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Abstract

In this paper, we present a multidimensional trellis coded
modulation scheme for a high rate 2 × 2 multiple-input
multiple-output (MIMO) system over slow fading channels.
Set partitioning of the Golden code [2] is designed specif-
ically to increase the minimum determinant. The branches
of the outer trellis code are labeled with these partitions.
Viterbi algorithm is applied for trellis decoding. In order to
compute the branch metrics a sphere decoder is used. The
general framework for code optimization is given. Perfor-
mance of the proposed scheme is evaluated by simulation
and it is shown that it achieves significant performance gains
over uncoded Golden code.

1. INTRODUCTION

High speed wireless networks for multimedia traffic re-
quire high spectral efficiency schemes with low packet de-
lay. MIMO systems and algebraic space-time coding offer
a good set of solutions to this challenging design problem.
Wireless channels are commonly modeled as block fading,
where it is assumed that the channel is fixed over the du-
ration of a frame. For such channels, concatenated coding
schemes are appropriate. Space-time trellis codes (STTCs),
proposed in [1], used PSK or QAM symbols and were de-
signed according to both rank and determinant criteria. A
more refined concatenated scheme enables to split these two
design criteria. As an inner code, we can use a simple space-
time block coding scheme, which can guarantees full diver-
sity for any spectral efficiency (e.g. Alamouti scheme). An
outer code is then used to improve the coding gain.

This work was supported by the Australian Research Council (ARC)
Project DP0663567, and ARC Communication Research Work (ACoRN)
RN 0459498 and by the NEWCOM Network of Excellence in Wireless
Communications funded through the EC 6th framework Programme of the
European Commission.

In this paper, we consider a concatenated scheme, where
the inner code is Golden code [2] and outer code is trellis
code. As it will become clear in the following, we can view
this as a multidimensional TCM, where the Golden code
acts as the signal set to be partitioned. This Golden Space-
Time Trellis Coded Modulation (GST-TCM) scheme is ap-
propriate for high data rate systems thanks to the great flex-
ibility in the choice of the modulation spectral efficiency.
A first attempt to design such a scheme was made in [3].
However, the resulting ad hoc scheme suffered from a high
trellis complexity.

We develop a systematic design approach for GST-
TCM. In [4–7], lattice set partitioning combined with a trel-
lis code is used to increase the minimum square Euclidean
distance between codewords. Here, it is used to increase
the minimum determinant. The Viterbi algorithm is used
for trellis decoding, where the branch metrics are computed
using a sphere decoder for the inner code.

We propose a design approach that is similar to Unger-
boeck design rules [5, 8]. We design different GST-TCM
and optimize their performance according to the design
criterion. It is shown for example, that a 16 state TCM
achieves significant performance gain of 4.2dB over the un-
coded Golden code, at an frame error rate (FER) of 10−3,
over the uncoded Golden code at the spectral efficiency of 6
bits per channel use (bpcu).

2. SYSTEM MODEL

The following notations are used: T denotes transpose
and † denotes Hermitian transpose. Let Z,Q, C and Z[i] de-
note the ring of rational integers, the field of rational num-
bers, the field of complex numbers, and the ring of Gaus-
sian integers, where i2 = −1. Let Q(θ) denote an alge-
braic number field generated by the primitive element θ. Let
GF (2) = {0, 1} denote the Galois field of degree two. The
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m ×m dimensional identity matrix is denoted by Im. The
m× n dimensional zero matrix is denoted by 0m×n.

We consider a 2 × 2 (nT = 2, nR = 2) MIMO system
over slow fading channels. The received signal matrix Y ∈
C2×2L (2L is the frame length), is given by

Y = HX + Z, (1)

where Z ∈ C2×2L is the complex white Gaussian noise
matrix with i.i.d. samples ∼ NC(0, N0), H ∈ C2×2 is the
channel matrix, which is constant during a frame and varies
independently from one frame to another. The elements of
H are assumed to be i.i.d. circularly symmetric Gaussian
random variables ∼ NC(0, 1). The channel is assumed to
be known at the receiver.

In (1), X = [X1,...,Xt, ..., XL] ∈ C2×2L is the trans-
mitted signal matrix, where Xt ∈ C2×2. There are three
different options for selecting inner codewords Xt, t =
1, . . . , L:

1. Xt are independently selected from the Golden code
G, i.e.,

Xt =
1√
5

[
α (at + btθ) α (ct + dtθ)
iᾱ

(
ct + dtθ̄

)
ᾱ

(
at + btθ̄

)
]

(2)

where at, bt, ct, dt ∈ Z[i] are the information sym-
bols, θ = 1 − θ̄ = 1+

√
5

2 , α = 1 + i − iθ,
ᾱ = 1 + i(1 − θ̄), and the factor 1√

5
is used to nor-

malize energy [2].

2. Xt are independently selected from a linear subcode
of the Golden code;

3. A trellis code is used as the outer code encoding
across the symbols Xt selected from partitions of G.

We denote Case 1 as the uncoded system, Case 2 as the
Partitioned Golden code system, and Case 3 as the Golden
Space-Time Trellis Coded Modulation system.

In this paper, we use Q-QAM constellations, where Q =
2η as information symbols in (2). We assume the constella-
tion is scaled to match Z[i] + (1 + i)/2, i.e., the minimum
Euclidean distance is set to 1 and it is centered at the origin.
The average energy Es is 0.5, 1.5 and 2.5 for Q = 4,8,16.
Signal to noise ratio is defined as SNR = Eb/N0, where
Eb = Es/q is the energy per bit and q denotes the number
of information bits per symbol. We have N0 = 2σ2, where
σ2 is the noise variance per real dimension, which can be
adjusted as σ2 = (nT Eb/2)10(-SNR/10).

Assuming that a codeword X is transmitted, the
maximum-likelihood receiver might decide erroneously in
favor of another codeword X̂. Let r denote the rank of
the codeword difference matrix X − X̂. Since the Golden
code is full rank, r = nT = 2. Let λj , j = 1, . . . , r,
be the eigenvalues of the codeword distance matrix A =

(X − X̂)(X− X̂)
†
. Let ∆ =

∏
λj be the determi-

nant of the codeword distance matrix A and ∆min be the
corresponding minimum determinant, which is given by
∆min = min

X 6=X̂
det (A). We call nT nR the diversity gain

and (∆min)1/nT the coding gain [1]. In the case of linear
codes we can simply consider the all-zero codeword matrix
and we have ∆min ≥ min

X6=02×2L

det
(
XX†

)
, where equality

holds for infinite codes [2].
In order to compare two coding schemes supporting the

same information bit rate, but with different minimum de-
terminants (∆min,1 and ∆min,2) and different constellation
energies (Es,1 and Es,2), we define the asymptotic coding
gain as

γas =

√
∆min,1/Es,1√
∆min,2/Es,2

. (3)

In the case of L = 1, the codeword matrix X = X1 ∈ G
is a square matrix. The Golden code G has full rate, full
rank r = 2, and the minimum determinant is δmin = 1

5 [2];
thus ∆min = δmin for the uncoded Golden code system. In
all cases, we have

det
(
XX†

)
= det

(
L∑

t=1

(
XtX

†
t

))
. (4)

A code design criterion attempting to maximize ∆min is
hard to exploit, due to the non-additive nature of the de-
terminant metric in (4). Since XtX

†
t are positive definite

matrices, we use the following determinant inequality [10]

∆min ≥ min
X6=02×2L

L∑
t=1

det
(
XtX

†
t

)
= ∆′

min. (5)

The lower bound ∆
′
min will be adopted as the guideline of

our concatenated scheme design. In particular we will de-
sign trellis codes that attempt to maximize ∆

′
min, by us-

ing set partitioning to increase the minimum number of non
zero terms det

(
XtX

†
t

)
in (5).

3. TRELLIS CODED MODULATION

The uncoded system (Case 1) and partitioned Golden
code system (Case 2) are discussed in [3, 11]. Here, we pro-
pose a systematic design approach for Case 3. We analyze
the systematic design problem of this concatenated scheme
by using Ungerboeck style set partitioning rules for coset
codes [5–7]. The design criterion for the trellis code is de-
veloped in order to maximize ∆′

min, since this results in the
maximum lower bound on the asymptotic coding gain of the
GST-TCM over the uncoded Golden code

γas ≥
√

∆′
min/Es,1√

δmin/Es,2

. (6)
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Figure 1: General encoder structure of the concatenated scheme.

Before we design the coding scheme, we briefly recall the
set partition chain in [3].

Partitioning the Golden code – Let us consider a sub-
code Gk ⊆ G for k = 1, . . . , 4, obtained by

Gk = {XBk, X ∈ G}, (7)

where

B =
[

i(1− θ) 1− θ
iθ iθ

]
. (8)

This provides the minimum square determinant 2kδmin (see
Table 1). It is shown that the codewords of Gk, when vec-
torized, correspond to different sublattices of Z8. It can be
verified that these lattices form the lattice partition chain

Z8 ⊃ D2
4 ⊃ E8 ⊃ L8 ⊃ 2Z8 (9)

where D2
4 is the direct sum of two four-dimensional Shäfli

lattices, E8 is the Gosset lattice and L8 is a lattice of index
64 in Z8. Any two consecutive lattices Λ ⊃ Λ′ in this chain
form a four way partition, i.e., the quotient group Λ/Λ′ has
order 4. Let [Λ/Λ′] denote the set of coset leaders of the
quotient group Λ/Λ′. The lattices in the partition chain
can be obtained by Construction A [9], using the nested se-
quence of linear binary codes Ck = (8, 8−2k, dmin), where
dmin is the minimum Hamming distance and k = 0, . . . , 4,

C0 = (8, 8, 1) ⊃ C1 = (8, 6, 2) ⊃ C2 = (8, 4, 4) (10)
⊃ C3 = (8, 2, 4) ⊃ C4 = (8, 0,∞)

Let Gk denote the generator matrix of the code Ck for k =
1, 2, 3. We have

G1 =




1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1




G2 =




0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1




G3 =
[

0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

]

Following the track of [5–7], we consider the lattice par-
tition chain Λ ⊃ Λ′ ⊃ Λ`, where Λ,Λ′, Λ` are any three
consecutive lattices in the partition chain. We can write

Λ = Λ` + [Λ/Λ`] = Λ` + [Λ/Λ′] + [Λ′/Λ`].

Let C,C ′ and C ′′ be the corresponding codes in (10). Then
we can write1

Λ = Λ` + [C/C ′′] = Λ` + [C/C ′] + [C ′/C ′′] . (11)

The coset leaders in [C/C ′] form a group of order 4
(Z/2Z×Z/2Z), which is generated by two binary generat-
ing vectors h1 and h2

[C/C ′] = {b1h1 + b2h2 | b1, b2 ∈ GF (2)}
If we consider all the lattices in (9), and the corresponding
nested sequence of linear binary codes Ck in (10), we have:

[C0/C1] :

{
h(1)

1 = (0, 0, 0, 0, 0, 0, 0, 1)
h(1)

2 = (0, 0, 0, 1, 0, 0, 0, 0)
(12)

[C1/C2] :

{
h(2)

1 = (0, 0, 0, 0, 0, 0, 1, 1)
h(2)

2 = (0, 0, 0, 0, 0, 1, 0, 1)

[C2/C3] :

{
h(3)

1 = (0, 1, 0, 1, 0, 1, 0, 1)
h(3)

2 = (0, 0, 1, 1, 0, 0, 1, 1)

[C3/C4] :

{
h(4)

1 = (0, 0, 0, 0, 1, 1, 1, 1)
h(4)

2 = (1, 1, 1, 1, 1, 1, 1, 1)

1Note that the binary components in GF (2) of the coset leaders are
lifted to the ring of integers with an abuse of notation.
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Level Subcode Lattice Binary code ∆min

0 G Z8 C0 = (8, 8, 1) δmin

1 G1 D2
4 C1 = (8, 6, 2) 2δmin

2 G2 E8 C2 = (8, 4, 4) 4δmin

3 G3 L8 C3 = (8, 2, 4) 8δmin

4 G4 = 2G 2Z8 C4 = (8, 0,∞) 16δmin

Table 1: The Golden code partition chain with correspond-
ing lattices, binary codes, and minimum squared determi-
nants.
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Figure 2: The 4-state encoder with g1(D) = 1 and g2(D) =
D and corresponding trellis diagram. Labels on the left are
outgoing from each state clockwise, labels on the right are
incoming counterclockwise.

Encoder structure – Fig. 1 shows the encoder structure
of the proposed concatenated scheme. The input bits feed
two encoders, an upper trellis encoder and a lower lattice
encoder.

Generalizing (11), we consider two lattices Λ and Λ`

from the lattice partition chain in Table 1, such that Λ` is a
proper sublattice of the lattice Λ, where ` denotes the rela-
tive partition level of Λ` with respect to Λ. Let `0 denote the
absolute partition level of the lattice Λ. For example, with
`0 = 0, ` = 2, we have Λ = Z8 and Λ` = 2Z8.

For two lattices Λ and Λ`, we have the quotient group
Λ/Λ` with order Nc = |Λ/Λ`| = 4`, which corresponds to
the total number of cosets of the sublattice Λ` in the lattice
Λ. We assume that we have 4q input bits. The upper encoder
is a trellis encoder that operates on q1 information bits.
Given the relative partition depth `, we select a trellis code
rate Rc = 1/`. The trellis encoder outputs nc = q1/Rc bits,
which are used by the coset mapper to label the coset leader
c1 ∈ [Λ/Λ`]. The mapping is obtained by the product of the
nc bit vector with a binary coset leader generator matrix H1

with rows h(`0+1)
1 ,h(`0+1)

2 , · · · ,h(`0+`)
1 ,h(`0+`)

2 , where the
rows are taken from (12). This will limit q1 = 2.

The lower encoder is a sublattice encoder for Λ` and op-
erates on q2+q3 information bits, where q2 = 2×(4−`−`0)
and q3 = 4q − q1 − q2. The q2 bits label the cosets
of 2Z8 in Λ` by multiplying the matrix H2 with rows

h(`0+`+1)
1 ,h(`0+`+1)

2 , · · · ,h(4)
1 ,h(4)

2 , which generates the
coset leaders c2 ∈ [Λ`/2Z8]. We finally add both coset
leaders of c1 and c2 modulo 2 to get c′. The q3 bits go
through 2Z8 encoder and generate vector 2u, u ∈ Z8,
which is added to c′ (lifted to have integer components) and
mapped to the Golden codeword Xt.

We now focus on the structure of the trellis code to be
used. We consider linear convolutional encoders over the
quaternary alphabet Z4 = {0, 1, 2, 3} with mod 4 opera-
tions, in order to match the four way partitions. We assume
the natural mapping between pairs of bits and Z4 symbols,
i.e., 0 → 00, 1 → 01, 2 → 10, 3 → 11. Let β ∈ Z4

denote the input symbol and α1, . . . , α` ∈ Z4 denote the
` output symbols generated by the generator polynomials
g1(D), . . . g`(D) over Z4. For example, Figure 2 shows a 4
state encoder and the trellis labels for outgoing and incom-
ing branches are listed from top to bottom. Figure 3 shows
how the Nc cosets can be addressed through a partition tree
of depth 2.

Trellis labeling– In order to increase the potential cod-
ing gain, the lower bound ∆′

min in (5) should be maximized.
Let

∆par = 2`0+`δmin (13)

denote the minimum determinant of the trellis parallel tran-
sitions corresponding to the Golden code partition Λ` of ab-
solute level `0 + `. Let

∆sim = min
X6=02×2L

to+L′−1∑
t=to

det(XtX
†
t ) (14)

denote the minimum determinant on the shortest simple er-
ror event, where L′ is the length of the shortest simple error
event diverging from the zero state at to and merging to the
zero state at ti = to + L′ − 1.

The lower bound ∆′
min in (5) is determined either by

the parallel transition error events or by the shortest simple
error events in the trellis, i.e.,

∆′
min = min {∆par,∆sim}

≥ min
{

∆par, min
Xto

det(Xto
X†

to
) + min

Xti

det(Xti
X†

ti
)
}

.

The corresponding coding gain will be

γ′as = min {γ′as(∆par), γ′as(∆sim)} . (15)

Therefore, we have the following:
Design Criterion – We focus on ∆′

min. The incoming
and outgoing branches for each state should belong to dif-
ferent cosets that have the common father node as deep as
possible in the partition tree. This guarantees that simple
error events in the trellis give the largest contribution to
∆′

min.
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selects the first level and α2 selects the second level in the
partition tree.

In order to fully satisfy the above criterion for a given
relative partition level `, the minimum number of trellis
states should be Nc = 4`. In order to reduce complexity we
will also consider trellis codes with fewer states. We will see
in the following that the performance loss of these subopti-
mal codes (in terms of the above design rule) is marginal
since ∆par is dominating the code performance. Never-
theless, the optimization of ∆sim yields a performance en-
hancement. In fact, maximizing ∆sim has the effect of min-
imizing another relevant PWEP term.

Decoding – Let us analyze the decoding complexity.
The decoder is structured as a typical TCM decoder, i.e.
a Viterbi algorithm using a branch metric computer. The
branch metric computer should output the distance of the
received symbol from all the cosets of Λ` in Λ. The de-
coding complexity depends on two parameters: Nc and 2q1 .

4. CODE DESIGN EXAMPLES

In this section, we give two examples of GST-TCM with
different numbers of trellis states. We assume each frame
contains L = 130 symbols (2 × 2). We first describe the
uncoded Golden code schemes with the same frame length,
which are used as a reference system for performance com-
parison. The subscript t in (2) will be omitted for brevity.

Uncoded Golden code 7bpcu – A total of 14 bits must
be sent in a Golden codeword (2): the symbols a and c are
in a 8-QAM (3bits), while the symbols b and d are in a 16-
QAM (4bits). In this case we have Es,2 = (1.5+2.5)/2 = 2
and q = 3.5 bits.

Uncoded Golden code 6bpcu – A total of 12 bits must
be sent in a Golden codeword (2): the symbols a, b, c, d are
in a 8-QAM (3bits). This guarantees that the same average
energy is transmitted from both antennas. In this case we
have Es,2 = 1.5 and q = 3 bits.

Example 1 – The 4 and 16 state trellis codes using 16-
QAM constellation gain 3dB and 3.3dB, respectively, over
uncoded transmission at the rate of 7bpcu. We use Λ = Z8

and Λ` = E8, where `0 = 0, ` = 2. We have Es,1 = 2.5

and q = 3.5 bits. We have L′ = 2, L′ = 3 for 4 and 16 state
trellis codes.

We consider a two level partition with the quotient group
Λ/Λ` = Z8/E8 of order Nc = 16. The quaternary trellis
encoders for 4 and 16 states with rate Rc = 1/2, have q1 =
2 input information bits and nc = 4 output bits, which label
the coset leaders. The sublattice encoder has q2 = 4 and
q3 = 8 input bits, giving a total number of input bits per
information symbol q = (q1+q2+q3)/4 = 14/4 = 3.5bits.

The 4 state trellis structure is shown in Fig. 2. In such
a case, α1 chooses the cosets from L8 and α2 chooses the
cosets from Λ` = 2Z8. The four trellis branches merging
in each state belong to four different cosets of 2Z8 in L8,
since α1 is fixed and α2 varies. This guarantees an increased
∆′

min. On the other hand, the four trellis branches departing
from each state are in the cosets of L8 in E8, this does not
give the highest possible increase to ∆′

min, since α1 varies.
The above problem suggests the use of a 16 state en-

coder. In fact we note that the first output label α1 is fixed
for all outgoing and incoming states. This satisfies the pro-
posed design criteria. Compared to 4 state GST-TCM, 16
state GST-TCM has a higher decoding complexity.

Performance of both the proposed TCM and uncoded
transmission (7 bpcu) schemes is compared in Fig. 4. It is
shown that the proposed 4 and 16 state TCMs outperform
the uncoded case by 3.0dB and 3.3dB at the FER of 10−3.

Example 2– The 16 and 64 state trellis codes using
16-QAM gain 4.2 and 4.3 dB, respectively, over an un-
coded transmission scheme at the rate of 6 bpcu and Λ =
Z8,Λ` = L8, where `0 = 0, ` = 3. We have Es,1 = 2.5
and q = 3 bits.

We consider a three level partition with quotient group
Λ/Λ` = Z8/L8 of order Nc = 64. The quaternary trellis
encoders for 16 and 64 states with rate Rc = 1/3 have q1 =
2 input information bits and nc = 6 output bits, which label
the coset leaders. The sublattice encoder has q2 = 2 and
q3 = 8 input bits, giving a total number of input bits per
information symbol q = (q1 + q2 + q3)/4 = 12/4 = 3bits.

The 16 state GST-TCM has the following generator
polynomials: g1(D) = D, g2(D) = D2, g3(D) = 1 + D2,
where D is a delay operator mod 4. For the 16 state GST-
TCM, at each trellis state, four outgoing branches are la-
beled with α1, α2, α3, corresponding to input β ∈ Z4. In
this case, since α1 and α2 are fixed, α3 varies. This guaran-
tees an increased ∆′

min. The four trellis branches arriving in
each state are in cosets of E8. This does not give the highest
possible increase to ∆′

min since α2 varies. This results in a
suboptimal design, which yields

∆′
min ≥ min(8δmin, 4δmin + δmin + 2δmin) = 7δmin.

The above problem suggests the use of a 64 state encoder
with the generator polynomials: g1(D) = D, g2(D) =
D2, g3(D) = 1 + D3. In such a case, the output labels
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α1(D2
4), α2(E8) are fixed for all outgoing and incoming

states. Only α3(L8) varies to choose different subgroups
from the deepest partition level in this example. This fully
satisfies our design rule and yields

∆′
min ≥ min(8δmin, 4δmin+δmin+2δmin+4δmin) = 8δmin.

Compared to 16 state GST-TCM, the 64 state GST-TCM
has a higher decoding complexity. It requires Nc = 256 lat-
tice decoding operations in each trellis section, while the
16 state TCM only requires Nc = 64. Performance of
the proposed codes and the uncoded scheme with 6 bpcu
is compared in Fig. 5. We can observe that a 16 state GST-
TCM outperforms the uncoded scheme by 4.2 dB and 3.1
dB away from outage probability at the FER of 10−3. The
64 state GST-TCM outperforms the uncoded case by 4.3 dB
and 3 dB away from outage probability at FER of 10−3.

5. CONCLUSIONS

In this paper, we presented GST-TCM, a coding scheme
suitable for slow fading 2 × 2 MIMO systems. The inner
modulation is the Golden code, which provides the full di-
versity and non-vanishing determinant property. Lattice set
partitioning is designed specifically to increase the mini-
mum determinant of the Golden codewords, which label the
branches of the trellis code. Viterbi algorithm is applied in
trellis decoding, where branch metrics are computed by us-
ing a lattice decoder. The general framework for GST-TCM
design and optimization is based on Ungerboeck TCM de-
sign rules.

Future work will explore further code optimization, by
an extensive search based on the determinant distance spec-
trum and extension to MIMO systems with more than two
tx/rx antennas.
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Figure 5: Performance comparison of 16- and 64-state trel-
lis codes using 16-QAM constellation and an uncoded trans-
mission at the rate 6bpcu, Λ = Z8, Λ` = L8, ` = 3.
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