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Abstract-In this work, we propose phase precoding for 
the compute-and-forward (CoF) protocol. We derive the phase 
precoded computation rate and show that it is greater than 
the original computation rate of CoF protocol without precoder. 
To maximize the phase precoded computation rate, we need to 
'jointly' find the optimum phase precoding matrix and the cor­
responding network equation coefficients. T his is a mixed integer 
programming problem where the optimum precoders should be 
obtained at the transmitters and the network equation coefficients 
have to be computed at the relays. To solve this problem, we 
introduce phase precoded CoF with partial feedback. It is a 
quantized precoding system where the relay jointly computes 
both a quasi-optimal precoder from a finite codebook and the 
corresponding network equations. T he index of the obtained 
phase precoder within the codebook will then be fedback to the 
transmitters. A "deep hole phase precoder" is presented as an 
example of such a scheme. We further simulate our scheme with 
a lattice code carved out of the Gosset lattice and show that 
significant coding gains can be obtained in terms of equation 
error performance. 

Index Terms-Compute-and-forward, lattice codes, phase pre­
coding. 

I. INTRODUCTION 

The rapid expansion of wireless networks and their appli­
cation has promoted researchers to deal with more complex 
channel models including multi-terminal relay channels [1]. In 
this framework, diversity techniques are used to combat chan­
nel fading. Different cooperative transmission protocols can 
be employed. In this paper, we focus on the recently proposed 
Compute-and-Forward (CoF) protocol [2] which maximizes 
the network throughput. This scheme uses algebraic structured 
codes to both harness the interference and remove the noise. 

In CoF, the transmitters employ an identical lattice code and 
relays use the corresponding lattice decoder. For example, in a 
two-user case, suppose that Xl and X2 are the transmitted lat­
tice codewords from the first and the second user, respectively. 
The received vector at the relay is h1X1 + h2X2 + z where z is 
the Guassian noise and the components of h = (h1' h2) are 
the fading channel coefficients from the first and the second 
user to the relay, respectively. The task of the relay is to 
estimate an integer linear combination a1x1 + a2x2 from the 
received vector. The estimated point a1x1 + a2x2 is still a 
lattice vector because any integer linear combination of lattice 
points is lattice point. The quality of such an estimate and 
consequently the achievable computation rate is controlled by 

a non-zero coefficient a. In particular, the parameter a and the 
integer vector a = (a1' a2) are chosen so that ah � a. This 
approximation comes with a penalty since the components 
of a are restricted to be integers only. In other words, the 
approximant space for ah is the set of all integer vectors. 
This penalty is equivalent to the approximation of real vectors 
by rational ones and hence limits the computation rate in CoF 
protocol [3]. 

In this paper, we propose phase precoding for CoF pro­
tocol to increase the computation rate. We assume that the 
precoder for each transmitter is a complex scalar ei¢, for 
some -1f / 4 :::; ¢ :::; 1f / 4, multiplying the lattice codeword. 
For example, in the two-user case, we send ei¢lx1 and ei¢2x2 
instead of Xl and X2. The equivalent channel coefficient vector 
is h' 

= (ei¢'h1' ei¢2h2). The parameters a' and a' have to 
be selected such that the quality of the new approximation 
a'h' � a' will be better than the original approximation 
ah � a. More precisely, the precoders should be chosen so 
that the components of h' will be more aligned with Guassian 
integers. This alignment of h' and a' results in a higher 
computation rate which we call phase precoded computation 
rate. 

Our contributions are: (i) we introduce the concept of phase 
precoding for CoF protocol, (ii) we find the phase precoded 
computation rate and show it is greater than the original 
computation rate for CoF, (iii) we propose phase precoded 
CoF with partial feedback and as an example of this scheme, 
the deep hole phase precoder is presented, (v) we simulate 
our phase precoder scheme using lattice encoders and present 
numerical results. 

Notation. Boldface letters are used for vectors, and capital 
boldface letters for matrices. Superscripts T and H denote 
transposition and Hermitian transposition. Z, C, Rand Z[i] 
denote the ring of rational integers, the field of complex 
numbers, the field of real numbers, and the ring of Gaussian 
integers, respectively. We let Izl and arg(z) denote the modulus 
and the phase of the complex number z, respectively. The 
Hermitian product of two row vectors a and b is denoted by 
(a, b) £ abH. The notation Ilvll stands for the Euclidean 
norm of the vector V. Given a positive number x, we define 
log+(x) £ max{log(x), O}. Finally, a k x k matrix X = 

(xf I · .. IxI) T is formed by stacking the k-dimensional row 
vectors Xl, ... ,Xb and Ik denotes the k x k identity matrix. 
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II. SYSTEM MODEL 

We recall the notion of lattice code which is essential 
throughout the paper. A k-dimensional complex lattice A 
with generator matrix G � ( gi I gI I ... I gI ) T , for 
gj E en and 1 :s; j :s; k, is the set of points in en 

A = {x = uGlu E Z[i]n}. 

If n = k, the lattice is called full rank. Around each lattice 
point x E A is the Voronoi region 

A subset A' C;;; A is called a sublattice if A' is a lattice itself. 
Given a sublattice A', we define the lattice code AI A'. This 
quotient includes a finite constellation of lattice points carved 
from the lattice A. A common choice [6] for the sublattice 
A' is aA for some a E Z[i]. The shape of this constellation 
is determined by the Voronoi region of the lattice A'. For a 
vector Y E en, the nearest-neighbor quantizer associated with 
A is defined as 

QA(Y) � argmin Ily -All· AEA 
We also define the modulo lattice operation as 

Y mod A � Y - QA(Y)' 
A. The compute-andJorward protocol 

(I) 

Fig. I illustrates a compute-and-forward (CoF) protocol [2] 
with L transmitters and !vI relay nodes. The !vI relays compute 
estimates of !vI linear equations of the transmitted information. 
These will be forwarded to the final destination, where they 
form a system of linear equations to recover the L distinct 
messages. It is required that !vI ::.:: L, in order to be able 
to solve the system of !vI linear equations with L unknown 
variables. 

In the CoF protocol, the £-th transmitter is equipped with an 
encoder E:  IF'k --+ AI A' C;;; en, where IF' is a finite field and n 
is the codeword length. The encoder E maps an information 
symbol vector Wi E IF'k to a lattice codeword E(Wi) = Xi E 
AI A', for 1 :s; £ :s; L. Each codeword is subject to the power 
constraint Ilx£112 :s; np. The m-th relay observes a noisy linear 
combination of the transmitted signals, 

L 
Ym = L hm.exe + Zm, 

£=1 
(2) 

where hm.f E C, for 1 :s; £ :s; L and 1 :s; m :s; lvI, 
is the Rayleigh fading rv Nc(O , 1) channel coefficient from 
£-th transmitter to the m-th relay and Zm is identically 
and independently distributed (ij.d.) Gaussian complex noise 
Nc(O, 1). The task of the m-th relay is to estimate a linear 
combination -Z;7=1 am,Rx£ of the transmitted signals given an 
integer coefficient vector am � (am,l, ... , am,L) E Z[i]L for 
all 1 :s; m :s; !vI. Due to the linear structure of lattices, the 
integer linear combinations are still in A but not necessarily 
in the lattice code AI A'. At the m-th relay a detector 

Dm : e x eL x en x Z[i]L --+ AlA', (3) 
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Fig. 1. The CoF protocol with L transmitters and NI relays explained in 
(2). 

is employed to find an estimate em of the codeword linear 
combination 

which is a point in A I A'. The quality of this estimation is 
controlled by a non-zero complex am. The m-th decoder at 
the relay first computes 

L 
amYm= L ahm,Rxe + aZm 

e=l 
L L 

= L am.exe + L (amhm,R -am.f) Xe + amzm, 
i=l £=1 
� '�--------�----------� 
useful term etlective noise 

and then sets 

(4) 

where hm � (hm.1, ... , hm.L) E eL and QA and Dm are 
defined in (I) and (3), respectively. The estimate em of em 
will be sent through the network. At the final destination, a 
system of linear equations { (-Z;7=1 a1,Rx£) 

(�7=1 aM.exf) 

mod A' = e1, 

mod A' = eM, 
needs to be solved to find lattice codewords estimates Xi. 
Finally, the map E-1 is used to produce the estimates W f 
of information symbol vectors Wi, for 1 :s; £ :s; L. In this 
framework, we declare an equation error at the m-th relay, 
if em -I- em, for 1 :s; m :s; !vI. This refers to the event of 
decoding to an incorrect lattice codeword em. 

We recall from [2] and [4] some results about the compu­
tation rate for the m-th relay using CoF protocol: 

Proposition 1: For complex-valued AWGN networks with 
a channel coefficient vector hm and a coefficient vector 
am E Z[i]L, the following computation rate 91(p, hm' am) 
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is achievable: 

(5) 

D 

From (4), we note that the average energy of the effective 
noise is 

(6) 

affects the computation rate. The computation rate, given 
am, provided in the above proposition is uniquely maximized 
by choosing am to be the minimum mean square estimator 
(MMSE) coefficient [2] 

p(hm, am) 
1 + pllhml12' (7) 

Substituting aMMSE of (7) into 91(p, hm, am) yields, [4] 

91(p, hm, am) = log+ ( 1 
H ) ' amMam (8) 

where M is 

M = h - 1 + P�hmI12h�hm. (9) 

III. PHASE PRECODER FOR COMPUTE-AND-FoRWARD 

Fig. 2 illustrates a network with L transmitters equipped 
with phase precoders (PP) and M relays each employing CoF 
strategy. After the encoder E, a lattice codeword XR E A/A', 

X, 
." 
5' 
!!!. 0 

H 
(!) 
!!l 
5' 
� 
o· ::J 

Fig. 2. Phase precoded CoF with L transmitters and A1 relay nodes. 

is generated at the f-th transmitter. We consider a block 
fading channel model, i.e. the channel coefficients hm remain 
unchanged for a time frame of length t » n. These channel 
gains vary independently from one frame to the next. A frame 
header is used for the training phase, where we apply a 
phase precoding function P£ :  en --+ en, which maps X£ to 
P£(x£) � ei¢£x£, for CP£ E [-71'/4, 71'/4] and 1 <::: e <::: L. 
Due to the symmetry of the complex plane, the problem of 
choosing the optimum network equation coefficients for CoF 
protocol can be reduced to the vectors am with components 
am,£ satisfying arg ( am,£) E [-71'/4, 71'/4]. Thus, the phases for 
precoding can also be restricted to ei¢p with CPR E [-71'/4, 71'/4]. 
Using this approach, the phase precoded codeword ei¢PxR 

continues to satisfy the power constraint Ilei¢pxR l12 <::: np, for 
1 <::: e <::: L. Thus, the m-th relay receives 

Ym 
L 

L hm,£ei¢fx£ + Zm· 
£=1 

We let h�n.£ = hm,l ei¢p, for 1 <::: e <::: L and 

where 

(10) 

(11) 

As a result of considering the matrix <I> as part of h�, the m­
th relay recovers an integer linear combination -Z;;=1 am,£x£ 
of the transmitted codewords. Therefore, it first computes: 

L 
Y;n =amYm = L amh;n,RXR + amzm 

£=1 
L L 

= L am,£x£ + L (amh�,£ -am,£) X£ + amZm· £=1 R=l 

(12) 

'�--------__ v�---------J 
PP effective noise 

The m-th decoder Dm will operate similarly to the CoF 
protocol except that it assumes h� rather than hm. The phase 
precoded computation rate 91' (p, hm, <I>, am) for the m-th 
relay is defined as 

max log+ ( II ' 
p 

112 I 12) ' exm EIC\ {O} P amhm -am + am (13) 

Based on (12), the average energy of the PP elfective noise is 

which appears in the denominator of (13). Therefore, the m-th 
relay should calculate the best non-zero equalizer am E e and 
a non-zero network equation coefficient vector am E Z[i]L, to 
maximize (13) or equivalently minimize (14). 

A. Maximizing Phase Precoded Computation Rate 

There are three parameters am E e, am E Z[i]L and 
<I> = diag (ei¢l , o o ., ei¢L ) , where CPR E [-71'/4, 71'/4]' to be 
optimized. The selection procedure is based on two steps: (i) 
we suppose that am and <I> are fixed and find the optimum am, 
then we substitute this optimum am into (13), (ii) we suppose 
am is given and find the best phases to maximize (13). 

Replacing hm by h:n in Proposition 1 and (7), given am E 
Z[i]L and <I> as in (11) with CP£ E [-71'/4, 71'/4], the optimum 
a;'PI E e to minimize (14) is 

, p (h:n, am) a"pl = --'--1---'+-p� I:-:-lh---';n-'-;- II'""" 2' (15) 

Substituting a;'pt into (13) yields that 91'(p, hm, <I>, am) equals 

log+ ( 1 ) = log+ (1 + pllh' 112) (16) am <I>HM<I>a;,; m 

-log+ (11am112 + p (1Ih�1121IamI12 - I(h�n' am)n), (17) 
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where M is given in (9) and h;n = hm <I>. 
Lemma 1: Given the network equation coefficients 

am = (am.1, ... , am.d = (lhei1/;l, ... Jhei1/;L) E Z[i]L, 
and the channel coefficient 

h -(h h )-( ill, iIlL ) E trL m- m.1,···, m.L - 7]le , · · · , 7]L e \L- ,  
the optimal phases to maximizing the phase precoded compu­
tation rate (13) are ¢R =Ij;g - eg, for 1 � 1! � L. 

Proof' We prove this lemma for L = 2. The proof for 
L > 2 is similar to this case and we omit it for the sake of 
brevity. We find 

h:n = (hm.1 ei¢l , hm.2ei¢2 ) = (711 ei( 11, +¢,) , 7]2ei(1I2+¢2)) . 

Based on (17), we have to maximize I (h;n, am) 12 to achieve 
the highest computation rate. We have that 

1( ' )12 
I' H , H 12 hm, am = hm,l am,l + hm,2am.2 

= 1 7]1 ei(1I1 +¢,) ,61 ei( -1/;,) + 7]2ei( 112+¢2) ,62ei( -1/;2) 1
2 

= 1(7]1,61 cos(e1 + ¢1 -1/J1) + 7]2,62 cos(e2 + ¢2 -1/J2) 
+i(7Idh sin(e1 + ¢1 -1/Jd + 7]2,62 sin(e2 + ¢2 -1/J2))12 
= 7]i,6i + 27]17]2,61,62 cos( e1 + ¢1 -1/J1 -(e2 + ¢2 -1/J2)) 

'J 'J + 7]2,62, 
which means that in order to maximize I (h:n, am) 12, the 
phases ¢1 and ¢2 have to satisfy 

(18) 

Thus, we get ¢i" = 1/J1 -e1 for the first transmitter and ¢�" = 
1/J2 -e2 for the second transmitter. • 

Theorem 1: Given the channel coefficients hm E CL, 
signal-to-noise ratio p, and the network equation coefficient 
vector am E Z[i]L, then the phase precoded computation rate 

91' (p, hm, <I>0P" am) = log (1 + pllhm 112) -

log �Iamll'+p (1Ihmll'llamll'-(t, Ihm,e1 1am,tl) 
') ) 

(19) 
is greater than 91(p, hm, am) where 

<I>opl � diag (ei¢�pt, ... , ei¢°J',') . (20) 

Proof' The computation rate without phase precoder is 

91(p, hm, am) = log+ (1 + pllhm n 

-log+ (ilam 112 + P (1lhm 11211am 112 - I (hm, am) 12) ) . 

If we use phases ¢R = e£ -1/J£, for 1 � 1! � L, then we get 
I (h:n, am) 12 = 7Iff-3? + 27]17]2,61,62 + 715,65. On the other hand, 

'J 
= l 7]lei(II') ,61ei(-1/;,) + 7]2ei(1I2) ,62ei(-1/;2) I � 
= I (7Id-31 cos(e1 -1/J1) + 712,62 cos(e2 -1/J2) 
+ i(7]1,61 sin(e1 -1/J1) + 7]2,62 sin(e2 -1/J2)))12 
= 7lr,6r + 2711712,61,62 cos(e1 -1/J1 + e2 -1/J2) + 7]�r-3� · 

It is clear that I (h:n, am) 12 ::.:: I (hm, am) 12, which implies that 
91'(p,hm,<I>,am)::':: 91(p,hm,am). • 
Note that for a fixed integer vector am, the transmitter phases 
<I> and the equalization coefficients am can be computed in 
closed form, leading to (19). The expression for the coefficient 
am in [2] is a special case of (15) where no precoding is 
considered, i.e. <I> = h. 

To maximize the phase precoded computation rate, the op­
timum phase precoder matrix and the corresponding network 
equation coefficients should be computed jointly. This is a 
mixed integer programming problem because the entries of 
the phase precoding matrix <I> are complex numbers and the 
components of am are Gaussian integers. In addition, the 
phase precoders need to be optimized at the transmitters and 
the integer coefficients have to be computed at the relay. 
Recalling Lemma 1, for a given am, the optimum <I>0pt can 
be derived as (20). However, this needs the knowledge of 
am at the transmitters. On the other hand, using (16) for 
a fixed <I> , the optimum am can be found by considering 
M' = <I>H M <I> and employing one of the approaches presented 
in [4, 7]. This means that the optimum am can only be 
computed at the relays when the optimum <I> is known at 
the transmitters. Hence, a systematic approach of maximizing 
the phase precoded computation rate by optimizing both the 
Gaussian integer vector am and <I> 'jointly' is not available. 
We then introduce partial feedback phase precoders for Cop. 
This is a quantized precoding system where a quasi-optimal 
precoder is chosen from a finite codebook of phases at the 
relay. The index of the best precoder is transferred from the 
relay to the transmitters over a feedback link. Criteria are 
provided for selecting the optimal precoding matrix based on 
the phase precoded computation rate. 

B. Phase Precoders with partial feedback 

In a phase precoded CoF with L users and one relay, we 
suppose that only a finite set of phases 

S= {151 =O, o o .,15SO' o o ,15ISI } C;;; [-7T/4, 7T/4] 

is available at each transmitter. This corresponds to a finite 
codebook of phase precoders 

C = { <I> c = diag (ei¢Sl , ... , ei¢, L ) : 153£ E S, 1 � 1! � L} 
with Ie! = ISIL. Using a header with ICI pilot symbols 
the relay can select the best precoder from the codebook by 
computing 

<I>oPl=ar;g;max max L 91'(p,hm, <I>,am). (21) EC amEZ[i] 
Let the selected precoder be 

( ¢; cb' ) diag e" '1, ... , , ... , e" 'L , where ¢�£ 
<I> opt 

E S for 
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1 :s; Sf :s; lSI, then the relay feedbacks the index Se instead 
of ¢�£ to the £-th transmitter, for 1 :s; £ :s; L. Therefore, 
we need at most log2 (lSI) of feedback to be sent to each 
transmitter. Note that the codebook includes the non-precoded 
case IL = diag (ei¢l, ... , ei¢l ) , then we have: 

> max J 9\' (p, hm' h, am) 
amEZ['i" 

max J 9\(p, hm' am). 
amEZ['i" 

The above inequality guarantees that using this scheme we 
can increase the phase precoded computation rate in compar­
ison with the original computation rate. We next provide an 
example of a phase precoder with partial feedback. 

C. Deep hole phase precoders 

A deep hole of an n-dimensional lattice A is a point x whose 
distance 62 (x, A) £ infAEA {llx - All} is a global maximum. 
For example, the deep holes of 71} c:::: Z[i] are shown by crosses 
in Fig. 3. In fact, a point (01/2,02/2) for odd integers 01,02 
is a deep hole in z2. We only consider odd integers 01 and 02 
satisfying 02 :s; 01. The corresponding phase of (01/2,02/2) 
is atan(02/01). For deep hole phase precoders, we use a finite 
number of deep hole phases of the lattice Z2 as S. 

Fig. 3. 

o 0 
o 0 
o 0 
o 

atan( /7) 

o o 
o o 
o o 
o o 

The lattice ;Z2 (empty circles) and its deep holes (solid circles). 

IV. SIMULATION RESULTS 

In our simulations, we set L = 2, !vI = 1, A = 

[s [6], the densest lattice packing of dimension 8, and 
A' = a[s, for a = 4. Since our scheme works over 
complex numbers, the complex version of [s can be iden­
tified [6]. We use deep hole phase precoder with S = 

{O, ±atan(1/3), ±atan(1/5), ±atan(3/5), atan(l)}. and hence 
lSI = 8. The relay then feedback log2(8) = 3 bits to each 
user providing the best phase to be used. 

Fig. 4 shows equation error rate (EER) for different lattice 
encoders including the cubic shaped Gaussian lattice Z[i]4 
and Voronoi constellation carved from Gosset lattice [s and 
its sublattices a[s for a = 4. This corresponds to rate 2 
bits per channel uses. To find equation coefficients, we have 
used a generalized version of QES presented in [7]. Using 
Voronoi lattice constellation [s/4[s for CoF protocol, we 
achieve 3.4dB coding gain at EER of 10-4 in comparison 
with CoF over uncoded Cubic-Gaussian lattice Z[i]L. An extra 

Fig. 4. EER for 2 users and 1 relay node. 

4dB coding gain has also been obtained at EER of 10-4 using 
phase precoder over a CoF protocol equipped with [s/4[s 
Voronoi lattice encoder. Finally, we note that by increasing the 
number of phase precoders beyond 8, performance does not 
improve. This suggests that our heuristic optimization method 
is practically optimal. 

V. CONCLUSION 

A phase precoder scheme has been introduced for CoF 
protocol in physical layer network coding. The phase precoded 
computation rate has been derived. It has been shown that 
the proposed scheme achieve greater rate than that in [2]. 
Since the optimum phases and the optimum network equation 
coefficients to maximize the rate can not be computed jointly, 
we suggested phase precoded CoF with partial feedback, 
which uses a finite codebook for the phases. Simulations were 
presented to show the effectiveness of the deep hole phase 
precoded CoF with partial feedback. 

Investigating other aspects of phase precoded CoF protocol 
such as the degrees-of-freedom is also of interest. In addition, 
finding the optimum set S which maximizes the phase pre­
coded achievable rate is the subject of future research studies. 
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