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Abstract-We construct error correcting codes for jointly 
transmitting a finite set of independent messages to an informed 
receiver which has prior knowledge of the values of some subset 
of the messages as side information. The transmitter is oblivious 
to the message subset already known to the receiver and performs 
encoding in such a way that any possible side information can be 
used efficiently at the decoder. We construct and identify several 
families of algebraic error correcting codes for this problem 
using cyclic and maximum distance separable (MDS) codes. 
The proposed codes are of short block length, many of them 
provide optimum or near-optimum error correction capabilities 
and guarantee larger minimum distances than known codes of 
similar parameters for informed receivers. The constructed codes 
are also useful as error correcting codes for index coding when 
the transmitter does not know the side information available at 
the receivers. 

Index Terms-Cyclic codes, index coding, informed receivers, 
maximum distance separable codes, side information. 

I. INTRODUCTION 

We consider the channel coding problem where the trans­
mitter jointly encodes a set of L independent messages while 
the receiver has prior knowledge of the values of some subset 
of the L messages. The transmitter is ignorant of the subset 
of source messages already known at the receiver, and hence, 
is required to encode the messages in such a way that every 
possible side information at the receiver can be exploited effi­
ciently. Following [I], we refer to this communication problem 
as coding for informed receiver. An equivalent communication 
scenario is the broadcast of L messages to multiple receivers 
where each receiver has side information of a ditlerent subset 
of source messages. Applications of this problem include the 
broadcast phase of decode-and-forward protocol in multi-way 
relay networks [2], [3], and retransmissions in a broadcast 
channel where each receiver has successfully decoded some 
subset of the messages from previous transmissions [4], [5]. 
It is known that linear coding schemes for informed receivers 
involve the design of L codes '6'1, . . .  , '6'L which are linearly 
independent (as vector spaces) such that the sum of any subset 
of the L codes is a good error correcting code [1], [2]. To the 
best of our knowledge, only a few explicit constructions of 
codes for informed receivers based on convolutional codes [6], 
[7], LDPC codes [8], and errors-and-erasures decoding of 
linear codes [1] are available. 

In this paper, we construct several families of linear coding 
schemes for informed receivers by using algebraic error cor­
recting codes. The constructed schemes are of modest block 
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lengths, most of them provide optimum or near-optimum 
error correction capability and guarantee larger minimum 
distances than known coding schemes of identical rate and 
block length available from [1]. After illustrating the problem 
with an example using a new optimal binary code for informed 
receivers (Section III), we characterize the family of maximal 
distance separable (MDS) codes for this channel (Section IV). 
We then construct and identify several families of binary codes 
for informed receivers using cyclic codes, quadratic and cubic 
residue codes, and concatenated coding (Section V). 

A well-known problem related to coding for informed re­
ceivers is that of index coding [9] where L messages are to be 
broadcast to a set of receivers and each receiver demands some 
subset of the source messages while having prior knowledge 
of a different subset as side information. The error correcting 
codes for this problem available in [10], [11] assume that the 
demands and side information of the receivers are known to 
the transmitter. On the other hand, the codes of this paper are 
suitable when no such knowledge is available at the encoder. 

The codes '6' constructed in this paper decompose as a 
direct sum of L subcodes '6'1, . . .  , '6'L such that each of the 
2L 

- 1 subcodes of '6' formed as the sum of some subset of 
{'6'1, ... , '6'L}  is a good error correcting code for its rate and 
block length. Constructions of pairs '6' � '6", or even chains 
'6' � '6" � '6''' � " ' , of linear codes have been previously 
investigated in the literature; see, for example, [6], [12], [13]. 
However, these nested codes are not useful when the receiver 
side information is an arbitrary subset of source messages. 

Notation: Matrices and row vectors are denoted by bold 
upper and lower case letters, respectively. The minimum Ham­
ming distance of a code '6' is denoted by d('6') . The symbol 
d*(n, k) denotes the maximum of the minimum Hamming 
distances over all [n, k] binary linear codes. Unless otherwise 
stated all the values of, and bounds on, d* (n, k) are referenced 
from the table of best known linear codes available in [14]. 

II. REVIEW OF LINEAR AND CYCLIC CODES 

Let q be a prime power and IF q be the finite field of size 
q. In order to design coding schemes for receivers with side 
information, we will consider collections of linear codes that 
are of length n over IF q. A collection {'6'1, . . .  , '6'L} of linear 
codes is linearly independent if the only choice of C£ E '6'£, 
ji = 1, . . .  ,L, satisfying 'Lf=l C£ = 0 is C1 = . . .  = CL = O. 

If '6'1, . . .  , '6'L are linearly independent, the sum code '6' = 

'Lf=l '6'£ is their direct sum as a vector space. 
We now introduce the notation and briefly review some 

of the relevant properties of cyclic codes based on [15], 
[16]. We consider cyclic codes of length n over IF q with 
gcd(n, q) = 1. Label the coordinates of C E IF� with the 
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elements of ?Ln = {O, 1, . . .  ,n - I} and associate the vector 
c = (c o, ... , Cn-l) with the polynomial c(x) = C o  + CIX + 
. . ·+Cn_lXn-1. With this correspondence a cyclic code '6' is an 
ideal in the ring Rn = IFq[x]/(xn - 1). We use g(x) to denote 
the generator polynomial of '6' and h(x) = (xn -l)/g(x) to 
denote its check polynomial. 

The q-cyclotomic coset modulo n of i E?Ln is the set 
Ci = {i, qi, q2 i, . . .  }, where the arithmetic is performed mod­
ulo n. Let a be a primitive nth root of unity in some 
extension field IF q'" =:J IF q. Then, for some T c ?Ln, we have 
h(x) = TIiET(x -ai) and g(x) = TIiET(x -ai), where T is 
the complement of T in ?Ln. The sets T and T are the non­
zeroes and zeroes of '6', respectively, and each is a union of 
q-cyclotomic cosets modulo n. The dimension of '6' is ITI. 
When q = 2, the subcode of '6' consisting of all even weight 
codewords of '6' is a cyclic code with non-zeroes T \ {O}. A 
cyclic code is irreducible if it contains no non-trivial cyclic 
subcodes. A cyclic code with non-zeroes T is irreducible if 
and only if T is a cyclotomic coset by itself. 

If T1 , . . .  , TL are the non-zeroes of cyclic codes '6'1, . . .  , '6'L 
then U1=1 Te is the set of non-zeroes of '6' = 'L1=1 '6'e. With 
the notation as above, we state the following fact whose proof 
is straightforward. 

Lemma 1. The collection {'6'1, ' . .  , '6'L} is linearly indepen­
dent if and only if T1 , . . .  , TL are pairwise non-intersecting. 

Let a be any integer with gcd(a, n) = 1. The function 
i --+ ai mod n, is a permutation on the set of coordinates ?Ln 
since a has a multiplicative inverse in ?Ln. The polynomial 
fJa (c(x)) obtained by applying this permutation on the coor­
dinates of c(x) is 

c(xa) = C o  + CIXa + ... Cn_lXa(n-l) mod (xn - 1). 

When applied to a cyclic code (ideal) '6' eRn, fJa ('6') is the 
set of all polynomials fJa(c(x)) with c(x) E '6', and further, 
fJa ('6') is itself a cyclic code. 

Lemma 2. The set of non-zeroes of '6' is T if and only if the 
set of non-zeroes of fJa('6') is a-IT. 

Proof' An element j E ?Ln is a non-zero of a cyclic code 
if and only if there exists a codeword polynomial for which 
aj is not a root. If J ET, then there exists c(x) E '6' such 
that c(a�)yf O. The eva!�ation of c'(x) = c(xa) E fJa('6') at 
x = aa J yields c' (aa J) = c(aJ) yf 0 showing that a-I j 
is a non-zero of ILa('6'). The proof of converse is similar. • 

III. ERROR CORRECTION FOR INFORMED RECEIVERS 
Consider a vector W of length kL over IF q composed 

of L independent message vectors WI,"" W L E IF �, i.e. , 
W = (w 1, ... , W L)' The message W is encoded by a linear 
code '6' (not necessarily cyclic) of length n using a generator 
matrix G E IF� Lxn of full-rank kL. Let G1 , . . .  , GL E lF�xn 
be the submatrices of G corresponding to WI, ... ,W L, respec-
tively, i.e. , G = (GI ... GI r. The message W is encoded 
into the length n codeword c = wG = 'L1=1 weGe. Using '6'e 
to denote the linear code with generator matrix Ge, we observe 

that '6'1, . . .  , '6'L are linearly independent and '6' is their direct 
sum . 

For S C;; {I, . . .  , L}, consider a receiver Rxs that has prior 
information of the values of We, {; E S. Note that this includes 
the case S = 0, i.e. , no side information. On observing the 
channel output y = c + z, where Z is the error vector, Rxs 
removes the contributions of We, {; E S, from y to arrive at 

Ys = Y - LweGe = LweGe +z, 
eEs eES 

where 5 is the complement of S in {I, . . .  , L}. The unknown 
messages We, {; E 5, are then estimated by decoding Ys to 

'6's = L '6'e = {LweGe I We E IF�,{; E 5 } . 
eES eES 

Note that '6's is a subcode of '6' of dimension k151. In order 
to maximize the error correction capability at Rxs we require 
'6's to be a good linear error correcting code. 

We are interested in the scenario where the transmitter is 
oblivious to the side information S available at the receiver, 
and thus, we require that each of the 2 L -1 subcodes '6's of the 
code '6', one corresponding to each possible side information 
configuration S C;; {I, . . .  , L}, be a good error correcting code, 
i.e. , with a large minimum Hamming distance d('6's). 

Definition 1. An error correcting code for informed receivers 
(ECCIR) encoding L messages is a linearly independent 
collection {'6'1, "" '6'd of L linear codes. 

The code design objective is to construct {'6'1, "" '6'L} such 
that all the minimum Hamming distances d('6's), for every 
S C;; {I, . . .  , L }, are as large as possible. 

Example 1. A new optimum binary ECCIR of length n = 31 
for L = 3 messages of size k = 10 each: Consider cyclic 
codes of length n = 31 over the binary alphabet q = 2. The 
cyclotomic cosets are 

C1 = {I, 2, 4, 8, 16}, C3 = { 3, 6, 12, 24, 17} 
C5 = {5, 10, 20, 9, 18}, C7 = {7, 14, 28, 25, 19} 
Cll = {ll, 22, 13, 26, 21}, C15 = {15, 30, 29, 27, 23}, 

and Co = {O}. The [31, 30, 2] single-parity check code '6' is 
the cyclic code with non-zeroes T = {I, . . .  , 30}. Consider the 
codes '6'e, {; = 1, 2, 3, with non-zeroes Tl = C1 U C3, T2 = 

C5 U C15 and T3 = C7 U Cll, respectively. Since Tl U T2 U T3 
is a partition of T, '6' is a direct sum of '6'e, {; = 1, 2, 3 (from 
Lemma 1). 

Equivalence of subcodes: Since n = 31 is prime, 
gcd(a, n) = 31 for any non-zero a E ?L3 1. Observe that 
Tl = 25T2 = 9T3 , and 25-1 

= 5 and 9-1 
= 7 in ?L3 1. Using 

Lemma 2, we deduce that '6'1 = fJS('6'2) = fJ 7('6'3). It follows 
that '6'1, '6'2, '6'3 are equivalent up to coordinate permutations, 
and in particular, they have the same minimum distance. 
Similarly, since Tl U T2 = 9(Tl U T3) = 25(T2 U T3) , the 
three codes '6'1 + '6'2, '6'1 + '6'3 and '6'2 + '6'3 are equivalent. 

Minimum distance of '6'2 + '6'3: The code '6'2 + '6'3 (zeroes 
Co U C1 U C3) is the even weight subcode of the double-error 
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correcting BCH code (zeroes C1 U C3) that has parameters 
[31, 21, 5] . Hence, d('ti2 +'ti3) � 6. Since d *( 31, 20) = 6, we 
conclude that 'ti2 + 'ti3 is a [31, 20, 6] code, where d* (n, k) 
is the maximum of the minimum Hamming distances over all 
[n, k] binary codes. 

Minimum distance of 'til: The code 'til is equivalent to 
JL-1('ti1) (non-zeroes C_1 U C-3). Note that -1 = 30 and 
-3 = 28 in �31. The dual of JL-1 ('tid has zeroes at C1 U C3, 
and hence, (,Ll ('tid)� is the double-error correcting primi­
tive BCH code with parameters [31, 21, 5] . Using the Carlitz­
Uchiyama bound [15, p. 280], we know that the minimum 
distance of the dual of the [31, 21, 5] primitive BCH code is 
even and satisfies the lower bound d (JL-1('ti1)) � 2(5-1) _ 
25/2 = 10. 34 .. , i.e. , d(JL-1 ('til)) � 12. Using the fact that 
d *( 31, 1O) = 12, we conclude that JL-1('tid and 'til are 
[31, 10, 12] codes. 

In summary, 'til, 'ti2 and 'ti3 are all [31, 10, 12] codes, 
the sum of any two of these three codes is [31, 20, 6] ' and 
the sum of all three is the [31, 30, 2] code. Each of these 
codes has the optimum minimum distance among all binary 
linear codes of the same block length and dimension. At 
the receiver, the minimum distances d('tis) corresponding to 
the side information configuration 5, with 151 = 0, 1, 2, are 
2, 6, 12, respectively. • 

IV. MAXIMUM DISTANCE SEPARABLE CODES 

In this section we construct ECCIRs such that all the 2 L - 1 
codes 'tis, 5 C;; {I, . . .  , L}, meet their respective Singleton 
bounds d('tis) :::; n - klSI + 1. 

Definition 2. A collection of codes {'til, . . .  , 'ti L} is maxi­
mum distance separable for informed receivers (MDSIR) if 
d('tis) = n - klSI + 1 for every 5 C;; {I, . . .  , L}. 

We construct MDSIR codes {'til, . . .  , 'ti L} for k = 1 and ar­
bitrary L, i.e. , where each message Wg is a scalar by itself. For 
any ko and Lo with koLo = L, an MDSIR code {'ti{, . . .  , 'tiL,} 
for Lo messages of size ko each can be readily obtained from 
{'til, ... , 'tid by setting 'ti:r, = 2::T:(�-1)ko+1 'tig. 

The generator matrix Gg of 'tig, ji = 1, . . .  , L, consists of 
a single vector 9 g E IF�, and the generator G E IF � x n of 
'ti = 2::1=1 'tig consists of rows 91 , ... ,9L. The generator G s  
of 'tis is a submatrix of G composed of the rows 9g, ji E S. 
The following lemma characterizes the generator matrices G 
of MDSIR codes when k = 1. 

Lemma 3. The matrix G E lF�xn is the generator of an 
MDSIR code for k = 1 if and only if every square submatrix 
of G is nonsingular. 

Proof" We know that 'tis is MDS, i.e. , d('tis) = n -
lSI + 1, if and only if every lSI x lSI submatrix of Gs  is 
nonsingular. Equivalently, 'tis is MDS if and only if any square 
submatrix of G obtained by selecting the rows corresponding 
to S and any lSI columns is nonsingular. By letting 5 vary 
over all subsets of {I, . . .  , L} we arrive at the statement of 
the lemma. • 

Matrices with every square submatrix being nonsingular are 
known to be related to the generator matrices of (traditional) 
MDS codes [15]. Let A = [I I G] be the systematic generator 
matrix of an [n + L, L] linear code over IFq• Then we have 

Theorem 1 ( [15, p. 321]). Every square submatrix of G is 
nonsingular if and only if A = [I I G] generates an MDS code. 

It follows that we can construct length n MDSIR codes 
for L symbols by puncturing the information coordinates of 
any [n + L, L] systematic MDS code, such as the systematic 
versions of extended Reed-Solomon (RS) and generalized 
RS codes. For example, a length n MDSIR code for L 
messages and k = 1 exists over all IF q with q > n + L since 
an [n + L, L, n + 1] generalized RS code exists over such IF q. 

Comparison with the ECCIRs of [1J 

A construction of ECCIRs similar to that of this section 
was proposed in [I] using an approach based on errors­
and-erasures decoding of linear codes. For any q and k, [I] 
shows that if A = [I I G] is the generator of an [n + kL, kL, d] 
code (not necessarily MDS) over IF q, then the L submatrices 
G1, . . .  , G L of G = (Gi, . . .  , Gl)T generate an ECCIR with 
d('tis) � max{ d - klSI, O}. We remark that if A generates an 
MDS code, i.e. , if d = n + 1, the construction of [1] yields an 
MDSIR code. Compared to [1], our approach illuminates the 
direct and strong relation between MDS and MDSIR codes 
through Lemma 3 and Theorem 1. 

As illustrated in the following example, the binary non­
MDSIR codes constructed in this paper (Example I and 
Section V) can guarantee larger minimum distances than the 
binary codes constructed using the technique of [1]. 

Example 2. To generate an ECCIR with the same parameters 
(k = 10, L = 3, n = 31, q = 2) as the new code of Example 1, 
the approach of [I] starts with the best known binary code of 
length n + kL = 61 and dimension kL = 30, which has min­
imum distance d = 12 [14]. For 151 = 0, 1, 2, this technique 
guarantees d('tis) � 0, 0, 2, respectively. While the bounds for 
151 = 0, 1 are trivial, the bound for 151 = 2 is significantly 
lower than d('tis) = 12 achieved in Example I. • 

V. BINARY CODES FOR INFORMED RECEIVERS 

In this section we construct and identify several families of 
binary ECCIRs using cyclic codes and the MDSIR codes of 
Section IV. 

A. Code Concatenation 

Binary ECCIRs can be obtained from the MDSIR codes 
of Section IV by concatenating them with a binary inner 
code. Let q = 2k and let {'tiiout), . . .  , 'tilout)} be a length n(out) 
MDSIR code for L symbols over IF q, i.e., each 'titut) is of 
dimension l over IF q' or equivalently, dimension k over 1F2. 
Each of the nCout) 1F2k -symbols of the outer MDSIR code 
'tiCout) = 2::1=1 'titut) is linearly mapped to a length k binary 
vector and then encoded by an [nCin), k, d (in)] binary inner code. 
The resulting binary ECCIR 'til, . . .  , 'ti L  encodes L binary 
messages of size k each into a length n = n(out)nCin) codeword 
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over 1F2. Suppose a receiver Rxs has prior knowledge of 
the messages with indices in S C;;; {I, . . .  , L} . The effective 
binary code 'f!s C IF� at this receiver is the concatenation of 
'f!�out) = L£ES 'f!;out) and the [n(in), k, d(in)] binary inner code. 
Since d('f!�out)) = 

n(out) - 151 + 1, we have 

(1) 

The outer MDSIR code ensures that the lower bound on dis­
tance improves with the amount of side information available 
at the receiver. 

Example 3. Consider L = 2 binary messages of size k = 3 
each. Let the outer MDSIR code be of length n(out) = 3 over 
1F2k = IFs. Since 2k > n(out) + L such a code exists and can be 
constructed from a generalized RS code (Section IV). Let the 
binary inner code be [n(in), k, d(in)] = [7, 3, 4]. The resulting 
binary ECCIR {'f!1' 'f!2} has length n = 21. From (1), 'f!1, 'f!2 
and 'f! = 'f!1 + 'f!2 have minimum distances at least 12, 12 and 
8, and dimensions 3, 3 and 6, respectively. Since d* (21, 3) = 

12 and d*(21, 6) = 8, we conclude that d('f!l) = d('f!2) = 12 
and d('f!l + 'f!2) = 8, i.e. , all three codes possess the optimum 
minimum Hamming distance. • 

B. Code Concatenation using Piret's method 

In this subsection we consider the specific case of code con­
catenation where L = nCout) = 2 and the [n(in) , k, d(in)] binary 
inner code 'f!(in) is an irreducible cyclic code. It is known that 
any [n(in), k] irreducible cyclic code (as an ideal in 1F2 [xli (xn-
1)) is isomorphic to the finite field 1F2k [15, p. 225]. 

When L = n(out) = 2, the binary ECCIR {'f!1' 'f!2} has 
length 71, = 2n(in). The lower bound (1) guarantees that 
d('f!l) , d('f!2) :;0. 2d(in). By exploiting a known technique due to 
Piret [17], we can optimize the outer code and guarantee that 
d('f!l) and d('f!2) are larger than 2d(in). To do so, we restrict the 
2 x 2 generator matrix of the outer code 'f!(out) = 'f!iout) + 'f!Jout) 
to the form 

where (3 i=- 1, and we use a known finite field isomorphism 
cp : 1F2k ---+ 'f!(in) [15], [17] to concatenate the outer MDSIR 
code with the inner irreducible cyclic code. Thus, the two 
component codes 'f!1 and 'f!2 of the binary ECCIR are 

{( cp(a) ,  cp((3a) )  I a E 1F2k} and {( cp((3a) , cp(a) )  I a E 1F2k}, 

respectively. Note that 'f!1 and 'f!2 are equivalent up to co­
ordinate permutation. Piret [17] considers codes of the same 
structure as 'f!1 and uses a search to find the value of (3 that 
maximizes d('f!I); see also [15, p. 588]. The optimal values 
of (3 i=- 1 and the resulting d('f!d corresponding to several 
binary non-primitive (n(in) i=- 2m - 1) irreducible cyclic codes 
'f!(in) are available in [17], [18]. The parameters of the resulting 
codes 'f!1, 'f!2 and 'f!1 + 'f!2 are shown in Table I. The minimum 
distances d* (2n(in), k) and d* (2nCin), 2k) of the optimal binary 
linear codes with the same length and dimension as 'f!g, 
I[ = 1, 2, and 'f!1 + 'f!2 are shown in parentheses. If the exact 
value of d* is not known best available bounds are given. 

TABLE I 
BINARY ECCTRs OF SECTION V-B 

Irreducible Component Codes Sum Code 

Cyclic Code of ECCTR 

'6 (in) '61 and '6'2 '6' = '6'1 + '62 
[9,6,2] [18,6,6] (6) [18,12,2] (4) 

[17,8,6] [34,8,14] (14) [34,16,6] (8-9) 

[21,6,8] [42,6,20] (20) [42,12,8] (15-16) 

[39,12,12] [78,12,32] (32-33) [78,24,12] (22-26) 

[41,20,10] [82,20,26] (26-30) [82,40,10] (16-20) 

[55,20,16] [110,20,40] (40-44) [110,40,16] (24-32) 

[65,12,26] [130,12,56] (56-60) [130,24,26] (45-51) 

Note that since G is a 2 x 2 invertible matrix, we have 
'f!1 + 'f!2 = {(a,b) la,b E 'f!(in)}. Consequently, 'f!1 + 'f!2 is 
a [2n(in), 2k, d(in)] code. For every ECCIR presented in Table I 
we observe that 'f!1 and 'f!2 equal the best known code in 
terms of minimum distance, and 'f!1 + 'f!2 has at least half the 
minimum distance of the best known code. 

C. Codes for L = 2 using primitive irreducible cyclic codes 

We now design ECCIRs {'f!1' 'f!2} using irreducible binary 
cyclic codes 'f!1 and 'f!2 of primitive length 71, = 2m - 1, 
m :;0. 3. Consider the cyclotomic cosets of 1 and 3 in Zn, 
G1 = {I, 2, . . .  , 2m-1} and G3 = {3, 6, . . .  , 3·2m-1 mod n}. 
Let 'f!1 and 'f!2 be cyclic codes with non-zeroes G1 and 
G3, respectively. We observe that 'f!1 and 'f!2 are linearly 
independent (since G1 and G3 are non-intersecting) and they 
encode k = m message bits each (since IG11 = IG31 = m). 

We know that 'f!1 is a [2m -1, 'm, 2m-1] simplex code. If 
gcd(3, 2m - 1) = 1, we have 'f!1 = IL3('f!2 ) (from Lemma 2), 
and hence, 'f!2 is a [2m - 1, m, 2m-1] code as well. If 
gcd(3, 2m - 1) i=- 1, the irreducibility property of 'f!2 can 
still be used to compute d('f!2) using efficient algorithms; 
for details, see [15, Ch. 2], [19] and references therein. For 
instance, the value of d('f!2) for m = 4, 6 and 8, i.e. , for 
71, = 15, 63 and 255 can be computed to be 6, 24 and 120, 
respectively. 

To analyze the minimum distance of 'f! = 'f!1 + 'f!2, we 
observe that the equivalent code ILl ('f!) (with non-zeroes 
G -1 U G -3) is the dual of the double-error correcting primitive 
BCH code (with zeroes G1 U G3). Applying the Carlitz­
Uchiyama lower bound, we know that d('f!) is even and 

d('f!) = d (fL-1('f!)):;o. 2m-1 - 2"'/2. 

The ECCIRs {'f!1' 'f!2} of this subsection for m :::; 8 are 
summarized in Table II. The table also shows the values of 
(or the best known bounds on) d*(n, k) and d*(n, 2k), which 
correspond to the length and dimension of the components 
codes 'f!1, 'f!2 and the sum code 'f! = 'f!1 + 'f!2, respectively. 
We observe that most of the codes in Table II equal the best 
known codes in terms of minimum distance. 

D. Codes for L = 2 from quadratic residue codes 

The ECCIRs of Section V-C are of low rate since the 
component codes 'f!1 and 'f!2 are irreducible cyclic codes. In 
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TABLE II 
BINARY ECCIRs FOR L = 2 MESSAGES WITH k = m AND n = 2m - 1 

k d('01 ) d*(n,k) Lower bound d*(n,2k) n 
on d('6) 

7 3 4 4 4 2 2 
15 4 8 6 8 4 4 
31 5 16 16 16 12 12 
63 6 32 24 32 24 24-26 

127 7 64 64 64 54 56 
255 8 128 120 128 112 112-120 

this subsection we identify a class of high rate ECCIRs for 
L = 2 messages where each component code is a quadratic 
residue (QR) code and the sum code is the [71,,71, -1,2] single­
parity check code. Binary QR codes are a family of cyclic 
codes defined over prime 71, such that 71, = ±1 mod 8. For such 
n, 7l..n is a field and 2 is a quadratic residue mod n, i.e. , 2 is 
a square in 7l..n. The quadratic residues T1 = {a2 1 a E 7l..�} 
form a multiplicative subgroup of index 2 in 7l..� and the non­
residues T2 = 7l..� \T1 form its coset. The QR codes 'if1 and'if2, 
with non-zeroes T1 and T2 , respectively, are equivalent, are of 
dimension (n - 1)/2 and have even minimum distance of value 
at least yin [15], [16]. Since T1 and T2 form a partition of 7l..�, 
{'if 1 , 'if2} is a binary ECCIR with 'if1 + 'if2 being the single­
parity check code. The QR codes 'if1, 'if2 for the first few values 
of 71, are [7,3,4]' [17,8,6]' [23,11,8]' [31,15,8]' [41,20,10]' 
[47,23,12]. For each of the corresponding ECCIRs, 'if1, 'if2 
and 'if1 + 'if2 have the optimum minimum distances. 

E. Codes for L = 2,3 from cubic residue codes 

The scheme of Section V-D can be extended to L = 3 using 
cubic residue (CR) codes [20], [21]. Binary CR codes are 
defined for all prime lengths 71, for which 31 (71, - 1) and 2 
is a cubic residue mod n. The set of cubic residues mod n 
form a subgroup of index 3 in 7l..�. Let T1 = {a3 1 a E 7l..n} 
be the group of cubic residues, and T2 and T3 be its cosets in 
7l..�. Let 'ife  be the cyclic code with non-zeroes Te, I[ = 1,2,3. 
There exists b E 7l..� such that T1 = bT2 = b2T3. It follows that 
'if1, 'if2, 'if3 are equivalent, and so are 'if1 + 'if2, 'if2 + 'if3, 'if1 + 'if3. 
The codes 'if1 and 'if1 + 'if2 are the even-weight CR codes 
of length n and are of dimensions k = (n - 1)/3 and 2k = 

2(n - 1)/3, respectively. The exact minimum distances of binary 
CR codes of length up to 127 are available in [20]. Note that 
{'if 1 , 'if2, 'if3} forms an ECCIR with 'if = L�=l 'ife being the 
[n, n - 1,2] code. Further, {'if 1 , 'if2} is an ECCIR for L = 2 
that provides rates intermediate between the L = 2 codes of 
Sections V-C and V-D. The minimum distances of the ECCIRs 
based on the first few binary CR codes are shown in Table III. 
The values of (or bounds on) the distance of best known 
linear codes of the same length and dimension are shown in 
parentheses. Note that all ECCIRs of Table III provide large 
minimum distances. 
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