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Abstract— Communication channels that are characterized
by additive Gaussian noise have been well studied. However,
many practical systems are also known to experience non-
Gaussian noise. A convenient method to analyse such systems
is by modelling the non-Gaussian noise using Gaussian mixture
densities. In this paper we compute the constellation constrained
(CC) capacity of additive Gaussian mixture (GM) noise channels
with finite input alphabets. We study a wide spectrum of GM
densities covering single lobe, multi-lobe, symmetric tapering and
asymmetric tapering densities. We show that the CC capacity of
GM densities is larger than that of the Gaussian density of the
same variance at low SNR values. This observation points at
the drawback of the existing capacity achieving codes matched
to Gaussian channels, and highlights the need for constructing
new codes for such channels. We also study GM noise models
with data dependent density parameters, that have been recently
shown to approximate the NAND flash memory channels.

I. INTRODUCTION AND PRELIMINARIES

Communication in the presence of additive Gaussian noise

is well understood and has been extensively studied in the

past. In such systems, sufficient number of noise components

from individual sources combine together through the central

limit theorem to contribute Gaussian statistics [1]. However,

many practical systems are characterized by non-Gaussian

noise due to inadequate number of identical noise sources.

Some well known examples for non-Gaussian channels include

electromagnetic interference [2], underwater acoustic channels

[3], power line communication [4], and NAND flash memory

channels [5], [6], [7]. In these physical channels, the ambient

noise has been confirmed non-Gaussian through experimental

measurements.

Non-Gaussian noise sources have posed significant chal-

lenges to fit a suitable model to approximate their characteris-

tics. Modelling such sources is paramount from a theoretical

stand point to understand the limits of communication over

non-Gaussian channels. Among several approximation tech-

niques, Gaussian mixture (GM) densities have been used to

model a variety of non-Gaussian noise environments [1], [8].

Many works have addressed the problem of designing signal

processing and detection algorithms in Gaussian mixture noise

channels [9], [10], [1], [11], [12]. However, there are no works

which study the mutual information of additive GM noise with

finite input alphabet. It is important from a practical view point

to study the maximum achievable rate of communication with

finite input alphabet.

In this paper we study the mutual information of the additive

GM noise channel with uniform distribution on the finite

input alphabet. Similar studies have been reported in the

past for Gaussian distributions in multiple access channels

[13], interference channels [14], wiretap channels [15] and

cognitive radio networks [16] (also see the references within).

Such capacity expressions are referred to as constellation con-

strained (CC) capacity due to finite size on the input alphabet.

Throughout the paper, we refer the mutual information of the

additive GM noise with uniform input distribution as the CC

capacity of the additive GM noise channel. The contributions

of this paper are:

• We compute the CC capacity of the additive Gaussian

mixture noise with uniform distribution on the finite input

alphabets.

• We study a wide range of densities ranging from symmet-

ric tapering, skewed tapering and multi-lobe cases. For

these cases, we numerically show that the CC capacity

of the GM is indeed larger than that of the Gaussian

distribution of same variance at low SNR values. Inter-

estingly, for the case of symmetric tapering and skewed

tapering, we observe a cross-over behaviour between

the CC capacity curves of the GM and the equivalent

Gaussian noise.

• We also study the case when the non-Gaussian densities

are a function of the input information symbols which

are known to arise in the context of NAND flash memory

channels as shown in [6].

Our results point at the drawback of the existing capacity

achieving codes for Gaussian channels, and generate interest

in the construction of new codes for such channels.

II. SYSTEM MODEL

We consider a discrete time communication channel that is

characterized by the non-Gaussian additive noise Z. The input

to the channel is denoted by X which takes value from a finite

real alphabet S = {x1, x2, . . . , xN} of size N . The set S is

normalized such that
∑N

k=1
x2

k = N . We also assume uniform

input distribution on X . The signal model for this channel is

given by

Y =
√
PX + Z, (1)

where the scalar
√
P is used to vary the average transmit

power. We use the two-term Gaussian mixture (GM) model
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for the noise samples of Z. The probability density function

(pdf) of Z is given by

pZ(z) = pN (µ1, σ
2

1
) + (1− p)N (µ2, σ

2

2
),

where 0 ≤ p ≤ 1 and N (·, ·) denotes a Gaussian distribution.

This model is an approximation to Middleton Class A noise

model [8] and has been used to model physical noise in radio

and acoustic channels. It is easy to verify that the mean µ and

the variance σ2 of the GM are respectively given by

µ = p1µ1 + (1− p)µ2, (2)

and

σ2 = p(µ2

1
+σ2

1
)+(1−p)(µ2

2
+σ2

2
)−(pµ1+(1−p)µ2)

2. (3)

Using the scale factor
√
P , we define SNR as

SNR ,
PE[X2]

σ2
=

P

σ2
.

With finite input alphabet, the CC capacity of the GM noise

with uniform input distribution is given by I (X;Y ) = h(Y )−
h(Y |X), where h(·) denotes the differential entropy function.

Due to the finite size constraint, it is not possible to have closed

form expressions for the CC capacity. However, these numbers

can be numerically computed either using Gauss-Hermite

quadrature integration [17] or Monte Carlo simulations. Note

that closed form expressions for the CC capacity are also

not available in the literature for Gaussian noise distributions.

As a result, even if one of the components in the mixture

has negligible contribution, it is not possible to evaluate

the CC capacity in closed form. Despite this shortcoming,

many groups have studied the CC capacity of Gaussian noise

channels through computer simulations, and have proposed

efficient precoding and signal processing techniques for such

channels [13], [14], [15], [16]. This work is one along that

direction where we rely on extensive numerical results to

understand the limits of the GM noise channel.

III. CAPACITY FOR GENERAL GAUSSIAN MIXTURE NOISE

CHANNELS

In this section we compute the CC capacity of GM

noise for various combinations of the GM parameters

{p, µ1, µ2, σ
2

1
, σ2

2
}. We encompass different cases of densi-

ties covering symmetric tapering, asymmetric tapering and

multi-lobe densities. For the numerical results, we use S =
√

4

14
{0, 1, 2, 3} as the input alphabet. For a given combination

of the GM parameters, we first compute the variance given in

(3). Then, we compute the CC capacity values as a function

of SNR = P
σ2 by varying the scalar P .1 In addition, for

comparison purposes, we present the CC capacity values for

a Gaussian distribution with the same variance as that of the

GM. In the following subsections, we discuss different cases

of GM densities and their CC capacity behaviour.

1The presented results are obtained using Gauss-Hermite quadrature inte-
gration with 40 samples to obtain the Hermite approximation. Due to space
considerations, we do not showcase the algorithm to calculate the CC capacity.
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Fig. 1. pdf of the GM (in dashed lines) with different degrees of tapering.
pdf of the Gaussian distribution (in solid lines) with same variance.
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Fig. 2. Capacity of 4-PAM constellation for noise densities presented in Fig.
1.

A. Sharp Tapering with Symmetry

We compute the CC capacity for different levels of steepness

in its tail distribution. We use the distribution

pZ(z) = pN (0, 1) + (1− p)N (0, 20),

and then vary the value of p to obtain several degrees of

steepness. In Fig. 1, we present the pdf of the GM when

p ∈ {0.1, 0.3, 0.7, 0.9}. From Fig. 1, we see that the tapering

of the GM density is sharper as p increases. Note that the

Gaussian distribution with the same variance is also depicted

in the same figure. The corresponding CC capacity curves are

given in Fig. 2 which shows that the CC capacity of the GM

is larger than that of the Gaussian at low SNR values, while

there is a cross-over in the CC capacity after a certain threshold

SNR. An interesting observation is that the gains in the CC

capacity increases as p increases.
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Fig. 3. pdf of the GM (in dashed lines) with different degrees of skewed
tapering. pdf of the Gaussian distribution (in solid lines) with same variance.
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Fig. 4. Capacity of 4-PAM constellation for noise densities presented in Fig.
3.

B. Sharp Tapering with Asymmetry

In this part we compute the CC capacity for different

degrees of asymmetric tapering. To bring in asymmetry, we

use

pZ(z) = pN (−1, 1) + (1− p)N (1, 20).

Similar to the previous subsection, we vary the value of p
to obtain several degrees of asymmetric tapering. In Fig. 3,

we present the pdf of noise when p ∈ {0.1, 0.3, 0.7, 0.9}. The

corresponding CC capacity values are given in Fig. 4. Note that

the CC capacity behaviour is similar to that of the symmetric

tapering case.

C. GM with Multi-lobe Distributions

We compute the CC capacity with multiple lobes in the

GM distribution. In order to create multi-lobe structure, we

vary the means µ1 and µ2 such that µ1 = −µ2. We use the
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Fig. 5. pdf of the GM (in dashed lines) with different degrees of multiple
lobes. pdf of the Gaussian distribution (in solid lines) with same variance.
Clockwise direction from the top left figure,, µ1 values of 1, 2, 6, and 4 are
used, respectively.
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Fig. 6. Capacity of 4-PAM constellation for noise densities presented in Fig.
5.

distribution

pZ(z) = 0.5N (µ1, 1) + 0.5N (µ2, 20).

In Fig. 5, we present the pdf of GM when µ1 = 1, 2, 4, and 6.

Note that the Gaussian distribution with the same variance

as that of the GM is also depicted. The corresponding CC

capacity values are given in Fig. 6 which shows that the CC

capacity of the GM is larger than that of the corresponding

Gaussian at low SNR values. However, note that the CC

capacity curve does not display the cross-over behaviour with

that of the Gaussian distribution. Finally, it is observed that the

advantage in the CC capacity increases as the multiple lobes

become prominent in the distribution.
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D. Explanation for the Capacity Behaviour of Gaussian Mix-

ture

We give an explanation to the low SNR improvement in the

CC capacity of the GM. To facilitate the argument, we use the

definition I (X;Y ) = h(Y )− h(Y |X). Since the scale factor√
P is associated with the symbol X , the term h(Y |X) is

independent of SNR. As a result, our argument is based on

the behaviour of h(Y ), which in turn is based on the pdf of

Y (denoted by pY (y)).
At low SNR, the symbols

√
P{x1, x2, . . . , xN} lie close to

each other. As a result, pY (y) which is defined as

pY (y) =

N
∑

k=1

1

N
pY/X(y|X = xk),

looks similar for both the Gaussian and the GM, i.e., the

effect of sharp tapering of the GM is not prominent as their

tails overlap. Hence, the h(Y ) values of the Gaussian and the

GM are close at low SNR. However, at moderate and high

SNR, the symbols
√
P{x1, x2, . . . , xN} move farther apart,

and hence, the sharp tapering of the GM is prominent. Thus,

pY (y) of Gaussian and the GM are clearly distinct. Hence,

the corresponding values of h(Y ) are not close at moderate to

high SNR. To exemplify this point, in Fig. 7 we plot pY (y)
for both the Gaussian and the GM at SNR = 3 dB (a low SNR

case) and SNR = 10 dB (a high SNR case). To obtain Fig. 7,

we use

pZ(z) = 0.5N (0, 1) + 0.5N (0, 20).

The top figure of Fig. 7 shows the closeness of the two

distributions at low SNR.

Finally, since the Gaussian distribution maximises the en-

tropy for a given variance, h(Y |X) for the GM is smaller than

that of the Gaussian distribution. Therefore, when h(Y ) values

are close, the formula I (X;Y ) makes sure that the GM gets

larger CC capacity than the Gaussian. Note that this is not a

formal proof for the low SNR dominance of the GM. This is

an intuitive explanation that we could gather after a thorough

analysis of the numerical results.

IV. DATA DEPENDENT NOISE DISTRIBUTION FROM

GAUSSIAN MIXTURES

In this section we study a communication channel where

the additive noise distribution depends on the input X . The

signal model is similar to that in Section II except for the

distribution of the additive noise Z. The conditional pdf of Z
given X = xk for k ∈ {1, 2, . . . , N} is given by

pZ/X(z|X = xk) = pkN (µ1,k, σ
2

1,k)+(1−pk)N (µ2,k, σ
2

2,k),

where 0 ≤ pk ≤ 1 and N (·, ·) denotes a Gaussian distribution.

The subscript k in the GM parameters highlights their depen-

dence on the channel input xk. With uniform distribution on

the input symbols, the pdf of Z is given by

pZ(z) =
1

N

N
∑

k=1

{

pkN (µ1,k, σ
2

1,k) + (1− pk)N (µ2,k, σ
2

2,k)
}

,
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Fig. 7. pdf of y for Gaussian (in solid lines) and GM (in dashed lines) at
SNR of 3 dB (top figure) and 10 dB (bottom figure).

It is straightforward to verify that the variance σ2 of Z is given

by

σ2 =
1

N

N
∑

k=1

{

{pk(µ2

1,k + σ2

1,k) + (1− pk)(µ
2

2,k + σ2

2,k)
}

−µ2,

where µ is the mean of the GM. Similar to Section II, we

define SNR as P/σ2. A known example for input dependent

additive noise channel is the NAND flash memory channel

[5], [6].

A. Numerical Results

For illustrative purposes, we consider a channel with an

input dependent GM distribution given by

pZ/X(z|X = x1) = N (0, κ10.5), (4)

where κ > 0 and

PZ/X(z|X = xk) = 0.5N (0, 1) + 0.5N (0, 20), (5)

for k = 2, 3, 4. The input alphabet is S =
√

4

14
{0, 1, 2, 3}.

We present the CC capacity values as a function of SNR for

κ = 1, 2, 4, 8. The different values of κ leads to cases when the

conditional distribution around x1 is wider than that around

x2, x3, x4. In Fig. 8, we plot the conditional pdfs in (4) and (5)

to capture the difference in the conditional distributions. We

present the corresponding CC capacity values as a function of

SNR in Fig. 9. In the same figure, we plot the CC capacity

with the Gaussian distribution of the same variance as that of

the GM. Similar to the observations in the previous section,

we see low SNR gains in the CC capacity of the GM over

the Gaussian distribution. However, in this case, an interesting

observation is that the cross-over point between the GM and

the Gaussian distribution occurs at lower SNR values as κ
increases.

In summary, our numerical results indicate that additive

noise channels with input dependent GM noise distributions

have similar CC capacity characteristics as that of the input
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Fig. 8. Different degrees of the conditional pdf around x1 (in solid
lines) and conditional pdf around xk for k = 2, 3, 4 (in dashed lines).
Clockwise direction from the top left figure, κ values of 1, 2, 8, and 4 are
used, respectively.

independent case. However, the SNR value at which the cross-

over in the CC capacity occurs depends on the difference

between the variance of the conditional distributions. In gen-

eral, CC capacity of input dependent GM models can be

computed for various combination of the GM parameters. We

have chosen a specific combination that is inspired by the con-

ditional distributions that were reported through measurements

for NAND flash channels (see [6, Sec. II.D]).

V. CONCLUSION

We have presented the CC capacity of additive Gaussian

mixture noise channels with finite input alphabets. Though

there have been many works that have addressed detection and

signal processing problems in the presence of the GM noise,

there were no prior works studying the mutual information in

such environments. Our research gives an idea of the differ-

ences in the achievable rates for the GM noise in comparison

with the Gaussian noise. The numerical results also highlight

the low SNR gains and the cross-over behavior of the GM

density with the Gaussian density. We have also studied the

CC capacity of channel models with input dependent noise

distributions. An interesting direction for future research is to

design coding schemes for GM models.
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