
Permuted Successive Cancellation Decoder
for Polar Codes

Harish Vangala, Emanuele Viterbo, and Yi Hong,
Dept. of ECSE, Monash University, Melbourne, VIC 3800, Australia.

Email: {harish.vangala, emanuele.viterbo, yi.hong}@monash.edu

Abstract—We study a new variant of Arikan’s successive
cancellation decoder (SCD) for polar codes. We first propose
a new decoding algorithm on a new decoder graph, where the
various stages of the graph are permuted. We then observe that,
even though the usage of the permuted graph doesn’t affect the
encoder, it can significantly affect the decoding performance of
a given polar code. The new permuted successive cancellation
decoder (PSCD) typically exhibits a performance degradation,
since the polar code is optimized for the standard SCD. We
then present a new polar code construction rule matched to the
PSCD and show in simulations that this can yield BER gains
for high code rates. For lower rates we observe that the polar
code matched to a given PSCD performs as well as the original
polar code with the standard SCD. We also see that a PSCD
with a reversal permutation can lead to a natural decoding order,
avoiding the standard bit-reversal decoding order in SCD without
any loss in performance.

Keywords—Successive cancellation decoder, permuted succes-
sive cancellation decoder, decoding order, permuted polar code
construction, permutation invariance of the polar encoder.

I. INTRODUCTION

An important property of the first provably capacity achieving
polar codes by Arikan [1] is their low complexity decoding
of the order of O(N logN), where N is the block length. For
being the first class of provably capacity achieving codes with
explicit low complexity recursive structure at both encoder and
decoder, polar codes are becoming attractive for practical im-
plementation. Indeed, implementations are reported for polar
codes with very high block-lengths up to 217 [2]–[4]

The classic successive cancellation decoder (SCD) for polar
codes proposed by Arikan is an important element in proving
the capacity theorems for polar codes. In practice, the SCD
also exhibits several useful properties such as fixed, deter-
ministic complexity and recursive structure with very good
performance. However, in its original form, the decoder is
known to have worse performance at finite block-lengths,
when compared with the best available LDPC codes [5].

A number of variations to the classic successive cancellation
decoder (SCD) are proposed to improve the finite block-length
performance of the polar codes [5]–[13]. It is worth noting that
the best known decoding algorithms to polar codes continue
to exploit the basic successive cancellation algorithm towards
better performance, even though many distinct, alternative
decoding algorithms are available such as belief propagation
[14]–[16]. However, the performance improvements gained by
the proposed decoder variations generally come at the cost of
a higher complexity compared to the SCD.

This paper was made possible by NPRP grant #NPRP5-597-2-241 from the
Qatar National Research Fund (a member of Qatar Foundation).

An important component of the SCD algorithm is its en-
coding graph, where likelihoods evolve from right to left. The
encoder graph is a cascade of log2N stages. Such a graph has
the property that any permutation in the order of the log2N
stages yields an equivalent encoder. We later came to know
that such property was already observed in an example of
N = 8 in [17], although no proof was given. Here, we give
a formal proof.

Although the decoder uses a similar graph structure, the
usage of a new graph with permuted stages yields different
decoding behavior. The effect of these permutations on the
decoder performance has not been studied in the literature. In
this paper we study this new variant of SCD, which we call a
permuted successive cancellation decoder (PSCD), along with
its performance and possible enhancements.

The main contributions of this paper are listed below, in the
order of their mentioning in this paper.
• We formally prove that an arbitrary permutation in the

encoder graph has no effect on the code, supporting the
conjecture in [17].

• We show that an arbitrary permutation in the decoder
graph may degrade the performance.

• We show that the performance loss is due to the mismatch
of the decoder to the original polar code construction.

• We present a new construction rule of polar codes
matched to the PSCD, which assures the capacity achiev-
ing property (see Sec. III).

• We show by simulation that when a polar code is matched
to the PSCD, then its performance will be at least as
good as the original polar code with the standard SCD
and further gains can be achieved for high rate codes.

• We show that, a PSCD with reversal permutation order in
the stages of the decoding graph, enables to avoid the bit-
reversal permutation involved in classic SCD, resulting in
a natural decoding order of bits.

The rest of the paper is organized as follows. In the Sec. II,
we briefly recall the basics of polar codes. Next, we propose
our new permuted polar codes in Sec. III. Sec. IV provides
the simulation results and the conclusions are in Sec. V.

II. POLAR CODING

A polar code is completely specified by the four-tuple
(N,K,F ,vF ), where N is the code length in bits (or block-
length), K is the number of information bits encoded per
codeword (or code dimension), vF is the binary vector of
length N − K (frozen bits) and F is a subset of N − K

ISITA2014, Melbourne, Australia, October 26-29, 2014

Copyright (C) 2014 by IEICE 451



indices from {0, 1, . . . , N − 1} (frozen bit locations).
Given any subset of indices I from a vector x, we denote the

corresponding sub-vector as xI . Given any subset of column
indices I from a matrix A, we denote the corresponding sub-
matrix AI .

For a (N,K,F ,vF ) polar code we describe below the
encoding operation for a vector of information bits u of length
K. Let n = log2(N) and G , F⊗n = F ⊗ · · · ⊗ F be the
n-fold Kronecker product of F , [ 1 1

0 1 ].
Then, a codeword is generated as

x = GFc u+GFvF , (1)

where Fc , {0, 1, . . . , N − 1}\F corresponds to the non-
frozen bit indices. Alternatively,

x = G d (2)

where d ∈ {0, 1}N such that dF = vF and dFc = u.

Note that the second part of (1) is a constant. Typically, the
frozen bits vF are set to zero and we follow this convention
throughout the paper.

An efficient implementation of (2) proposed by Arikan, is
shown in Fig. 1. Note that in general, there will be n stages.

Construction of Polar Codes – The choice of the set F is an
important step in polar coding often referred to as polar code
construction. A significant amount of literature is devoted to
this operation [1], [18]–[22]. The original algorithm, proposed
in [18] and improved in [21], is based on the Bhattacharyya
bound approximation. Later proposed algorithms improve on
this approximation at the cost of higher complexity. For
simplicity, we use the original polar code construction al-
gorithm, which is given by the following recursion [18] for
j = 0, . . . , n−1 with initial z0,0 = 0.5 (or chosen from [21]),

zj+1,i =

2zj,i − z2j,i , if 0 ≤ i < 2j

z2j,i−2j , if 2j ≤ i < 2j+1
(3)

The indices of the highest N −K values in the set of N final
stage values {zn,i : i = 0, 1, . . . , N − 1}, will be taken as the
set F . This algorithm is an evolution from right to left of the
Bhattacharyya parameters of channels (see Fig. 1).

Later in this paper, we propose an efficient implementation
of the above algorithm for a more general case (Algorithm 2).

Successive Cancellation Decoder (SCD) – The SCD algo-
rithm [1] follows the same encoder diagram in Fig. 1. The
likelihood ratio LR (or likelihood in short) values evolve in
the reverse direction from right-to-left, as explained in [1].

At every stage in Fig. 1, each EXOR adder forms a unit
circuit connecting an upper branch to a lower branch through
a vertical connection, as labeled. Initially, the likelihoods are
computed from the channel observations at the right end of the
circuit, and they evolve through the unit circuits from right to
left on the graph. Once a likelihood evolves to the left end of
the circuit a decision is made and it is propagated from left to
right to update the bits on the rest of the graph. Specifically,

STAGE - 3 STAGE - 2 STAGE - 1 STAGE - 0

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

d14

d15

C
o

n
n

ec
ti

o
n

Lower 
Branch

Upper
Branch

Fig. 1. Arikan’s O(N log2N) complexity encoder graph of (2) at N = 16

in each unit circuit, an upper branch likelihood is calculated
first while a lower branch likelihood is calculated only after a
decision is available on the upper branch. The details about the
likelihood equations update are available in [1]. We remark the
special decoding order of bits, namely the bit-reversal order,
which is unique for this decoder structure.

A full implementation of the above standard SCD is given
by Algorithm 1 and the two recursive functions UpdateL and
UpdateB, which are given in the next page. Algorithm 1 is
the main module calling the recursive functions UpdateL
and UpdateB. The functions are compactly presented with
a recursive implementations, but can be easily unfolded into
non-recursive form using standard techniques.

The matrices B and L denote the matrices of bits and
likelihood ratios, respectively. These are accessible to all three
modules and make up the O(N logN) space complexity of
the decoder. The function bitreversal(i) represents the new
index obtained by the well-known bit reversal permutation of
the n bit binary representation of index i.

III. PERMUTED POLAR CODING

We define a permutation in SCD as the rearrangement of the
stages {0, 1, . . . , n− 1} in Fig. 1. The new decoder is called
a permuted successive cancellation decoder (PSCD).

A PSCD is completely specified by the permutation vector
π , [π0, π1, . . . , πn−1], where decoding stages π0, π1 . . .
appear from left to right. For example, π = [n − 1, . . . , 1, 0]
denotes Arikan’s classic SCD (Fig. 1) and π = [0, 1, . . . , n−1]
denotes the PSCD with fully reversed order of stages.

In the next two subsections, we see the effect of a π -
permuted graph on the encoding and decoding of polar codes.

ISITA2014, Melbourne, Australia, October 26-29, 2014

Copyright (C) 2014 by IEICE 452



Algorithm 1 : Main Module of SCD Algorithm

INPUT : (N,K,F ,vF = 0) and received y.
OUTPUT: û, the estimation of transmitted u.

1: Allocate and make visible to the other functions N × (n+ 1)
matrices B, L and set them to NaN.

2: n = log2N
3: Initialize last column L[:][n] =Pr(y|0)/Pr(y|1) with likelihoods

from channel observations y
4: for i = 0, 1, . . . , N − 1 do
5: l = bitreversal(i)
6: UpdateL(l, 0) B Update L[l][0] and L
7: if l ∈ F then
8: B[l][0] = 0
9: else

10: B[l][0] =

{
0, if L[l][0] ≥ 1

1, else
11: end
12: UpdateB(l, 0) B Broadcast bit-l & update B
13: end
14: d = B[:][0] B First column of matrix B
15: û = dFc B Information bits

Function UpdateL(i, j) B Recursive L.R. computation

INPUT : Element indices i, j
OUTPUT: Recursively updated matrix L

1: s = 2n−j

2: l = (i mod s)
3: if l < s/2 then B Upper branch
4: if (L[i][j + 1] = NaN) then
5: UpdateL(i, j + 1); end;

6: if (L[i+ s/2][j + 1] = NaN) then
7: UpdateL(i+ s/2, j + 1); end;

8: L[i][j] =
L[i][j + 1]L[i+ s/2][j + 1] + 1

L[i][j + 1] + L[i+ s/2][j + 1]
9: else B Lower branch

10: if B[i− s/2][j] = 0 then
11: L[i][j] = L[i][j + 1]L[i− s/2][j + 1]
12: else

13: L[i][j] =
L[i][j + 1]

L[i− s/2][j + 1]
14: end
15: end

Effect of Permutation on the Encoder — The encoding in
(2) can be written as:

G = F⊗n =

n−1∏
i=0

(I2n−1−i ⊗ F⊗ I2i) (4)

It can be easily verified that the n stages at the encoder in
Fig. 1, are represented by each term in (4). In Appendix we
prove that these stages commute with each other, i.e.,

(I2n−1−i ⊗ F⊗ I2i) · (I2n−1−j ⊗ F⊗ I2j )

= (I2n−1−j ⊗ F⊗ I2j ) · (I2n−1−i ⊗ F⊗ I2i) ∀i, j (5)

Hence, we conclude that the encoder is permutation-invariant.
Effect of Permutation on the Decoder — Since the encoder is

permutation-invariant, it is interesting to know how a decoder
would behave w.r.t. a permutation π. It can be easily observed
that the likelihoods evolution in the graph from right to left
[1] is a nonlinear operation and hence the order of the stages

Function UpdateB(i, j) B Broadcasting of decisions

INPUT : Element indices i, j
OUTPUT: Recursively updated matrix B

1: s = 2n−j

2: l = (i mod s)
3: if l < s/2 or j ≥ n then B Upper branch
4: return
5: else B Lower branch
6: B[i− s/2][j + 1] = B[i][j]⊕B[i− s/2][j]
7: B[i][j + 1] = B[i][j]
8: UpdateB(i, j + 1)
9: UpdateB(i− s/2, j + 1)

10: end

may affect the overall decoder performance. A study of such
effects is our main contribution in this paper.

Given a PSCD specified by π, Algorithm 1 must be modified
for: (i) the appropriate new decoding order replacing bit-
reversal decoding order (step-5, Algorithm 1) (ii) the evolution
of likelihoods (step-6, Algorithm 1) and (iii) broadcasting of
decisions (step-12, Algorithm 1). Table I below summarizes
these modifications.

TABLE I
SUMMARY OF CHANGES IN SCD ALGORITHM FOR PSCD

Module Line No. Replace With

Algorithm 1 (SCD) 5 l = nextindex(π, l)

UpdateL(i,j) 1 s = 21+πn−1−j

UpdateB(i,j) 1 s = 21+πn−1−j

Note that, the first modification requires a new function
rather than bit-reversal function. A naive solution, such as an
exhaustive search to find which next channel is computable,
will have O(N) additional complexity for each bit. This is
avoided by using the function nextindex(π, p). The new
function nextindex(π, p) results in the same complexity as
that of a bit-reversal algorithm.

In simulations (Sec. IV) we observe that the performance
of such a decoder can be degraded. However, we will show
below how we can address this issue.

A polar code is constructed to optimize its performance
assuming that the decoder uses Arikan’s standard SCD struc-
ture. Therefore it may not be fair to expect the same per-
formance on a new sub-optimal decoder, for which the code
is not matched. This motivates us to design a matching code
construction for PSCD. Hence we propose Algorithm 2, an
efficient implementation of (3) extended for PSCD, taking the
original polar code construction algorithm (3) as a special case,
when π = [n− 1, . . . , 1, 0].

As suggested by a reviewer, the extended code construction
(algorithm 2) yields the same estimations of the Bhattacharyya
bounds of the bit channels, but in a different order. By simi-
larly freezing the least reliable bits in such new order, we can
obtain a similar FER performance, whenever these bounds are
tight. More importantly, based on this invariance of bounds to
permutation, we can conclude that the PSCD with the matched
code construction continues to be capacity achieving.

ISITA2014, Melbourne, Australia, October 26-29, 2014

Copyright (C) 2014 by IEICE 453



Function nextindex(π, p) BDecoding Order

INPUT : Current index p and permutation π = [π0, . . . , πn−1]

OUTPUT: Next decodable bit index q, in the new decoding order

1: if (p == NaN) then q = 0and return. B First index

2: Let p ≡
∑n−1
t=0 pt2

t be the binary-representation of p

3: x =
(∑n−1

t=0 pπt2
t
)

B Leftmost stage in π is LSB

4: x = x+ 1

5: Let x ≡
∑n−1
t=0 xt2

t

6: q =
(∑n−1

t=0 xt2
πt

)

However, we show in Sec. IV by simulations that the BER
of PSCD for matched code (using algorithm 2) can vary due
to the new decoding order induced by PSCD, and can outper-
form the BER of SCD for original polar code at higher rates.
Typically, we observed that BER performance of PSCD for
matched code is as good as the original.

Note that there are n! alternative permutations for use under
PSCD and matched code, having performance as good as SCD
and original polar code. Among them, one particular case of
interest is the reversal permutation i.e., π = [0, 1, . . . , n− 1],
since it has an interesting property that the decoding order be-
comes equal to the natural order of bits at encoding. This may
be of great practical interest, for e.g., to avoid the additional
complexity of bit-reversal permutation (or nextindex(π, p)
in general), thereby reducing the overall latency of the decoder
at no loss in performance (see Fig. 3).

IV. SIMULATIONS

In this section we consider block-lengths N = 256, 1024,
and 2048 with rates R = 0.5, 0.7, and 0.9, respectively. In
the figures, we use abbreviations SCC and PSCC to denote
the code constructions for SCD and PSCD, respectively. We
consider Binary Input Additive White Gaussian Noise (BI-
AWGN) channel in all simulations. Following the discussion
in Sec. III, we observed in simulations that FER of PSCD
under PSCC is indeed very close to that of a standard polar
code under SCD. Due to space limitations, we omit the plots
of FER and show only the plots of BER.

Fig. 2 shows the performance comparison of PSCD and
SCD where N = 256, R = 0.5. We observe that typically
there is a performance degradation when PSCD is used instead
of SCD for the same polar code. This also says that some
permutations can have no significant impact to performance.

Fig. 3 shows that the performance comparison of Arikan’s
polar code using SCD and PSCD, and the new proposed codes
constructed for PSCD at N = 1024 and R = 0.7. We see that
the performance of the new code constructed for PSCD is at
least as good as the performance of the classic SCD.

Fig. 4 illustrates the performance of the new code construc-
tion using PSCC and Arikan’s original polar code using SCD
and PSCD at N = 2048 and R = 0.9. It shows that the
potential performance gain can be obtained for some permu-
tations at higher rates, when a PSCD along with a matched

Algorithm 2 : Polar Code Construction for PSCD
INPUT : N,K, n , log2N , initial seed z0 and the permutation

π = [π0, π1, . . . , πn−1]

OUTPUT: F ⊂ {0, 1, . . . , N − 1} with |F| = N −K

1: z ∈ RN and z[i] = z0 ∀i = 0, 1, . . . , N − 1

2: for j = 0 : n− 1 do B for each stage (right-to-left)
3: s = 21+πn−1−j B the sub-stage size
4: for l = 0 : N

s
− 1 do B For each sub-stage

5: for t = 0 : s
2
− 1 do B For each connection

6: T = z[ls+ t]

7: z[ls+ t] = 2T − T 2 B Upper channel
8: z[ls+ s/2 + t] = T 2 B Lower channel
9: end

10: end
11: end
12: [z, idx] = Sort(z, ’descending’) B obtain in idx, the indices

of z vector when sorted in descending order
13: F = idx[0 : N −K − 1] B return first N −K indices

code construction is used. These results demonstrate that the
permuted polar codes designed for PSCD can offer significant
gains over original polar codes at the same complexity.

V. CONCLUSION

We have proposed a new variant of Arikan’s SCD algorithm,
which involves reordering of the decoding stages within SCD.
We have found that the performance is at least as good as
the original decoder once we match the code construction to
the PSCD, while the performance is typically degraded when
they are not matched. We have seen that the performance
gains can be significant at high rates. We also saw how a
particular reversal permutation can avoid the bitreversal order
of decoding and outputs bits in natural order.

APPENDIX
PROOF OF ENCODER’S PERMUTATION-INVARIANCE

Consider the following identity for Kronecker product oper-
ation of sets of matrices {A1, . . . ,An} and {B1, . . . ,Bn},
each set containing square matrices of the same dimensions.

(A1 · · ·An)⊗ (B1 · · ·Bn) = (A1⊗B1) · · · (An⊗Bn) (6)

Using the above property, we can rewrite the Kronecker
products F⊗2,F⊗3, . . . as follows.

F⊗ F = (I2 · F)⊗ (F · I2)

= (I2 ⊗ F) · (F⊗ I2) (using (6))

F⊗ F⊗ F = F⊗ ((I2 ⊗ F) · (F⊗ I2)) (using above)

= (I2 · I2 · F)⊗ ((I2 ⊗ F) · (F⊗ I2) · I4)

=(I4 ⊗ F) · (I2 ⊗ F⊗ I2) · (F⊗ I4) (using (6))

By induction we have (see (4)):

F⊗n =

n−1∏
i=0

(I2n−1−i ⊗ F⊗ I2i)

where we can easily verify that each stage in Fig. 1 is
implemented by one of the product terms.

ISITA2014, Melbourne, Australia, October 26-29, 2014

Copyright (C) 2014 by IEICE 454



0 1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 in dB

B
it
 E

rr
o
r 

R
a
te

 

 

Arikan’s SCD

[5 6 7 4 3 2 1 0]−PSCD with SCC

[2 7 3 4 5 1 0 6]−PSCD with SCC

[1 4 7 3 6 2 5 0]−PSCD with SCC

[1 4 0 5 3 7 6 2]−PSCD with SCC

Fig. 2. Performance comparison of PSCD and SCD under original polar
construction rule at N = 256 and R = 0.5 in BI-AWGN channel

0 1 2 3 4 5 6 7 8
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 in dB

B
it
 E

rr
o

r 
R

a
te

 

 

Arikan SCD with SCC

PSCD with SCC   [0 1 2 3 4 5 6 7 8 9] (reversal)

PSCD with SCC   [5 1 8 7 4 3 2 6 9 0]

PSCD with SCC   [0 8 6 2 4 3 5 7 9 1]

PSCD with SCC   [3 9 2 4 5 0 1 8 6 7]

PSCD with SCC   [4 6 2 7 5 3 8 1 9 0]

PSCD with PSCC [0 1 2 3 4 5 6 7 8 9] (reversal)

PSCD with PSCC [5 1 8 7 4 3 2 6 9 0]

PSCD with PSCC [0 8 6 2 4 3 5 7 9 1]

PSCD with PSCC [3 9 2 4 5 0 1 8 6 7]

PSCD with PSCC [4 6 2 7 5 3 8 1 9 0]

Fig. 3. Performance comparison of SCD under original polar code construc-
tion, PSCD under same construction, and PSCD under new code construction
at N = 1024 and R = 0.7 in BI-AWGN channel

Now, without loss of generality, consider any two elements
of the above product (4) with distinct indices j, i (j > i).

(I2n−1−i ⊗ F⊗ I2i) · (I2n−1−j ⊗ F⊗ I2j )

= {I2n−j ⊗ (I2j−i−1 ⊗ F⊗ I2i)} · {(I2n−1−j ⊗ F)⊗ I2j}

= {I2n−j · (I2n−1−j ⊗ F)} ⊗ {(I2j−i−1 ⊗ F⊗ I2i) · I2j}
(using (6))

= {(I2n−1−j ⊗ F) · I2n−j} ⊗ {I2j · (I2j−i−1 ⊗ F⊗ I2i)}

= (I2n−1−j ⊗ F⊗ I2j ) · (I2n−1−i ⊗ F⊗ I2i) (using (6))

The above proves that any two terms of (4) commute with
each other. This implies that any arbitrary permutation in the
encoder graph is equivalent to the original graph.

REFERENCES
[1] E. Arikan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] C. Zhang, B. Yuan, and K. K. Parhi, “Reduced-latency sc polar decoder
architectures,” in International Conference on Communications (ICC),
Ottawa, ON, June 2012, pp. 3471–3475.

[3] A. Pamuk and E. Arikan, “A two phase successive cancellation decoder
architecture for polar codes,” in International Symposium on Information
Theory Proceedings (ISIT), Istanbul, July 2013, pp. 957–961.

4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 in dB

B
it
 E

rr
o

r 
R

a
te

 

 

Arikan SCD

PSCD with SCC   [5 0 6 7 10 2 8 1 9 4 3]

PSCD with PSCC [5 0 6 7 10 2 8 1 9 4 3]

Fig. 4. Performance gain with PSCD under new code construction rule at
N = 2048 and R = 0.9 in BI-AWGN channel

[4] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Transactions on
Signal Processing, vol. 61, no. 2, pp. 289–299, January 2013.

[5] I. Tal and A. Vardy, “List decoding of polar codes,” in International
Symposium on Information Theory, August 2011, pp. 1–5.

[6] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list
decoder for polar codes with cyclic redundancy check,” IEEE Comm.
Letters, vol. 16, no. 12, pp. 2044–2047, December 2012.

[7] Z. Huang, C. Diao, and M. Chen, “Multiple candidates successive
cancellation decoding of polar codes,” in Int. Conf. on Wireless Comm.
and Sig. Proc. (WCSP), Huangshan, 2012, pp. 1–4.

[8] K. Niu and K. Chen, “Crc-aided decoding of polarcodes,” IEEE Com-
munications Letters, vol. 16, no. 10, pp. 1668–1671, October 2012.

[9] ——, “Stack decoding of polar codes,” Electronics Letters, vol. 48,
no. 12, pp. 695–697, June 2012.

[10] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding
of polar coding,” IEEE Transactions on Communications, vol. 61, no. 8,
pp. 3100–3107, August 2013.

[11] S. Kahraman, E. Viterbo, and M. E. Celebi, “Folded successive can-
cellationation decoding of polar codes,” in Australian Communications
Theory Workshop (AusCTW), 15th Annual, 2014, pp. 57–61.

[12] H. Vangala, E. Viterbo, and Y. Hong, “Improved multiple folded
successive cancellation decoder for polar codes,” in 31st International
Union of Radio Science - General Assembly and Scientific Symposium
(URSI-GASS), Beijing, China, August 2014, (invited paper).

[13] ——, “A new multiple folded successive cancellation decoder for polar
codes,” in IEEE Information Theory Workshop (ITW), Hobart, Tasmania,
Australia, November 2014, (submitted).

[14] N. Goela, S. B. Korada, and M. Gastpar, “On lp decoding of polar
codes,” in IEEE Information Theory Workshop(ITW), Dublin, September
2010, pp. 1–5.

[15] A. Eslami and H. Pishro-Nik, “On finite-length performance of polar
codes: Stopping sets, error floor and concatenated design,” IEEE Trans-
actions on Communications, vol. 61, no. 3, pp. 919–929, March 2013.

[16] S. Kahraman, E. Viterbo, and M. E. Celebi, “Folded tree maximum-
likelihood decoder for kronecker product-based codes,” in Allerton
Conference on Communication, Control and Computing, 2013.

[17] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar
codes for channel and source coding,” in International Symposium on
Information Theory (ISIT), Seoul, July 2009, pp. 1488–1492.

[18] E. Arikan, “Performance comparison of polar codes and reed-muller
codes,” IEEE Communications Letters, vol. 12, no. 6, pp. 447–449, 2008.

[19] R. Mori and T. Tanaka, “Performance and construction of polar codes
on symmetric binary-input memoryless channels,” in International Sym-
posium on Information Theory (ISIT), 2009, pp. 1496–1500.

[20] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions
on Information Theory, vol. 59, no. 10, pp. 6562–6582, October 2013.

[21] S. Zhao, P. Shi, and B. Wang, “Designs of bhattacharya parameter
in the construction of polar codes,” in Int. Conf. on Wireless Comm.,
Networking and Mob. Comp. (WiCOM), Wuhan, Sep. 2011, pp. 1–4.

[22] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE
Transactions on Communications, vol. 60, no. 11, pp. 1–7, Nov. 2012.

ISITA2014, Melbourne, Australia, October 26-29, 2014

Copyright (C) 2014 by IEICE 455


