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Abstract—We study the problem of constructing good space-
time codes for broadcasting K independent messages over a
MIMO network to L users, where each user demands all the
messages and already has a subset of messages as side informa-
tion. As a first attempt, we consider the 2× 2 case and propose
golden-coded index coding by partitioning the golden codes into K

subcodes, one for each message. The proposed scheme is shown to
have the property that for any side information configuration, the
minimum determinant of the code increases exponentially with
the amount of information contained in the side information.

Index Terms—Lattice codes, index coding, broadcast channels,
side information, space-time codes, MIMO.

I. INTRODUCTION

As the recent rise of wireless caching and cache-enabled
cloud RAN for 5G systems [1]–[3], it is more and more likely
that one will face the scenario where one or multiple senders
wish to broadcast to multiple receivers which already have
some messages as side information. Depending on the appli-
cation, side information could be pre-stored contents at the
receivers during off-peak hours or could be packets decoded
from the previous sessions. At the network layer, this problem
is called index coding [4] and has been studied intensively;
however, joint design of physical-layer coding/modulation and
index coding is relatively less investigated.

In this work, we study a particular case where the receivers
demand all the messages, i.e., multicasting. For this case, the
problem has been previously studied for the AWGN channel
[5], where a new class of codes named lattice index codes
based on lattice codes is proposed to mimic the behavior
of capacity-achieving codes. The lattice index codes in [5]
are shown to have the minimum squared Euclidean distance
increasing exponentially as the rate of side information for any
side information configuration. Moreover, when normalized
by the rate of side information, the SNR difference between
the codes with and without side information for achieving
the same error probability is 6 dB/bit. This property is called
uniform side information gain.

In [6], the same problem was studied for the Rayleigh
fading channel in which the minimum product distance is
much more important than the minimum Euclidean distance.
The new lattice index code construction for the Rayleigh
fading channel in [6] provides exponentially increased squared
minimum product distance as the rate of side information
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increases and provides uniform side information gain for any
side information configuration.

In this paper, we turn our focus to the scenario that is
frequently seen in almost every modern wireless communi-
cation systems, the multiple-input multiple-output (MIMO)
fading channel, to accommodate multiple antennas. We first
analyze the probability of error and derive an approximation
of SNR gain provided by side information as a function of the
minimum squared determinants and the numbers of codewords
having the minimum determinant of the codebooks with and
without side information.

We then study the construction of good space-time index
codes. While there is a rich literature in the study of con-
struction of space-time codes for the point-to-point MIMO
channel (see [7] and the reference therein), as a first attempt,
we consider construction of lattice space-time index codes
solely based on golden codes [8] for the 2 × 2 case. The
main difficulty is that most of the code constructions proposed
in [5] and [6] rely on partitions induced by the Chinese
remainder theorem (CRT) for some commutative rings; how-
ever, golden codes (and most of the lattice space-time codes)
are constructed over a cyclic division algebra, which is non-
commutative and hence prevents the direct application of CRT.
We overcome this challenge and propose the golden-coded
index coding by making connection between the underlying
cyclic division algebra and a ring of algebraic integers and
then partitioning this ring instead. The proposed golden-coded
index coding is shown to provide minimum determinant,
which exponentially increases as the rate of side information
increases and uniform side information gain of 6 dB for any
side information configuration. We also use simulations to
verify the theoretic analysis and show that the approximation
derived in this paper can accurately predict the actual side
information gain.

The rest of the paper is organized as follows. In Section II,
we provide a formal description of the problem of broadcasting
over a MIMO channel with message side information at
receivers. We then partition the maximal order of the golden
algebra, a cyclic division algebra over which the golden code
is constructed and propose golden-coded index coding in
Section III. Simulation results are given in Section IV to verify
the validity of the analysis in this paper and some concluding
remarks are given in Section V.
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(1)
2 , . . . , ŵ
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Fig. 1. Broadcast over MIMO channel with message side information.

II. PROBLEM STATEMENT

We consider a network with a base station equipped with
nt antennas and L users each equipped with nr antennas as
shown in Fig 1. The base station broadcasts K independent
messages {w1, . . . , wK} with wk uniformly distributed over
{1, . . . ,Wk} to the L users, where each user l demands all
the messages and already has a subset of messages wSl

�

{wk|k ∈ Sl} governed by the index set Sl ⊆ {1, . . . ,K} as
side information. The signal emitted from the base station is
spread over T symbol durations and can be represented as a
nt × T matrix X where each entry is subject to the power
constraint E[|xjt|2] = 1. The signal received at the l-th user
can be represented as a nr × T matrix given by

Yl = HlX+ Zl, (1)

where Hl is a random nr ×nt matrix with each element i.i.d.
distributed CN (0, 1) and Zl is a random nr × T matrix with
each element i.i.d. distributed CN (0, σ2

l ). The signal-to-noise
ratio (SNR) is then defined as SNRl �

nt

σ2

l

.
We assume perfect channel state information Hl is avail-

able at receiver l. After receiving Yl, the receiver l forms
{ŵ(l)

1 , . . . , ŵ
(l)
K } an estimate of {w1, . . . , wK} according to

Yl and wSl
. The probability of error at the user l is defined

as
p(l)e � P{{w1, . . . , wK} �= {ŵ(l)

1 , . . . , ŵ
(l)
K }}. (2)

Let C be the transmitted codebook and the encoder maps
the messages to the codewords as f(w1, . . . , wK) = X ∈ C.
For any pair of codeword matrices X,X′ ∈ C, let A �

(X − X
′)(X − X

′)† and let r be the rank of A. For a
generic receiver, without any side information, in the high
SNR regime, one has an upper bound on P(X → X

′) the
pairwise error probability as follows [7],

P(X → X
′) ≤

(
SNRΔ1/r

4nt

)−rnr

, (3)

where Δ =
∏r

m=1 λm with λ1, . . . , λm being the non-zero
eigenvalues of A. In this work, we further restrict our attention
to full rank codes in which r = nt and

Δ =

nt∏
m=1

λm = det(A) �= 0. (4)

One can also define the minimum determinant of C as

δ � min
X�=X′∈C

det(A). (5)

If C is carved from a lattice, (5) can be further rewritten as

δ � min
X�=0∈C

det(X)2. (6)

Let NX be the number of codewords X
′ ∈ C such that the

corresponding A has determinant δ. Also, let

NC �
1

|C|
∑
X∈C

NX, (7)

be the average number of codewords having δ to a codeword
in C. The probability of error of a code carved from a lattice
can then be approximated as

pe =
1

|C|
∑
X∈C

P

⎛
⎝ ⋃

X′ �=X

X → X
′

⎞
⎠

(a)≈ 1

|C|
∑
X∈C

NX

(
SNRδ1/nt

4nt

)−ntnr

(b)
= NC

(
SNRδ1/nt

4nt

)−ntnr

, (8)

where in (a) we have applied union bound only to codewords
having δ to X and ignored all the other terms and (b) is from
the definition of NC in (7).

Now, with the help of side information wSl
, the receiver

l can expurgate all the codewords which do not correspond
to wSl

and form the subcode CSl
� {f(v1, . . . , vK)|vk =

wk, ∀k ∈ Sl}. It is clear that CSl
⊆ C and δl the minimum

determinant associated with CSl
is no less than δ, i.e., δl ≥ δ.

It is of primary interest to investigate when δl > δ and how
is this gain translated into the SNR gain. To this end, we let
SNRl be the SNR required for the codebook CSl

to achieve
the same error probability pe which can be achieved by using
C with SNR. Plugging these parameters into (8) leads to

NC

(
SNRδ1/nt

4nt

)−ntnr

≈ NCS
l

(
SNRlδ

1/nt

l

4nt

)−ntnr

(⇔) 10 log10(SNR)− 10 log10(SNRl) ≈
1

ntnr
10 log10

(
NC
NCS

l

)
+

1

nt
10 log10

(
δl
δ

)

(⇔) SNR gain of revealing wSl
in dB ≈

1

ntnr
10 log10

(
NC
NCS

l

)
+

1

nt
10 log10

(
δl
δ

)
. (9)

This term provides a fairly accurate estimate on the SNR gain
obtained from revealing wSl

. However, it is in general difficult
to control both NCS

l
and δl for lattice codes. Hence, we

follow the approach taken by most of the work in the literature
(see [7] and reference therein), which only focuses on δl and
redefine the SNR gain as 10 log10 (δl/δ)

nt dB (second term
in (9)). Moreover, since we wish to understand how the SNR
gain scales with the amount of information contained in the
side information, we therefore define the side information gain
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of the code C and the index set Sl for the MIMO broadcast
network as

Γ(C,Sl) �
10 log10

(
δl
δ

)
ntRSl

, (10)

where RSl
�

∑
k∈Sl

Rk with Rk being the rate (bits per real
dimension) of the message wk . This side information gain
essentially serves as a (rough) approximation of the SNR gain
(in dB/bits) provided by side information wSl

. We again would
like to emphasize that a better approximation is to use the
equation in (9). Throughout the paper, we will use (10) as the
design guideline and use (9) to explain the simulation results.

III. PROPOSED GOLDEN-CODED INDEX CODING

In this section, we review the golden code for the 2 × 2
MIMO case and propose golden-coded index coding.

A. Golden algebra and golden codes

Consider Q(i,
√
5) a quadratic extension of Q(i) and σ :√

5 → −√
5 its non-trivial Q(i)-automorphism. The golden

code is built from the cyclic division algebra (golden algebra)

A = (Q(i,
√
5)/Q(i), σ, i) =

{
x0 + x1e|x0, x1 ∈ Q(i,

√
5)
}
,

(11)
where e

2 = i and ze = eσ(z). For the purpose of shaping,
we further multiply the signal with α = 1 + iσ(θ), where
θ = 1+

√
5

2 and θ̄ � 1− θ = σ(θ). The golden code (restricted
to the maximal order Ā of A) is then given by

G =

{
1√
5

(
αx0 αx1

iσ(αx1) σ(αx0)

)∣∣∣∣x0, x1 ∈ Z[i][θ]

}

=

{
1√
5

(
α(a+ bθ) α(c+ dθ)

iσ(α)(c+ dθ̄) σ(α)(a + bθ̄)

)∣∣∣∣ a, b, c, d ∈ Z[i]

}
.

(12)

For any A = (a+ bθ) + (c+ dθ)e ∈ Ā, we define vec(A) �
(a, b, c, d)T a 4-dimensional Z[i] vector representation with
respect to the basis {1, θ, e, θe}. We see that vec(BA) is a
Z[i] lattice with generator matrix M(A). It can be verified
that vec(BA) = M(A)vec(B) where

M(A) =

⎛
⎜⎜⎝
a b i(c+ d) −id
b a+ b −id ic
c d a+ b −b
d c+ d −b a

⎞
⎟⎟⎠ , (13)

and det(M(A)) = Nrd(A)
2 where

Nrd(A) = det

[(
a+ bθ c+ dθ

i(c+ dθ̄) a+ bθ̄

)]
, (14)

is the reduced norm of A.

B. Golden-coded index coding

In [9] and [10], a one-to-one mapping Ψ : K → A between
elements in A and elements in K = Q(e,

√
5) was defined.

Such mapping is a group homomorphism between the additive
groups of A and of K. In order to find the appropriate subcodes
of G we partition OK (the ring of integers of K), which in
turn will give us a partition of Ā. The corresponding golden

codewords are obtained by writing the elements of Ā in the
matrix form. This method has been adopted in [9], [10] for
partitioning G into golden subcodes for golden space-time
trellis coded modulation. Unfortunately, the mapping Ψ is not
a group homomorphism between the multiplicative groups of
K and A, since one is commutative and the other is not.
For this reason the partitions through K may not always lead
to corresponding subcodes with the desired reduced norm.
Specifically, let φ be an element in OK with the corresponding
Ψ(φ) ∈ Ā. Given a principal (two-sided) ideal φOK, then
Ψ(φOK) and the principal left ideal ĀΨ(φ) are in general
different. In general, nothing can be said about the reduced
norm of the elements of ĀΨ(φ) from Ψ(φOK). The following
lemma establishes some cases where these two are the same.

Lemma 1. If φ = α+βe where α, β ∈ Z[i], then Ψ(φOK) =
ĀΨ(φ).

Proof: For every A = (a+ bθ) + (c+ dθ)e ∈ OK, φA =
[α(a + bθ) + β(c + dθ)] + [β(a + bθ) + α(c + dθ)]e. This
is exactly what we obtain if we compute Ψ(A) · Ψ(φ). Thus
Ψ(φOK) = ĀΨ(φ).

From this point forward, we abuse the notation by using the
same φ to denote φ ∈ OK and Ψ(φ) ∈ Ā. Let φ1, . . . , φK be
elements of the form α+βe in OK that are relatively prime to
each other. i.e., φkOK+φlOK = OK for k �= l ∈ {1, . . . ,K}.
Let q = φ1 ·. . .·φK and let qk = φ1 ·. . . φk−1φk+1 . . .·φK . We
thus have the following partition OK = q1OK + . . .+ qKOK

and

OK/qOK = q1OK/qOK ⊕ . . .⊕ qKOK/qOK, (15)

where the direct sums are guaranteed by the Chinese remainder
theorem [11, Corollary 2.27]. Now Lemma 1 implies that

Ā/Āq = Āq1/Āq ⊕ . . .⊕ ĀqK/Āq. (16)

For each k ∈ {1, . . . ,K}, we can represent Āqk via (13)
to get a Z[i]-lattice Λk =vec(Āqk) with a generator matrix

Gk = M(qk)G, (17)

where G is a generator matrix of the base lattice Λ =vec(Ā).
Also, we let Λs = vec(Āq). It is clear that Λs ⊂ Λk ⊂ Λ and
the order of the coset decomposition is given by

|Āqk/Āq| = |Λk/Λs| = | det(M(q)G)|2
| det(M(qk)G)|2

=
| det(M(q)) det(G)|2
| det(M(qk)) det(G)|2

=
| det(M(q))|2
| det(M(qk))|2 = |Nrd(φk)|4. (18)

The following lemma further establishes the relationship be-
tween the lattice partition and the coset decomposition of Ā.

Lemma 2. Λ mod Λs corresponds to a complete set of coset
leader of the quotient algebra Ā/Āq.
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Proof: Let λ1,λ2 ∈ Λ such that λ1 = vec(g1) and λ2 =
vec(g2) where g1, g2 ∈ Ā. Moreover, let us assume λ1 ≡ λ2

mod Λs. We have

λ1 − λ2 ≡ 0 mod Λs

(⇔) vec(g1)− vec(g2) ≡ 0 mod Λs

(⇔) vec(g1 − g2) ≡ 0 mod Λs

(⇔) vec(g1 − g2) ∈ Λs. (19)

Moreover, since the vectorization operation is bijective, we
have g1 − g2 ∈ Āq which results in g1 ≡ g2 mod Āq. We
conclude the proof by noting that |Λ/Λs| = |Ā/Āq|.
Remark 3. In what follows, we would like to construct
golden-coded index coding based on the partition of the
cyclic division algebra Ā mod Āq where the modulo is
based on a division algorithm that yields a remainder with
a smaller reduced norm than the one of the divisor. This
only guarantees that the overall codebook would have the
minimum reduced norm but in general, does not guarantee the
minimum Euclidean norm. Consequently, the code could have
a very bad shape and may result in a significant shaping loss.
Fortunately, the above lemma has guaranteed the one-to-one
mapping between Ā mod Āq and Λ mod Λs and hence our
construction will be based on Λ mod Λs, which automatically
takes care of shaping.

The proposed golden-coded index coding exploits the par-
tition in (16). Specifically, we set

Wk = |Āqk/Āq| = |Nrd(φk)|4, (20)

and generate individual constellation Λk mod Λs. We then use
an arbitrary bijective mapping ϕk to map each wk to xk =
ϕk(wk) ∈ Λk mod Λs and form

x = (x1 + . . .+ xK) mod Λs. (21)

Note that from Lemma 2 and the partition in (16),

x ∈
K∑

k=1

Λk/Λs mod Λs = Λ mod Λs. (22)

Note that Λk and Λ are 4-dimensional Z[i] lattices; thus,
x = (a, b, c, d)T for some a, b, c, d ∈ Z[i]. We then form the
proposed golden-coded index coding as

C =

{
1√
5

(
α(a+ bθ) α(c+ dθ)

iσ(α)(c+ dθ̄) σ(α)(a + bθ̄)

)∣∣∣∣
(a, b, c, d)T ∈ Λ mod Λs

}
. (23)

Equipped with all the individual encoders ϕk, the l-th
receiver first forms xk = ϕk(wk) for k ∈ Sl. It then uses
lattice decoding to decode the received signal to the nearest
element in the Golden subcode corresponding to⎛

⎝∑
k∈Sl

xk +
∑
k′ /∈Sl

Λk′/Λs

⎞
⎠ mod Λs. (24)

The Golden subcode at the l-th receiver becomes a coset of

CSl
=

⎧⎨
⎩ 1√

5

(
α(a+ bθ) α(c+ dθ)

iσ(α)(c + dθ̄) σ(α)(a + bθ̄)

)∣∣∣∣
(a, b, c, d)T ∈

∑
k′ /∈Sl

Λk′/Λs mod Λs

⎫⎬
⎭ .

(25)

We now show the main result of this section.

Theorem 4. For any Sl ⊂ {1, . . . ,K}, the proposed golden-
coded index coding provides uniform side information gain of
6 dB.

Proof: From (20), wSl
has a rate

RSl
=

1

8

∑
k∈Sl

log2 |Nrd(φk)|4 bits/real dimension. (26)

We note that shifting by a constant will not change the
lattice structure; therefore, we henceforth assume wk = 0
for every k ∈ Sl. From (25), after revealing wSl

, each X ∈
CSl

corresponds to (a, b, c, d)T ∈ ∑
k/∈Sl

Λk/Λs mod Λs

or equivalently an element x0 + x1e ∈ ∑
k/∈Sl

Āqk/Āq
where x0 = a + bθ and x1 = c + dθ. Let ηl be a
generator of the left ideal

∑
k/∈Sl

Āqk. From Lemma 1,∑
k/∈Sl

Āqk = Ψ
(∑

k/∈Sl
qkOK

)
. Hence, ηl is also a generator

of
∑

k/∈Sl
qkOK and therefore ηl and

∏
k∈Sl

φk are associates.
Without loss of generality, we set ηl =

∏
k∈Sl

φk.
The determinant of X ∈ CSl

can be computed as follows,

det(X) =
1

5
Nrd(α) det

[(
a+ bθ c+ dθ

i(c+ dθ̄) a+ bθ̄

)]

=
1

5
Nrd(α)Nrd(x0 + x1e) ≥ 1

5
Nrd(α)Nrd(ηl), (27)

where the last inequality is due to the fact that the reduced
norm is multiplicative and ηl is a generator of

∑
k/∈Sl

qkOK.
Therefore, plugging in |Nrd(α)|2 = 5 results in

δl =
1

5
|Nrd(ηl)|2 =

1

5

∏
k∈Sl

|Nrd(φk)|2. (28)

Combining (26), (28), and the fact that δ = N(1)2/5 = 1/5
results in

Γ(C,Sl) =
20

∑
k∈Sl

log10 |Nrd(φk)|2∑
k∈Sl

log2 |Nrd(φk)|2 ≈ 6 dB. (29)

IV. SIMULATION RESULTS

We now provide some examples and simulation results. We
first use MAGMA [12] to tailor numbers into primes in OK.
We specifically look for elements of the form in Lemma 1.
Some examples are given below.

Example 5. We have the partition of the principal ideal
2OK = ((1 + ie)OK)

4 and Nrd(1+ ie) = 1+ i. This partition
has been adopted to construct golden space-time trellis coded
modulation in [9], [10].
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Example 6. The principal ideal 17OK has the partition
17OK = I1·I2·I3·I4 where I1 = (1+2e)OK, I2 = (2−e)OK,
I3 = (−i+2ie)OK, and I4 = (1−2ie)OK. The generators of
these prime ideals have the reduced norms Nrd(I1) = 1− 4i,
Nrd(I2) = 4− i, Nrd(I3) = −1 + 4i, and Nrd(I4) = 1 + 4i.

Example 7. The principal ideal 73OK has the partition
73OK = I1 · I2 · I3 · I4 where I1 = (−2i + (i − 2)e)OK,
I2 = (2i + (i − 2)e)OK, I3 = (1 − 2i − 2e)OK, and
I4 = (2− (i + 2)e)OK.

In Fig. 2, we consider K = 2 and show codeword error
rates (CER) of the proposed golden-coded index coding with
φ1 = 1 + 2e and φ2 = 2− e in Example 6. As a benchmark,
we also partition the golden code with 16-QAM into two
subcodes using the partition of 16-QAM constellation obtained
in [13]. Specifically, we use the partition in [13, Example 2]
to partition M 16-QAM into two constellations M1 and M2,
each has 8 elements. We then set W1 = W2 = 8 and use M1

and M2 to encode w1 and w2, respectively. The overall code
is given by{
1√
5

(
α(a+ bθ) α(c+ dθ)

iσ(α)(c+ dθ̄) σ(α)(a + bθ̄)

)∣∣∣∣ a, b, c, d ∈ M
}
, (30)

and when w2 (similarly w1) is given, the code becomes (30)
with M replaced by M1 (M2). In Fig. 2, for the proposed
scheme, one observes a 9.23 dB SNR gain when either w1 or
w2 is revealed. By inspecting the code, we obtain NC = 1872
and NC1

= NC2
= 112, which accounts for 3.06 dB SNR

gain predicted in (9) from reduction of the multiplicity of
the elements having the minimum determinant. The remaining
6.17 dB gain can be predicted by the increase of minimum
determinant |Nrd(1 + 2e)|2 = |Nrd(2 − e)|2 = 17 and results
in approximate 6 dB side information gain after normalization
by the rate 1.022 bits/real dimension. One can also use (9)
to explain the 8 dB SNR gain observed in this figure for
the golden code with QAM partition where NC = 1400
and NC1

= NC2
= 3.75 and the increase in the minimum

determinant is 2.
Some interesting observations are as follows. We first note

that the two schemes in Fig. 2 have roughly the same rate and
it is shown that the proposed scheme can better exploit side
information (even after normalization by the respective rates).
Also, the proposed scheme makes use of the algebraic structure
of the golden algebra and thus has a systematic procedure
while the one with QAM partition is obtained from computer
simulation. Last but not least, one also observes that the side
information gain of the proposed scheme largely comes from
improvement of the minimum determinant, while that in the
QAM partition mainly comes from reduction of the number
of elements having minimum determinant. This phenomenon
is quite interesting and deserves further investigation.

V. CONCLUDING REMARKS

We have partitioned the golden code into golden subcodes
for the 2 × 2 MIMO physical-layer index coding problems
and successfully proposed golden-coded index coding. The
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Fig. 2. SNR versus CER over the MIMO Rayleigh fading network.

partition of golden codes was based on the partition of the
corresponding golden algebra, which was enabled by viewing
the maximal order of it as the ring of integers of a number
field. We have shown the uniform side information gain
property of the proposed scheme. Simulation results have also
confirmed our findings. After this, a natural next step would
be to develop a general algebraic framework for partitioning
other lattice space-time codes.
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