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Abstract—We consider Gaussian multiple-input multiple-
output (MIMO) channels with discrete input alphabets. We pro-
pose a non-diagonal precoder based on X-Codes in [1] to increase
the mutual information. The MIMO channel is transformed into
a set of parallel subchannels using Singular Value Decomposition
(SVD) and X-codes are then used to pair the subchannels. X-
Codes are fully characterized by the pairings and the 2 × 2
real rotation matrices for each pair (parameterized with a single
angle). This precoding structure enables to express the total
mutual information as a sum of the mutual information of all
the pairs. The problem of finding the optimal precoder with the
above structure, which maximizes the total mutual information,
is equivalent to i) optimizing the rotation angle and the power
allocation within each pair and ii) finding the optimal pairing and
power allocation among the pairs. It is shown that the mutual
information achieved with the proposed pairing scheme is very
close to that achieved with the optimal precoder by Cruz et
al., and significantly better than mercury/waterfilling strategy by
Lozano et al.. Our approach greatly simplifies both the precoder
optimization and the detection complexity, making it suitable for
practical applications.

Index Terms—Mutual information, MIMO, OFDM, precoding,
singular value decomposition, condition number.

I. INTRODUCTION

Many modern communication channels are modeled as

a Gaussian multiple-input multiple-output (MIMO) channel.

Examples include multi-tone digital subscriber line (DSL),

orthogonal frequency division multiplexing (OFDM) and mul-

tiple transmit-receive antenna systems with channel state in-

formation at transmitter (CSIT). It is known that the capacity

of the Gaussian MIMO channel is achieved by beamforming

a Gaussian input alphabet along the left and right singular

vectors, resulting in a set of parallel Gaussian subchannels.

Optimal power allocation between the subchannels is achieved

by waterfilling [2]. In practice, the input alphabet is not

Gaussian and it is generally chosen from a finite signal set.

We distinguish between two kinds of MIMO channels: i)
diagonal (or parallel) channels and ii) non-diagonal channels.

For a diagonal MIMO channel with discrete input alphabets,

assuming only power allocation on each subchannel (i.e. diag-

onal precoder), mercury/waterfilling was shown to be optimal

in [3]. With discrete input alphabets, Cruz et al. ([4]) later
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showed that the optimal precoder is, however, non-diagonal,

i.e., some precoding is performed across all the subchannels.

For a general non-diagonal Gaussian MIMO channel, it was

also shown in [4] that the optimal precoder is non-diagonal.

Such an optimal precoder is given by a fixed point equation,

which requires a high complexity numeric evaluation. Since

the precoder jointly codes all the n inputs, joint decoding is

also required at the receiver. Thus, the decoding complexity

can be very high, specially for large n, as in the case of

DSL and OFDM applications. This motivates our quest for

a practical low complexity precoding scheme achieving near

optimal capacity.

In this paper, we consider a general MIMO channel and

a non-diagonal precoder based on X-Codes [1]. The MIMO

channel is transformed into a set of parallel subchannels using

Singular Value Decomposition (SVD) and X-codes are then

used to pair the subchannels. X-Codes are fully characterized

by the pairings and the 2 × 2 real rotation matrices for each

pair, where each matrix is parameterized with a single angle.

This precoding structure enables to express the total mutual

information as a sum of the mutual information of all the pairs.

The problem of finding the optimal precoder with the above

structure, which maximizes the total mutual information, can

be split into two tractable problems: i) optimizing the rotation

angle and the power allocation within each pair and ii) finding

the optimal pairing and power allocation among the pairs. It

is shown by simulation that the mutual information achieved

with the proposed pairing scheme is very close to that achieved

with the optimal precoder in [4], and significantly better than

the mercury/waterfilling strategy in [3]. Our approach greatly

simplifies both the precoder optimization and the detection

complexity, making it suitable for practical applications.

II. SYSTEM MODEL AND PRECODING

We consider a nt × nr MIMO channel, where the channel

state information (CSI) is known perfectly at both transmitter

and receiver. Let x = (x1, . . . , xnt
)T be the vector of input

symbols to the channel, and let H = {hij}, i = 1, . . . , nr,

j = 1, . . . , nt, be a full rank nr×nt channel coefficient matrix,

with hij as the complex channel gain between the j-th input

symbol and the i-th output symbol. The vector of nr channel

output symbols is given by

y =
√

PT Hx + w (1)
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where w is a uncorrelated Gaussian noise vector, such that

E[ww†] = Inr
, and PT is the total transmitted power. The

power constraint is given by E[‖x‖2] = 1.

The maximum multiplexing gain of this channel is n =
min(nr, nt). Let u = (u1, . . . , un)T ∈ C

n be the vector of n
information symbols to be sent through the MIMO channel,

with E[|ui|2] = 1, i = 1, . . . , n. Then u can be precoded using

a nt × n matrix T, resulting in x = Tu.

The capacity of the deterministic Gaussian MIMO channel

is then achieved by solving

Problem 1:

C(H, PT ) = max
Kx|tr(Kx)=1

I(x;y|H) (2)

≥ max
Ku,T | tr(TKuT†)=1

I(u;y|H)

where I(x;y|H) is the mutual information between x and y.

Kx
Δ= E[xx†] and Ku

Δ= E[uu†] are the covariance matrices

of x and u respectively. The inequality in (2) follows from

the data processing inequality [2].

Let us consider the singular value decomposition (SVD) of

the channel H = UΛV, where U ∈ C
nr×n, Λ ∈ C

n×n, V ∈
C

n×nt , and U†U = VV† = In, and Λ = diag(λ1, . . . , λn)
with λ1 ≥ λ2, · · · ,≥ λn ≥ 0.

In [2] it is shown that Problem 1 is solved when x is

Gaussian distributed and VKxV† is diagonal. This can be

achieved by using the optimal precoder matrix T = V†P,

where P ∈ (R+)n is the diagonal power allocation matrix such

that tr(PP†) = 1. Further ui, i = 1, . . . , n are i.i.d. Gaussian

components. Optimal power allocation is achieved through

waterfilling between the n parallel channels. This also implies

that, the second line of (2) is actually an equality.

III. OPTIMAL PRECODING WITH DISCRETE INPUTS

In practice, discrete input alphabets are used. Subsequently,

we assume that the i-th information symbol is given by ui ∈
Ui, where Ui ⊂ C is a finite signal set. Let S Δ= U1 × U2 ×
· · · × Un. The capacity of the Gaussian MIMO channel with

discrete input alphabet S is achieved by solving

Problem 2:

CS(H, PT ) = max
T |u∈S,‖T‖F =1

I(u;y|H) (3)

Note that there is no maximization over the pdf of u, since we

fix Ku = In. The optimal precoder T∗, which solves Problem

2, is given by the following fixed point equation [4]

T∗ =
H†HT∗E

‖H†HT∗E‖F
(4)

where E is the minimum mean-square error (MMSE) matrix

of u given by

E = E[(u − E[u|y])(u − E[u|y])†] (5)

It is observed that with discrete input alphabets, it is not

optimal to beamform along the column vectors of V† and

then use waterfilling on the parallel subchannels. Even when

H is diagonal (parallel non-interfering subchannels), the op-

timal precoder T∗ is non diagonal, and can be computed

numerically (using a gradient based method) as discussed

in [4]. However, the complexity is prohibitive for practical

applications. In order to overcome this complexity issue, we

propose to use a simple precoder based on the X-Codes [1].

IV. PRECODING WITH X-CODES

X-Codes are based on a pairing of n subchannels l =
{(ik, jk) ∈ [1, n] × [1, n], ik < jk, k = 1, . . . , n/2}.

For a given n, there are (n − 1)(n − 3) · · · 3 1 possi-

ble pairings. Let L denote the set of all possible pair-

ings. For example, with n = 4, we have L =
{{(1, 4), (2, 3)}, {(1, 2), (3, 4)}, {(1, 3), (2, 4)}}.

X-Codes are generated by a n × n real orthogonal ma-

trix, denoted by G. When precoding with X-Codes, the

precoder matrix is given by T = V†PG, where P =
diag(p1, p2, · · · , pn) ∈ R

+n
is the diagonal power allocation

matrix such that tr(PP†) = 1. The k-th pair consists of

subchannels ik and jk. For the k-th pair, the information

symbols uik
and ujk

are jointly coded using a 2 × 2 real

orthogonal matrix Ak given by

Ak =
[

cos(θk) sin(θk)
− sin(θk) cos(θk)

]
k = 1, . . . n/2 (6)

The angle θk can be optimized by maximizing the mutual

information for the k-th pair. Each Ak is a submatrix of the

code matrix G as shown below

gik,ik
= cos(θk) gik,jk

= sin(θk)
gjk,ik

= − sin(θk) gjk,jk
= cos(θk) (7)

where gi,j is the entry of G in the i-th row and j-th column. It

was shown in [1], that for achieving the best diversity gain, an

optimal pairing is one in which the k-th subchannel is paired

with the (n − k + 1)-th subchannel. For example, with this

pairing and n = 6, the X-Code structure is given by

G=

⎡
⎢⎢⎢⎣

cos(θ1) sin(θ1)
cos(θ2) sin(θ2)

cos(θ3) sin(θ3)
− sin(θ3) cos(θ3)

− sin(θ2) cos(θ2)
− sin(θ1) cos(θ1)

⎤
⎥⎥⎥⎦

The special case with θk = 0, k = 1, 2, · · · , n/2 results in no

coding across subchannels. Given the encoder matrix G, the

subchannel gains Λ, and the power allocation matrix P, the

mutual information between u and y is given by

IS(u;y|Λ,P,G) = h(y|Λ,P,G) − h(w) (8)

= −
∫
y∈Cnr

p(y|Λ,P,G) log2(p(y|Λ,P,G))dy − n log2(πe)

where the received vector pdf is given by

p(y|Λ,P,G) =
1

|S|πn

∑
u∈S

e−‖y−UΛPGu‖2
(9)

and when n = nr (i.e., nr ≤ nt), it is equivalently given by

p(y|Λ,P,G) =
1

|S|πn

∑
u∈S

e−‖r−ΛPGu‖2
(10)
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where r = (r1, r2, · · · , rn)T Δ= U†y.

We next define the capacity of the MIMO Gaussian channel

when precoding with X-Codes and further receiver processing2

is done with the vector r. Towards this, we need the following

definitions. For a given pairing l, let rk
Δ= (rik

, rjk
)T , uk

Δ=
(uik

, ujk
)T , Λk

Δ= diag(λik
, λjk

), Pk
Δ= diag(pik

, pjk
) and

Sk
Δ= Uik

×Ujk
. Due to the pairing structure of G, the mutual

information IS(u; r|Λ,P,G) can be expressed as the sum of

mutual information of all the n/2 pairs as follows:

IS(u; r|Λ,P,G) =
n/2∑
k=1

ISk
(uk; rk|Λk,Pk, θk) (11)

Having fixed the precoder structure to T = V†PG, we can

then formulate the following

Problem 3:

CX(H, PT ) = max
G,P |u∈S,tr(PP†)=1

IS(u; r|Λ,P,G) (12)

It is clear that the solution of the above problem is still a

formidable task, although apparently simpler than Problem 2.

In fact, instead of the n×n variables of T, we now deal with

n variables for power allocation in P, n/2 variables for the

angles defining Ak, and the pairing selection l ∈ L. In the

following, we will show how to efficiently solve Problem 3

by splitting it into two simpler problems.

Power allocation can be divided into power allocation

between pairs, followed by power allocation between the 2

subchannels of each pair. Let P̄ = diag(p̄1, p̄2, · · · , p̄n/2) be

a diagonal matrix, where p̄k
Δ=

√
p2

ik
+ p2

jk
with p̄2

k being the

power allocated to the k-th pair. The power allocation within

each pair can be simply expressed in terms of the fraction

fk
Δ= p2

ik
/p̄2

k of the power assigned to the first subchannel of

the pair. The mutual information achieved by the k-th pair is

then given by

ISk
(uk; rk|Λk,Pk, θk) = ISk

(uk; rk|Λk, p̄k, fk, θk) (13)

= −
∫
rk∈C2

p(rk) log2 p(rk) drk − 2 log2(πe)

where p(rk) is given by

p(rk) =
1

|Sk|π2

∑
uk∈Sk

e−‖rk−p̄kΛkFkAkuk‖2
(14)

where Fk
Δ= diag(

√
fk,

√
1 − fk) and Ak is given by (6).

The capacity of the discrete input MIMO Gaussian channel

when precoding with X-Codes can be expressed as

Problem 4:

CX(H, PT ) = max
l∈L,P̄|tr(P̄P̄†)=1

n/2∑
k=1

CSk
(k, l, p̄k) (15)

2For nr ≤ nt, I(u;y|H) = I(u; r|H). However, when nr > nt,
receiver processing with r becomes information lossy, and I(u;y|H) >
I(u; r|H).

where CSk
(k, l, p̄k), the capacity of the k-th pair, is achieved

by solving

Problem 5:

CSk
(k, l, p̄k) = max

θk,fk

ISk
(uk; rk|Λk, p̄k, fk, θk) (16)

In other words, we have split Problem 3 into two simpler

problems. Firstly, given a pairing l and power allocation

between pairs P̄, we can solve Problem 5 for each k =
1, 2, · · · , n/2. Problem 4 uses the solution to Problem 5 to

find the optimal pairing l∗ and the optimal power allocation

P̄∗ between the n/2 pairs. For small n, the optimal pairing

and power allocation between pairs can always be computed

by brute force enumeration of all possible pairings. This is,

however, prohibitively complex for large n, and we shall

discuss heuristic approaches in Section VI. We will show

in the following that, although suboptimal, precoding with

X-Codes will perform close to the optimal capacity in [4].

The additional benefit of our scheme is that the detection

complexity at the receiver is highly reduced, since there is

coupling only between pairs of channels, as compared to the

case of full-coupling for the optimal precoder in [4].

In the next section, we solve Problem 5. Since this problem

is the same for each pair, it is equivalent to finding the optimal

rotation angle and power allocation for a Gaussian MIMO

channel with only n = 2 subchannels.

V. GAUSSIAN MIMO CHANNELS WITH n = 2

With n = 2, there is only one pair and only one possible

pairing. Therefore we drop the subscript k in Problem 5 and

we find CX(H, PT ) in Problem 3. The processed received

vector r ∈ C
2 is given by

r =
√

PT ΛFAu + z (17)

where z = U†w is the equivalent noise vector with the same

statistics as w. Let α
Δ= λ2

1 +λ2
2 be the overall channel power

gain and β
Δ= λ1/λ2 be the condition number of the channel.

Then (17) can be re-written as

r =
√

P̃T Λ̃FAu + z (18)

where P̃T
Δ= PT α and Λ̃ Δ= Λ/

√
α =

diag(β/
√

1 + β2, 1/
√

1 + β2). The equivalent channel

Λ̃ now has a gain of 1, and its channel gains are dependent

only upon β. Our goal is, therefore, to find the optimal

rotation angle θ∗ and the fractional power allocation f∗,

which maximize the mutual information of the equivalent

channel with condition number β and gain equal to 1. The

total available transmit power is now P̃T .

It is difficult to get analytic expressions for the optimal θ∗

and f∗, and therefore we can use numerical techniques to

evaluate them and store them in lookup tables. For a given

application scenario, given the distribution of β, we decide

upon a few discrete values of β which are representative of

the actual values observed in real channels. For each such

quantized value of β and a given discrete input alphabet, we
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Fig. 1. Mutual information versus PT for n = 2 parallel channels with
β = 2 and α = 1 for 4- and 16-QAM.

numerically compute a table of the optimal values f∗ and

θ∗ as a function of P̃T . These tables are constructed offline.

During the process of communication, the transmitter knows

the value of α and β from channel measurements. It then finds

the lookup table corresponding to the measured β. The optimal

values f∗ and θ∗ are then found by indexing the appropriate

entry in the table with P̃T = PT α.

We next present some simulation results to show that indeed

our simple precoding scheme can significantly increase the

mutual information, compared to mercury/waterfilling (i.e.,

without precoding across subchannels). For the sake of com-

parison, we also present the mutual information achieved by

the waterfilling scheme with discrete input alphabets.

We restrict the discrete input alphabets Ui, i = 1, 2, to

be square M -QAM alphabets consisting of two
√

M -PAM

alphabets in quadrature. Mutual information is evaluated by

solving Problem 5, i.e., numerically maximizing w.r.t. the

rotation angle and power allocation.

In Fig. 1, we plot the maximal mutual information versus

PT , for a system with two subchannels, β = 2 and α = 1.

Mutual information is plotted for 4- and 16-QAM signal sets.

It is observed that for a given achievable mutual information,
coding across subchannels is more power efficient. With 4-

QAM and an achievable mutual information of 3 bits, X-Codes

require only 0.8 dB more transmit power when compared

to the ideal Gaussian signalling with waterfilling. This gap

increases to 1.9 dB for mercury/waterfilling and 2.8 dB for

the waterfilling scheme with 4-QAM as the input alphabet. A

similar trend is observed with 16-QAM as the input alphabet.

The proposed precoder clearly performs better, since the

mutual information is optimized w.r.t. the rotation angle θ and

power allocation, while mercury/waterfilling, as a special case

of X-Code, only optimizes power allocation and fixes θ = 0.

In Fig. 2, we compare the mutual information achieved by

X-Codes and the mercury/waterfilling strategy for α = 1 and

β = 1, 2, 4. Input alphabet is 4-QAM. It is observed that both

the schemes have the same mutual information when β = 1.

However with increasing β, the mutual information of mer-
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Fig. 2. Mutual information versus PT for n = 2 parallel channels with
varying β = 1, 2, 4. α = 1. Input alphabet is 4-QAM.

cury/waterfilling strategy is observed to degrade significantly

at high values of PT , whereas the performance of X-Codes

does not vary as much. For example, for a target mutual

information of 3 bits, with β = 4 the mercury/waterfilling

strategy requires 4.6 dB more transmit power as compared to

when β = 1. On the other hand, X-Codes require only 0.1
dB extra transmit power when β increases from 1 to 4. The

degradation of mutual information for the mercury/waterfilling

strategy is explained as follows. For the mercury/waterfilling

strategy, with increasing β, all the available power is allocated

to the stronger channel till a certain transmit power threshold.

However, since finite signal sets are used, mutual information

is bounded from above until the transmit power exceeds this

threshold. This also explains the reason for the intermediate

change of slope in the mutual information curve with β = 4
(see the rightmost dash-dot curve in Fig. 2). On the other hand,

this problem does not arise when coding across subchannels

with X-Codes. Therefore, in terms of achievable mutual in-

formation, rotation coding is observed to be more robust to

ill-conditioned channels.

For low values of PT , mutual information of both the

schemes are similar, and improves with increasing β. This is

due to the fact that, at low PT , mutual information increases

linearly with PT , and therefore all power is assigned to the

stronger channel. With increasing β, the stronger channel has

an increasing fraction of the total channel gain, which results

in increased mutual information.

For a given α and β, we observed that mutual information is

sensitive to the rotation angle except at very low PT . We also

observed that the optimal angle θ∗ does not vary significantly

with PT .

VI. GAUSSIAN MIMO CHANNELS WITH n > 2

We now consider the problem of finding the optimal pairing

and power allocation between pairs for Gaussian MIMO

channels with even n > 2. We also compare the performance

achieved by X-Codes with that of the optimal precoder in [4].

We first observe that mutual information is indeed sensitive
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Fig. 4. Mutual information versus PT for the Gigabit DSL channel given
by (42) in [4].

to the chosen pairing, and this therefore justifies the criticality

of computing the optimal pairing. This is illustrated through

Fig. 3, for n = 4, Λ = diag(0.8, 0.4, 0.4, 0.2) and 16-QAM.

Optimal power allocation between the two pairs is computed

numerically. It is observed that the pairing {(1, 4), (2, 3)}
performs significantly better than the pairing {(1, 3), (2, 4)}.

In Fig. 4, we compare the mutual information achieved

with optimal precoding [4], to that achieved by the proposed

precoder with 4-QAM input alphabet. The 4 × 4 channel

is given by (42) in [4]. For X-Codes, the optimal pairing

is {(1, 4), (2, 3)} and the optimal power allocation between

the pairs is computed numerically. It is observed that X-

Codes perform very close to the optimal precoding scheme.

Specifically, for an achievable mutual information of 6 bits,

compared to the optimal precoder [4], X-Codes need only 0.4

dB extra power, whereas 2.3 dB extra power is required with

mercury/waterfilling.

In OFDM applications, n is large and Problem 4 becomes

too complex to solve, since we can no more find the optimal

pairing by enumeration. It was observed in section V, that for

n = 2, a larger value of the condition number β leads to a
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Fig. 5. Mutual information versus per subcarrier SNR for an OFDM system
with 32 carriers. Channel impulse response = [−0.454 + j0.145,−0.258 +
j0.198, 0.0783 + j0.069,−0.408 − j0.396,−0.532 − j0.224]

higher mutual information for low and medium values of PT .

Therefore, we conjecture that pairing the k-th subchannel with

the (n/2 + k)-th subchannel could have mutual information

very close to optimal, since this pairing scheme attempts to

maximize the minimum β among all pairs. Given a pairing

of subchannels, it is also difficult to compute the optimal

power allocation between pairs. However, it was observed that

for channels with large n, even waterfilling power allocation

among the pairs results in good performance. We illustrate

this in Fig. 5, for an OFDM system with n = 32 subchannels

and 16-QAM, where the proposed precoder is used with the

conjectured pairing scheme and waterfilling power allocation

between pairs. The proposed precoder performs within 1.3
dB of the Gaussian signalling scheme for an achievable total

mutual information of 96 bits. The proposed precoder performs

about 1.5 dB better than the mercury/waterfilling scheme.

VII. CONCLUSIONS

In this paper, we proposed a low complexity precoding

scheme based on X-Codes, which achieves near optimal

capacity for Gaussian MIMO channels with discrete inputs.

For large n, typical in OFDM applications, we also presented

a heuristic approach for optimizing the pairing of subchannels.

The proposed precoder was shown to perform better than

the mercury/waterfilling strategy. Future work will focus on

finding close to optimal pairings, and close to optimal power

allocation strategies between pairs.
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