr − k + 1)-th subchannel. For example, with this

pairing and nr = 6, the X-Code structure is given by

G =

⎡
⎢⎢⎢⎢⎣

a1,1,1 a1,1,2

a2,1,1 a2,1,2

a3,1,1 a3,1,2

a3,2,1 a3,2,2

a2,2,1 a2,2,2

a1,2,1 a1,2,2

⎤
⎥⎥⎥⎥⎦ (5)

and the Y-Code structure is given by

G =

⎡
⎢⎢⎢⎢⎣

a1,1,1 a1,1,2

a2,1,1 a2,1,2

a3,1,1 a3,1,2

a3,2,1

a2,2,1

a1,2,1

⎤
⎥⎥⎥⎥⎦ (6)

The names X- and Y-Codes are due to the structure in (5)

and (6). Let uk � [uik
, ujk

]T . Due to the transmit power

constraint and uniform power allocation between the nr/2
pairs, the encoder matrices Ak must satisfy

E
[‖Akuk + u0

k‖2
]

=
2PT

nr
(7)

where u0
k is the subvector of the displacement vector u0 for

the k-th pair. The expectation in (7) is over the distribution of

the information symbol vector uk. The matrices Ak can be

either fixed a priori (X-, Y-Codes) or can change with every

channel realization (X-, Y-Precoders).

Using (1) and (3), given the received vector y, the receiver

computes

r = U†y − Λu0 = ΛGu + w = Mu + w (8)

where M Δ= ΛG is the equivalent channel gain matrix and

w Δ= U†n is a noise vector with the same statistics as n.

Further, let rk � [rik
, rjk

]T and wk � [wik
, wjk

]T . Let Mk ∈
R

2×2 denote the 2 × 2 submatrix of M consisting of entries

in the ik and jk rows and columns. Then (8) can be rewritten

as

rk = Mkuk + wk, k = 1, . . . ,
nr

2
(9)

Further, separating real and imaginary components of uk, we

have �(uk) and �(uk) ∈ Sk, where Sk is a finite signal set

in the 2-dimensional (2-D) real space. Then MLD for the k-th

pair is given by

�(ûk) = arg min
�(uk)∈Sk

‖�(rk) − Mk�(uk)‖2

�(ûk) = arg min
�(uk)∈Sk

‖�(rk) − Mk�(uk)‖2 (10)

where ûk is the output of the ML detector for the k-th pair.

With Rayleigh fading and MLD given by (10), it can

be shown using the union bounding technique, that δk, the

diversity order of the k-th pair is lower bounded by

δk ≥ (nr − ik + 1)(nt − ik + 1) (11)
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Let δord denote the overall diversity order achieved. It can

be shown that δord ≥ mink(δk). We can therefore conclude

that the pairing of subchannels ik = k, jk = (nr − k + 1),
k = 1, . . . , nr/2 yields the best lower bound on δord, which

is given by

δord ≥
(nr

2
+ 1

)(
nt − nr

2
+ 1

)
(12)

Note that this pairing results in a cross-form matrix G.

IV. X-CODES AND X-PRECODERS

In [14], we presented the design and optimization of X-

Codes and also showed that the ML decoding complexity

is that of nr 2-dimensional real SDs [11]. For X-Codes,

the encoder matrices are 2 × 2 real orthogonal matrices

parameterized by a single angle, and are given by

Ak =
[

cos(θk) sin(θk)
− sin(θk) cos(θk)

]
k = 1, . . . nr/2 (13)

Each symbol in u takes values from a regular M2-QAM

constellation which consists of the M -PAM constellation

S Δ= {τ(2i − (M − 1)) |i = 0, 1, · · · (M − 1)}
used in quadrature on the real and the imaginary components

of the channel, where

τ
Δ=

√
3PT

2nr(M2 − 1)

For optimal error performance of the k-th pair, we minimize

w.r.t. θk the union bound on the average probability of error.

The optimal θk, denoted by θ∗k, is then given by

θ∗k = arg max
θk∈[0, π

4 ]
min

(p,q)∈SM

(p2 + q2) cos2(θk − ϕp,q)

(14)

where SM
Δ= {(p, q) �= (0, 0)|0 ≤ |p| ≤ (M − 1), 0 ≤

|q| ≤ (M − 1)} and ϕp,q
Δ= tan−1

(
q
p

)
. For X-Precoders,

the angle θk varies at each channel realization. Therefore, for

X-Precoders θk is a function of the channel gain (λik
, λjk

).
The best angle for the k-th pair is given by

θ̃k(λik
, λjk

) = arg max
θk∈[0, π

4 ]
min

(p,q)∈SM

d2
k(p, q, θk) (15)

where

d2
k(p, q, θk) Δ= (p2 + q2)(λ2

ik
cos2(θk − ϕp,q))

+ (p2 + q2)(λ2
jk

sin2(θk − ϕp,q)) (16)

is the effective Euclidean distance between a two different in-

formation vectors �(uk) and �(vk). No closed form analytic

expression exists for the optimization problem in (15) except

for small values of M (see [15]).

It is observed that the error performance at high SNR is

dependent on the minimum value of the effective Euclidean

distance d2
k(p, q, θk) over all (p, q) ∈ SM . Since λik

≥ λjk
,

the first term in (16) provides the larger contribution to

the effective Euclidean distance. Therefore, codes should be

designed so that the minimum separation of any two code

vectors is larger along the first component. This, along with

the goal of further complexity reduction, motivates the idea of

Y-Codes.

V. Y-CODES AND Y-PRECODER

We consider encoder matrices Ak of the form

Ak =
[

ak 2ak

2bk 0

]
(17)

where ak, bk ∈ R
+. For Y-Codes, Sk is the set of pairs of

integers defined by the Cartesian product

Sk
Δ=

{
[0, 1] ×

[
0,

M

2
− 1

]}

Both the real and imaginary components of the displacement

vector for the k-th pair are given by

�(u0
k) = �(u0

k) =
[
− (M − 1)ak

2
, −bk

]T

(18)

We consider the 2-D codebook generated by applying Ak to

the elements of Sk and adding a displacement of u0
k. The M

code vectors in this codebook, v = 1, . . . , M , are given by

Yk(v) =
[
ak

(
v − 1 − M − 1

2

)
, bk(−1)v

]T

v = 1, . . . , M

(19)

and are represented in Fig. 1 by the black dots for M = 8.

Due to the transmit power constraint in (7), both ak and bk

satisfy

b2
k + a2

k

M2 − 1
12

=
PT

nr
(20)

Gray mapping is used for mapping the information bits to

code vectors. For Y-Codes, the parameters ak and bk are

fixed a priori, whereas, for the Y-Precoders, these are chosen

every time the channel changes. The MLD is the same for

both the real and imaginary components of uk and therefore

without loss of generality, we only discuss it for the real

component. We first partition the 2-D received signal space

R
2 into

(
M
2 + 1

)
regions:

R0 :
{

[x, y]T ∈ R
2 | −∞ ≤

( x

λik
ak

+
M − 1

2

)
≤ 1

}

RM
2

:
{

[x, y]T ∈ R
2 | (M−1) ≤

( x

λik
ak

+
M − 1

2

)
≤ +∞

}

Ri :
{

[x, y]T ∈ R
2 | (2i−1) ≤

( x

λik
ak

+
M − 1

2

)
≤ (2i+1)

}
where i ∈ [

1, M
2 − 1

]
. In Fig. 1, we illustrate the 5 regions

with M = 8 for the real component of the k-th pair. We

next show a low complexity MLD algorithm for Y-Codes.

We first decode the received vector to the appropriate region

Ri. This is easily accomplished by a rounding operation on

the first component of the received vector. For example, in

Fig. 1, the received vectors p1, p2, and p3 belong to R0, R1,

and R3 respectively. It can be shown that, once we know the
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region of the received vector, it is possible to directly find the

ML code vector by checking a few linear relations between

the 2 components of the received vector. Therefore the MLD

complexity of Y-Codes is the same as that of a scalar channel.

For example in Fig. 1, the received vector p3 is to the right

of the perpendicular bisector between Yk(6) and Yk(8). The

vector p3 is also above the perpendicular bisector between

Yk(7) and Yk(8). From these two checks it can be easily

concluded that the ML code vector is Yk(8).The ML decision

regions are outlined in Fig. 1.

Thanks to the simple structure of the ML decision regions,

it is possible to get analytic expression for the exact error

probability of the k-the pair, in terms of certain integrals of

the Q(·) function. These analytic expressions are presented in

[15]. However no closed form expression exists for the error

probability, and the integrals have to be computed numerically.

For optimal error performance, the error probability is mini-

mized w.r.t. (ak, bk) subject to the power constraint in (20).

This minimization is done numerically and can be computed

off-line since (ak, bk) are fixed a priori.
For Y-Precoders, the optimal (ak, bk) have to be computed

for a given channel realization. Since evaluating the exact

error probability is highly prohibitive, we consider minimizing

the truncated union bound on the error probability for the

k-th pair. This minimization is equivalent to maximizing

the effective minimum distance w.r.t. (ak, bk) subject to the

power constraint in (20). For Y-Codes, the effective minimum

distance is given by

d2
k,min(ak, bk) Δ= (21)

min
v �=w

(
λ2

ik
a2

k(v − w)2 + λ2
jk

b2
k((−1)v − (−1)w)2

)
where v and w are distinct indices of the codebook. The

optimal choice of (ak, bk), denoted by (a∗
k, b∗k), is given by

(a∗
k, b∗k)=

⎧⎪⎪⎨
⎪⎪⎩

(√
12PT

nr(M2−1) , 0
)

β2
k ≥ M2−1

3

(√
4PT

3nr(β2
k+M ′) , βk

√
PT

nr(β2
k+M ′)

)
β2

k < M2−1
3

(22)

where M ′ = M2−1
9 and βk = λik

/λjk
.

VI. SIMULATION RESULTS AND COMPLEXITY

We assume nr = nt. Comparisons are made with 1) the E-

dmin precoder in [12]), 2) the Arithmetic mean BER precoder

(ARITH-MBER) in [7], 3) the Equal Energy linear precoder

(EE) in [8], 4) the TH precoder in [6], and 5) CI precoder [3].

In Fig. 2, we plot the error performance of all precoding

schemes for a 2 × 2 MIMO system with γ = 26 dB, as

a function of the channel condition number β = λ1/λ2.

We fix λ1
2 + λ2

2 = 1, and the target spectral efficiency

to 8 bps/Hz with 16-QAM signalling. We observe that X-

Precoder has the best error performance for low values of β
(well-conditioned channel), whereas Y-Precoder has the best

performance for high values of β (ill-conditioned channel).

Therefore, a combination of X- and Y-Precoder would have
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Fig. 1. Received signal space for the real component of the k-th pair.
For M = 8 we have 5 regions demarcated by vertical dashed lines. The
scaled codebook vectors are labeled with their corresponding index. Dotted
lines demarcate the boundary of the ML decision regions. The hatched area
illustrates the ML decision region of Yk(5).
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Fig. 2. Effect of the channel condition number on error performance of
various precoders for a 2×2 system and a target spectral efficiency of 8bps/Hz.

the best error performance, when compared to other precoders

considered, irrespective of the channel fading distribution.

When the channel coefficients are Rayleigh distributed, both

E-dmin and X-, Y-Codes have the best diversity order among

all precoders considered (except CI). The CI scheme achieves

infinite diversity, but it suffers from power enhancement at the

transmitter. However, we shall later see that E-dmin achieves

this diversity gain at a much higher complexity than X-, Y-

Codes.

In Fig. 3, we plot the average bit error rate (BER) for

nr = nt = 4 at spectral efficiency of 16 bps/Hz with 16-

QAM signalling. Rayleigh fading is assumed. It is observed

that Y-Precoder performs the best. The ARITH-MBER and

E-dmin perform 2.6 and 3.5 dB worse than Y-Precoder at a
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BER of 10−3. E-dmin has poor performance since the precoder

proposed in [12] has been optimized for 4-QAM.

It is also observed through simulations that with Rayleigh

fading, Y-Codes perform much better than X-Codes, though

we do not present illustrations due to lack of space. We also

observed that X-Precoder performs significantly better than

X-Codes, when higher order modulation is used. However, Y-

Precoder was found to be only marginally better than Y-Codes,

and this is due to the fact that the optimization of the encoder

matrices was done on an upper bound to the exact error

probability. Please refer to [15] for a more detailed discussion.

We next discuss the encoding and decoding complexity of the

proposed codes in comparison with that of the other schemes.

The encoding complexity of all the schemes is O(nrnt)
due to the preprocessing filter. However in terms of actual

number of operations, CI, E-dmin and X-, Y-Codes would

have the lowest encoding complexity, since 1) linear precoders

need to compute an extra pre-processing matrix (in addition

to SVD); 2) THP does successive interference pre-cancelation

(in addition to QR). The decoding complexity of all the

schemes have a square dependence on nr, due to the post-

processing matrix filter at the receiver. The linear precoders,

CI and THP employ post processing at the receiver, which

enables independent decoding for each subchannel. E-dmin

and X-Codes use sphere decoding to jointly decode pairs of

subchannels. ML decoding for X-Codes is accomplished by

using nr 2-D real SDs as compared to nr

2 4-D real SDs

required by E-dmin. The average complexity of SD is cubic in

the number of dimensions [13], and therefore X-Codes have

a much lower decoding complexity compared to E-dmin. The

ML decoding complexity of Y-Codes is even lower, and is

equal to the ML decoding complexity of a scalar channel (i.e.,

same as the linear precoders, CI and THP).

VII. CONCLUSION

We proposed X-, Y-Codes/Precoders which can achieve

full-rate and high diversity at low complexity by pairing

the subchannels prior to SVD precoding. One way of pair-

ing the subchannels is to use rotation based encoding (X-

Codes/Precoders) for well-conditioned channels, while the

other is to use an upper left triangular code generator matrix

(Y-Codes/Precoders) for ill-conditioned channels. We observe

that the proposed scheme achieves better error performance

than other existing precoders at a very low complexity.
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