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Abstract

In this paper we present algebraic constructions of 3 x 3, 4 x
4 and 6 x 6 Space-Time Codes, achieving full rate and full
diversity. These codes have non-vanishing (in fact fixed)
minimum determinants when the rate goes to infinity. Their
construction is based on cyclic algebras with center equal to
an algebraic field based on cyclotomic fields .

1. Introduction

In order to achieve very high spectral efficiency over
wireless channels, we need multiple antennas at both trans-
mitter and receiver ends. We are interested, here, in the
coherent case where the receiver perfectly knows channel
coefficients. The received signal is

Ynxr =Hpyxym Xyt + Waxr 1)

where X is the transmitted codeword taken from Space-
Time Block Code (STBC), H is the Rayleigh fading channel
response and W is the i.i.d Gaussian noise.

We will denote by C., [1] the infinite code where the
information symbols are taken from Z[:] or from Z[j], and
by C the finite code obtained by restricting the information
symbols to ¢-QAM constellations (Z[:]), with in phase and
quadrature components equal to +1, +3.. . .., or g-HEX con-
stellations [2] (Z[5]).

Linear dispersion Space-Time Codes (LD-STBC) have
been introduced in [3]. The linearity property of the LD-
STBC enables the use of ML sphere decoding, which ex-
ploits the full performance of the code compared to other
suboptimal decoders [4].

Unfortunately, the structure of the LD-STBC is too
“light” to construct space-time codes with the given prop-
erties.

In [5], it is shown how to construct full rate and fully
diverse codes for the 2 transmit antennas case. This
approach was generalized for any number of transmit
antennas M in [6, 7]. All these above constructions satisfy
the rank criterion and attempt to maximize the coding
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advantage, which is defined for LD-STBC by the minimum
determinant of code .

We define the minimum determinant of C as

det () ?

Omin(Coo) = Xeém%(;éo

and the minimum determinant of C as

5min(c) |det (Xl 7X2)|2

= min
X1,X2€C, X1#X2
M
Z 2 (Smin (Coo)

In [8], the authors proposed non-full-rate and full-rate
STBC constructed using division algebras. A division al-
gebra naturally yields a structured set of invertible matrices
that can be used to construct LD codes (since for any code-
word X e C the rank criterion is satisfied as |det(X)| # 0).

In all these previous constructions [6, 7, 8], the mini-
mum determinants are non-zero, but vanish when the con-
stellation size increases. This problem appears because
transcendental elements or algebraic elements with a too
higher degree are used to construct the division algebras.
Non-vanishing determinants may be of interest, whenever
we want to apply some outer block coded modulation
scheme, which usually entails a signal set expansion, if the
spectral efficiency has to be preserved. In order to obtain
energy efficient codes we need to construct rotated versions
of the complex lattices Z[i]™ or Z[j]M, so that there is no
shaping loss in the signal constellation.

In paper [1], we have presented a construction ofa 2 x 2
STBC, Golden code, having a constant minimum determi-
nant when the constellation size increases. A code isomor-
phic to the Golden code was found independently in [9] and
[10]. Using the same algebraic method, we present in this
paper constructions of 3x 3,4 x4 and 6 x 6 STBCs having a
constant minimum determinant when the spectral efficiency
increases.

2. 4 x 4 STBC construction
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We will begin by the construction of the 4 x 4 STBC, as
it is very close to that of the 2 x 2 STBC-Golden Code [1],
where the field extension is made over Q(3).

Let Q(2cos(2X)) be an extension of Q of degree
4, which is the real-subfield of the cyclotomic field
Q(exp(i22)), n is such that 282 = 4, o(-) is the totient
Euler function. We will consider now the compositum field
K = Q(i, 2 cos(2%)).

Q(4,2cos(22))

TN

Q) g Q(2cos(3))
~__
Q
Let n = 15, and K =

{a+b0+ch?+do? | a,b,c,de Q(i)}, as a relative
extension of Q(i) with degree 4. Let Ox = Z[i][0]
be the ring of integers of K, with integral basis
Bx = {1,0,02,0%}. We recall that for any algebraic
integer z = a + bl + ch? + dH> € Ox with a, b, ¢, d € Z[i].
We will denote by Ng g (2) and Trg g (2) respectively
the relative norm and the relative trace of z € K.

Let L = {a + bi + cf + dif + e0* + fif* +
g0% + hi®3|a,b,...,h € Q} be the corresponding ab-
solute extension of K over Q, with signature (r1,72) =
(0,4), ring of integers Oy, and integral basis By =
{1,4,0,40,62,i62, 0% i03}.1 The relative discriminant of K
is dg = 1125 = 32 - 53, while the absolute discriminant of
Lisdy, = 2% -3%. 55,

In order to obtain energy efficient codes we need to con-
struct a complex lattice RZ[i]*, where R is a complex uni-
tary matrix, so that there is no shaping loss in the signal con-
stellation. This lattice derives as an algebraic lattice from
an appropriate relative ideal of the ring of integers Ok. The
complex lattice RZ[i]* can be equivalently seen as a rotated
Z8-lattice: OZ8, O being an orthogonal matrix, obtained
from an ideal of Or..

A necessary condition to obtain OZ2 is that there exists
an ideal Z;, € Oy, with norm 45 = 32 . 5. In fact, the lattice
A(Ov) has fundamental volume equals to 2="2/dy, = 1125
and the sublattice A(Zy,) has fundamental volume equals to

1The fi elds K and L coincide abstractly, it is only for convenience of
exposition that we use distinct notations

27"2\/d,N(Z1,) = 3* - 5% = V15", where the norm of the
ideal N (Zy,) is equal to the sublattice index. This suggests
that the fundamental parallelotope of the algebraic lattice
A(Z1) could be a hypercube of edge length equal to /15,
but this needs to be checked explicitly.

An ideal Z, of norm 45 can be found from the following
ideal factorizations

@O = IiTs
()0 = TiTs
Let us consider 7;, = Z3 - Zs. It is a principal ideal
71, = («) generated by o = —1 — i — 3i6 + 6% + i0°.

We will now define the generator matrix of A(Zx). Let
the complex canonical embedding of K be defined by

c:K—C*
o:x— (01(x),02(x),03(x),04()) )
where
0‘1(9) =40 0’2(0) =0 0‘3(9) = -0 0‘4(0) = —i0

(4)

The relative basis of Z is Bz, = {a, af,ab?, ab?®}.

By applying the canonical embedding o to Bz, we obtain the
generator matrix of A (Zx ), which we normalize by \/%_5

o1(a) o1(af) o4 (a92) o1 (a93)

R L. oa(a) o2(af) o2 Eang o Ea93g
V15 0'3(0() (73(0(6) o3 a92 g3 a93
ou(e) o4(af) o4 (ab?) o4 (ab?)

We can verify that, after lattice basis reduction [11] us-
ing the following unimodular matrix,

1 0 0 0

0 1 00

T= 0 -3 0 1
-1 -3 1 1

the generator matrix given in eq. (2) is unitary.

We will consider now a cyclic division algebra A over
K. let {1,e,e% e} be a base of A, such that v € C and
~,v2,~3 are not algebraic norm of any elements of K [12,
8],

=2 O O O
SO O
oo = O
o= O O

326



1.03826 + 0.32732:

0.39873 4+ 0.32732¢

—0.462069 — 0.145674¢
Ry = —0.11412+0.32732; —0.142307 + 0.408169:
—0.718498 — 0.589822¢ —0.895953 — 0.7354961

0.832620 + 0.262495:
0.063332 — 0.181652: (5)

We can represent all elements in A by 4 x 4 matrices,
X = Y D;-e"!, where D;,i = 1...4 are diagonal

1=1...4
matrices with elements in K. We define our infinite code C,

[1] as a subalgebra of A, obtained by restricting elements of
D;,i =1...4t0Zk. Lets;,7 = 1...4 be a four-element
vector in Z [i]. Codewords of C are given by

X = Z diag (R} - s;) - e ™*

i=1...4

We now have to choose ~ such that none of v, v2, v3 are
algebraic norms of any element of K. Also, the norm of ~ be
equal to 1 in order to guarantee the same average transmitted
energy from each antenna, at each channel use. This limits
our choice to v = 41, +4. In fact, we can prove, by using
Class Field Theory tools that v = 4, is the solution. This
choice of « ensures that the determinant of any codeword

X takes values in the discrete set %Q(a) - Z1i]. In fact
A = (K/Q(i), 0,1) is a cyclic division algebras, as defined
in[12, 8], and for X € A, Nk q(;)(X) = det(X) € Q(i).
Then if we take X such that all his entries are from Ok,
det(X) € Op = Z(i).

To calculate the minimum determinant we will rewrite
R

R = diag (0;(a)) - Ro,
with Ro, the generator matrix of A (Ok), obtained by ap-
plying the canonical embedding o to Bk. Let
P= Z diag(Roy - si) - €1
i=1...4

Then minimum determinant is equal to
det(X) = 12z - det(diag(ci(av))) - det(P)

As det(P) is a sum of relative norms and traces in Ok,
it takes values in Z [¢] and its minimum modulus is equal to
1. We conclude that

2
Smin(Coo) = 157 * [Ny ()| = 113

3. 3 x 3 STBC construction

The construction of 3 x 3 STBC is similar to the 4 x 4
STBC, with the difference that we consider the field exten-
sion Q(j), 7 = exp(i2X), instead of Q(i). We construct a
rotated version of Z[j]% = A3 where A, is the hexagonal
lattice.

Let K = Q(j,2cos(3F)) be an extension of Q(j) of
degree 3. We denote LL the absolute extension on Q.

The relative discriminant of K is dx = 49 = 72, while
its absolute discriminant is dy, = —1 - 33 - 74

An ideal Zx of norm 7 can be found from the following
ideal factorization

(1O = I7Ir

Let’s consider Zx = Z. Itis a principal ideal, so Zx = («)
witha=1+j+6.

The relative basis of Zx is Bz, = {o,a6,a6?}. By
applying the canonical embedding o to Bz, we obtain the
generator matrix of A (Zx ), which we normalize by \/%

o1(a)

R:%- oa(a)

We can verify that, after lattice basis reduction [11] us-
ing the following unimodular matrix,

1 0 0
T=( 0 -1 1
2 1 0

the generator matrix of (5) gives a rotated version of A3.
Using the cyclic division algebras A = (K/Q(j), 0, 7), we
define the 3 x 3 STBC in a similar manner as for the case
M = 4. We can show that

2
Smin(Co) = 75 - |Nrja() (@)]” = 15

4. 6 x 6 STBC construction

As the construction is the same as in the 3 x 3 STBC with
K = Q(j,2cos(7;)), we will just give the field extension
and the corresponding ideal, necessary to obtain a rotated
version of Z[j]®. The absolute discriminant of K is dj, =
212 .36 . 710 An ideal Zg with absolute norm 7 can be
found from the following ideal factorization

(1O = I7Ir

We consider the ideal Zx = Z~
Then, the 6 x 6 STBC is a subalgebra of the cyclic divi-
sion algebra A = (K/Q(j), o, —5), and we prove that

2
Omin(Coo) = ﬁ ) |NK/Q(j) (a)| = 25175

327



5. Simulation results

We have simulated the complete MIMO transmission
scheme using the constructed Space-Time codes, repre-
sented by equation (1). The transmitted symbols belong to
q-QAM (4 antennas) or ¢-HEX (3 and 6 antennas) constel-
lations, with ¢ = 4, 8, 16, and average energy per bit fixed
to 1, ¢-HEX constellation will be a finite subset of A,. For
the decoding, we use the modified version of the Sphere-
Decoder presented in [13].

In Fig. 1 and 2, we show the codeword error rates for
our new 4 x 4 and 3 x 3 STBC (NC), and the best previously
known 4 x 4 and 3 x 3 STBC (BPC) in [6, 7], as a function
of the E},/Ny. We can observe that both codes have almost
the same performances. We remark in Fig. 1 that the NC is
better than BPC for 8, 16-HEX constellations. For the 4 x 4
STBC, the BPC have better performances than the NC but
the gap decreases from 4-QAM to 16-QAM.

G--0 NC,4-HEX
@--8 NC, 8-HEX
£--A NC, 16-HEX
%—x BPC,4-QaM ||
#—% BPC, 8-QAM
+—+ BPC, 16:QAM

Word errors rates

10

) 6 9 12 15 18 21
EB/NO (dB)

Figure 1: New codes (NC) vs. best previously known codes
(BPC) for 3 transmit antennas

6. Conclusion

We present, in this paper, new algebraic constructions
of full-rate, fully diverse 3 x 3, 4 x 4 and 6 x 6 Space-
Time Codes, having a constant minimum determinant as the
spectral efficiency increases.
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