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Abstract—This paper addresses secure communications over
MIMO wiretap channels with the help of multiple cooperative
jammers. The worst-case scenario for Alice, Bob and jammers
is considered: Eve has the knowledge of all channel matrices,
while neither her channel matrix nor her location is known
to the remaining terminals. We propose an artificial noise
aided cooperative jamming (AN-CJ) scheme, allowing the total
jamming signals to be nulled at Bob. The new scheme is valid
for the case where the eavesdropper has more antennas than the
transmitter. To evaluate the performance of the AN-CJ scheme,
we first derive a closed-form expression for the achievable ergodic
secrecy rate with Gaussian input alphabets. Then, we show how
Gaussian input alphabets achieve the ergodic secrecy capacity.

I. INTRODUCTION

The broadcast nature of wireless channels allows unautho-

rized users in the coverage area to overhear the transmitted

signals. Physical layer security, pioneered by Wyner [1], is

concerned with the channel coding technologies such that,

the information leakage between a transmitter (Alice) and an

eavesdropper (Eve) vanishes as the codeword length tends

to infinity [2]. The notion of secrecy capacity was thereby

introduced to characterize the maximum transmission rate

from Alice to the intended user (Bob), below which Eve

receives zero bits of information [3]. The secrecy capacity of

ergodic fading channels was determined in [4]. The quasi-

static fading channel was initially examined in [5], where

the secrecy capacity outage probability is characterized. The

secrecy capacity of MIMO wiretap channel was derived in [6].

The achievable ergodic secrecy rate has been widely adopted

as a metric of security [7–11]

Recently, there have been considerable efforts devoted to

increasing the secrecy rate by adding controlled interference

at Eve, so called artificial noise (AN) [7] for the MIMO case.

In the AN scheme, Alice aligns an additive white Gaussian

noise (AWGN) signal, named “artificial noise”, within the null

space between Alice and Bob, thus only Eve is jammed. The

most significant weakness of this approach is its assumption:

Alice must have more antennas than Eve [7].

In this paper, we consider the use of the AN scheme

to a MIMO cooperative jammer case (AN-CJ): the helping

interference (the AN in the null space between the jammer and

BoB) is generated from third-party jammers. This interference

is only harmful to Eve, but not Bob. In our scheme, (i) no

upper bound on Eve’s antenna number is assumed; (ii) none of
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Alice, Bob and jammers need to know Eve’s channel informa-

tion; (iii) Eve has perfect knowledge of all terminals’ channel

information. A similar approach under different assumptions

was proposed in [12] (see Sec. II for details).

Note that our scheme is quite different from the conven-

tional cooperative jamming schemes in [8–11]. Specifically,

the authors in [8,9] considered a multiuser case over AWGN

channels, where the multiple users act as jammers and emit

interferences to both Eve and Bob, assuming the jammers

can cause more harm to Eve than to Bob. All these existing

schemes in [8–11] required the perfect Eve’s channel infor-

mation at Alice or jammers.

The main contribution of the paper is to study the secrecy

rate achieved by the proposed AN-CJ scheme.

• Derivation of the ergodic secrecy rate with Gaussian

input alphabets, as a function of Eve’s SNR, Bob’s SNR,

jamming power allocation schemes, and the number of

antennas of Alice, Bob, Eve, and the jammers.

• Derivation of a sufficient condition for the achievability of

ergodic secrecy capacity using Gaussian input alphabets.

The paper is organized as follows: Section II presents the

system model, followed by the analysis of secrecy rate in

Section III. Section IV analyzes the achievability of the ergodic

secrecy capacity. Conclusions are drawn in Section V. Proofs

of the theorems are given in Appendix.

Notation: Matrices and column vectors are denoted by upper

and lowercase boldface letters, and the Hermitian transpose,

inverse, pseudoinverse of a matrix B by BH , B−1, and B†,

respectively. |B| denotes the determinant of B. In denotes the

identity matrix of size n. An m × n null matrix is denoted

by 0m×n. We write � for equality in definition. A circularly

symmetric complex Gaussian random variable X with variance

σ2 is defined as X � NC(0, σ2). The real, complex, integer

and complex integer numbers are denoted by R, C, Z and Z [i],

respectively. I(X; Y ) represents the mutual information of two

random variables X and Y . We use the standard asymptotic

notation f (x) = O (g (x)) when lim sup
x→∞

|f(x)/g(x)| < ∞. �x�
rounds to the closest integer. A central complex Wishart matrix

A ∈ C
m×m with n degrees of freedom and covariance matrix

Σ, is defined as A � Wm(n,Σ).

II. SYSTEM MODEL

We consider a MIMO wiretap system model consisting

of a transmitter (Alice), an intended receiver (Bob), and a
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passive eavesdropper (Eve), with NA, NB, and NE antennas,

respectively. Let H ∈ C
NB×NA and G ∈ C

NE×NA be the

channel matrices between Alice to Bob and Alice to Eve,

respectively. Additionally, a set of N friendly jammers {Ji}N
1

are used to jam Eve, where each one has NJ,i antennas,

respectively (see Fig. 1). We assume that NB ≥ NA and

NJ,i > NB. Let NJ =
∑N

i=1 NJ,i be the total number of antennas

among all the jammers.

For the purpose of evaluating the achievable secrecy rate,

we assume that the codewords used at Alice are Gaussian input

alphabets, that is, Alice sends a complex vector u ∈ C
NA×1

with i.i.d. entries ∼ NC(0, σ2
u).

Let the matrices {HJB,i}N
1 represent the channels from Ji to

Bob, for 1 ≤ i ≤ N . Suppose that Ji knows HJB,i, using the

AN scheme [7], the ith jammer transmits

xJ,i = Zivi, (1)

where vi ∈ C
(NJ,i−NB)×1 is the “artificial noise” with i.i.d.

entries ∼ NC(0, σ2
v), and Zi = null(HJB,i) represents the null

space of HJB,i, i.e., HJB,iZi = 0NB×(NJ,i−NB). The vectors u

and {vi}N
1 are assumed to be mutually independent.

The signals received by Bob and Eve are given by

z = Hu +

N∑
i=1

HJB,iZivi + nB = Hu + nB, (2)

y = Gu +

N∑
i=1

HJE,iZivi + nE, (3)

where nB and nE are AWGN at Bob and Eve, respectively,

with i.i.d. entries ∼ NC(0, σ2
B) and NC(0, σ2

E). HJE,i ∈ C
NE×NJ,i

is the channel matrix between jammer Ji and Eve. All chan-

nel matrices, including H, G, {HJB,i}N
1 and {HJE,i}N

1 , are

assumed to be mutually independent (i.e., all terminals are

not co-located) and have i.i.d. entries ∼ NC(0, 1).

We set the average transmit power constraints Pu and PJ, as

Pu = E(||u||2) = NAσ2
u ,

PJ = E

(
N∑

i=1

||xJ,i||2
)

= (NJ − N · NB)σ2
v . (4)

We define Bob’s and Eve’s SNRs as

SNRB � σ2
u/σ2

B,

SNRE � σ2
u/σ2

E. (5)

We consider the worst-case scenario for Alice and Bob:

• Alice does not know any channel matrix.

• Bob only knows H.

• The ith jammer Ji only knows HJB,i, for all i.

• Eve has perfect knowledge of all channel matrices.

• No upper bound on NE or SNRE.

Instead, the scheme in [12] requires that

• Alice knows H.

• Eve does not know {HJB,i}N
1 .

We show that the AN-CJ scheme is valid even if the above

two restrictive assumptions are not satisfied.

Alice

Bob

Eve

1
J

N
J

H

1JB,
H

1JE,
H

NJE,
H

G

NJB,
H

Fig. 1. Cooperative Jamming for MIMO wiretap channel.

To simplify our analysis, we define three system parameters:

• α � σ2
u/σ2

E (SNRE)

• β � σ2
v/σ2

u (Jamming power allocation)

• γ � σ2
E/σ2

B (Eve-to-Bob noise-power ratio)

If γ > 1, we say Eve has a degraded channel. We note that

SNRB = αγ. (6)

III. ERGODIC SECRECY RATE WITH GAUSSIAN INPUT

ALPHABETS

In this section, we provide a detailed analysis on the ergodic

secrecy rate on the AN-CJ system. To present our result, we

first define some useful functions.

A. Definitions

We define ergodic secrecy capacity, as in [13]

C̄S � max
p(u)

{
I(u; z|H) − I(u;y|G,{HJE,i}N

1 , {HJB,i}N
1 )
}

. (7)

where I (X;Y |Z) � EZ [I (X;Y ) |Z], following the notation in

[14]. The maximum is taken over all possible input distribu-

tions p (u).

Since a closed form expression for C̄S is not always avail-

able, we resort to a lower bound given by

C̄S ≥ I(u; z|H) − I(u;y|G,{HJE,i}N
1 , {HJB,i}N

1 ) � R̄S, (8)

assuming Gaussian input alphabets, i.e., u and {vi}N
1 are

mutually independent vector with i.i.d. entries ∼ NC(0, σ2
u)

and NC(0, σ2
v), respectively.

We then define the following function, as in [15]

Θ(m, n, x) � e−1/x
m−1∑
k=0

k∑
l=0

2l∑
i=0

{
(−1)i(2l)!(n − m + i)!

22k−il!i!(n − m + l)!

·
(

2(k − l)

k − l

)
·
(

2(l + n − m)

2l − i

)
·
n−m+i∑

j=0

x−jΓ(−j, 1/x)

}
,

(9)
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where
( a

b

)
= a!/((a− b)!b!) is the binomial coefficient, n ≥

m are positive integers, and Γ(·, ·) is the incomplete Gamma

function.

We further define

Nmin � min {NE, NJ − N · NB} , (10)

Nmax � max {NE, NJ − N · NB} , (11)

N̂min � min {NE, D} , (12)

N̂max � max {NE, D} , (13)

where

D = NA + NJ − N · NB. (14)

Finally, we define a set of D power ratios {θi}D
1 , where

θi �
{

α 1 ≤ i ≤ NA

αβ NA < i ≤ D
(15)

B. Closed-form Expression for R̄S

R̄S can be evaluated using the results from [14, Th. 2], [15,

Th. 1] and [16, Th. 1], leading to the following theorem.

Theorem 1:

R̄S = Θ(NA, NB, αγ) + Θ(Nmin, Nmax, αβ) − Ψ (16)

where

Ψ =

⎧⎪⎨
⎪⎩ K

N̂min∑
k=1

det
(
R(k)

)
, β 	= 1

Θ(N̂min, N̂max, α), β = 1

(17)

K =
(−1)NE(D−N̂min)

Γ
N̂min

(NE)

2∏
i=1

μmiNE

i

2∏
i=1

Γmi(mi)
∏
i<j

(
μi − μj

)mimj

, (18)

Γk(n) =

k∏
i=1

(n − i)!,

and μ1 > μ2 are the two distinct eigenvalues of the diagonal

matrix diag

({
θ−1
i

}D

1

)
, with corresponding multiplicities m1

and m2 such that m1+m2 = D. The matrix R(k) has elements

r
(k)
i,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(μei
)D−j−di

(D − j)!

(D − j − di)!
, N̂min + 1 ≤ j ≤ D

(−1)di
ϕ(i, j)!

(μei
)ϕ(i,j)+1

, 1 ≤ j ≤ N̂min, j 	= k

(−1)diϕ(i, j)!eμei

ϕ(i,j)∑
l=0

Γ(l − ϕ(i, j), μei
)

(μei
)l+1

, otherwise

(19)

where

ei =

{
1 1 ≤ i ≤ m1

2 m1 + 1 ≤ i ≤ D

di =

ei∑
k=1

mk − i,

ϕ(i, j) = NE − N̂min + j − 1 + di.
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Closed-form Solution

N = 0, 1, 2, 4

Fig. 2. R̄S vs. γ and N with α = β = 2, NA = NB = 3, NE = 5 and
NJ,i = 5.

Proof: See Appendix A.

Theorem 1 gives the exact ergodic secrecy rate for the

AN-CJ scheme, with arbitrary SNRB (αγ), SNRE (α), power

allocation scheme (β) and NE. Note that (16) can be expressed

in terms of a finite number of incomplete Gamma functions,

thus provides a closed-form expression for R̄S.

If there is no jammer, i.e., N = 0, it is easy to show

R̄S = Θ(NA, NB, αγ) − Θ(NA, NE, α). (20)

Let us apply Theorem 1 to the analysis of an AN-CJ scheme

with α = β = 2 (3 dB), NA = NB = 3 and NE = 5.

Each friendly jammer is equipped with NJ,i = 5 antennas.

Fig. 2 shows the value of R̄S as a function of the channel

degradation γ and the number of jammers N . As expected,

the closed-form solution matches Monte Carlo simulation

perfectly. In particular, the use of the jammers (N > 0)

provides significantly better secrecy performance than without

using the jammer (N = 0).

Recalling that

C̄S ≥ R̄S. (21)

The above results show that by increasing the number of

jammers, positive secrecy capacity is available, even when

• Eve has a better channel than Bob.

• Eve has more antennas than Alice and Bob.

IV. ACHIEVING ERGODIC SECRECY CAPACITY WITH

GAUSSIAN INPUT ALPHABETS

In this section, we show the achievability of the ergodic

secrecy capacity using Gaussian input alphabets.

Theorem 2: If NE ≤ NJ − N · NB, as αβ → ∞, then

C̄S = R̄S = C̄Bob, (22)

where C̄Bob represents Bob’s ergodic channel capacity.
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Proof: See Appendix B.

According to (7), a universal upper bound on the ergodic

MIMO secrecy capacity is given by

C̄S ≤ max
p(u)

{I(u; z|H)} = C̄Bob. (23)

Remark 1: Combining (22) and (23), we de facto show

that with AN-CJ transmission scheme and Gaussian input

alphabets, if NE ≤ NJ − N · NB, the maximum ergodic MIMO

secrecy capacity can be achieved by increasing the jamming

signal power (i.e., αβ).

V. CONCLUSIONS

In this paper, we have considered the use of cooperative

jamming to enhance the security of MIMO wiretap chan-

nel. The proposed AN-CJ scheme is designed under realis-

tic scenarios where Eve has more antennas than Alice and

Eve’s channel information is not available to Alice, Bob

and the friendly jammers. To characterize the performance

of the AN-CJ scheme, we derived a closed-form expression

for the achievable ergodic secrecy rate with Gaussian input

alphabets, as a function of SNRB, SNRE, NA, NB, NE and

NJ. Furthermore, we have shown that the AN-CJ scheme

with Gaussian input alphabets achieves the maximum ergodic

secrecy capacity, when NE ≤ NJ − N · NB.

APPENDIX

A. Proof of Theorem 1

Recalling that

R̄S = I(u; z|H)−I(u;y|G,{HJE,i}N
1 , {HJB,i}N

1 ). (24)

1) I(u; z|H)

According to [14, Th. 2] and [15, Th. 1], we have

I(u; z|H) = Θ(NA, NB, αγ), (25)

where Θ(x, y, z) is given in (9).

2) I(u;y|G,{HJE,i}N
1 , {HJB,i}N

1 )

Since all entries in G, {HJE,i}N
1 and {HJB,i}N

1 are mu-

tually independent, I(u;y) can be expressed as a function

of these independent random entries. This allows us to take

two steps to compute the expected value of I(u;y): we first

compute I(u;y|G,{HJE,i}N
1 ) given {HJB,i}N

1 , then compute

E{HJB,i}N
1

(
I(u;y|G,{HJE,i}N

1 )|{HJB,i}N
1

)
. The advantage is

that for given {HJB,i}N
1 , {Zi}N

1 are fixed and the columns of

each of them form a set of orthonormal vectors. Then, using

[17, Th. 1], {HJE,iZi}N
1 are mutually independent complex

Gaussian random matrices with i.i.d. entries ∼ NC(0, 1).

Based on the above analysis, we rewrite y in (3) as

y = Gu + Qv + nE, (26)

where

Q = [HJE,1Z1, ..., HJE,NZN ] and v =

⎡
⎢⎢⎣

v1

...

vN

⎤
⎥⎥⎦ .

For given {HJB,i}N
1 , Q ∈ C

NE×(NJ−N ·NB) is thus a complex

Gaussian random matrix with i.i.d. entries ∼ NC(0, 1). Let

W1 = GGH and W2 = QQH . According to [14], we have

I(u;y|G,{HJE,i}N
1 )

= EG,Q

⎛
⎜⎜⎜⎜⎝log

∣∣∣∣∣INE
+

σ2
u

σ2
E

W1+
σ2

v

σ2
E

W2

∣∣∣∣∣∣∣∣∣∣INE
+

σ2
v

σ2
E

W2

∣∣∣∣∣

⎞
⎟⎟⎟⎟⎠

= EG,Q (log |INE
+ αW1+αβW2|) − EQ (log |INE

+αβW2|) .

(27)

According to [14, Th. 2] and [15, Th. 1], the second term

of (27) equals to

EQ (log |INE
+αβW2|) = Θ(Nmin, Nmax, αβ), (28)

where Nmin and Nmax are given in (10) and (11), respectively.

To compute the first term of (27), we rewrite αW1+αβW2

as ĜΔĜ
H

, where

Ĝ = [G,Q] and Δ = diag
{
{θi}D

1

}
, (29)

where Ĝ ∈ C
NE×D is a complex Gaussian random matrix with

i.i.d. entries ∼ NC(0, 1), and θi is defined in (15).

Case 1: If β = 1, the first term of (27) reduces to

EĜ

(
log
∣∣∣INE

+ ĜΔĜ
H
∣∣∣) = EĜ

(
log
∣∣∣INE

+ αĜĜ
H
∣∣∣) , (30)

where Ĝ is given in (29).

According to [14, Th. 2] and [15, Th. 1], we have

EĜ

(
log
∣∣∣INE

+ αĜĜ
H
∣∣∣) = Θ(N̂min, N̂max, α), (31)

where N̂min and N̂max are given in (12) and (13), respectively.

Case 2: If β 	= 1, Δ−1 contains two groups of coinciding

eigenvalues. According to [16, Th. 1], we have

EĜ

(
log
∣∣∣INE

+ ĜΔĜ
H
∣∣∣) = K

N̂min∑
k=1

det
(
R(k)

)
, (32)

where N̂min, K and R(k) are given in (12), (18) and (19).

Based on (27), (28), (31) and (32), we have

I(u;y|G,{HJE,i}N
1 , {HJB,i}N

1 )

= E{HJB,i}N
1

(
I(u;y|G,{HJE,i}N

1 )|{HJB,i}N
1

)
= Ψ − Θ(Nmin, Nmax, αβ), (33)

where Ψ is given in (17) and unify the cases β = 1 and β 	= 1.

By substituting (25) and (33) into (24), we have

R̄S = Θ(NA, NB, αγ) + Θ(Nmin, Nmax, αβ) − Ψ.

�
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B. Proof of Theorem 2

We follow the definitions in the proof of Theorem 1. Based

on (27), for given {HJB,i}N
1 , we have

I(u;y|G,{HJE,i}N
1 ))

= EG,Q

⎛
⎝log

∣∣∣INE
σ2

E + σ2
uW1+σ2

vW2

∣∣∣∣∣INE
σ2

E+σ2
vW2

∣∣
⎞
⎠

a≤ EQ

⎛
⎝log

∣∣∣INE
σ2

E + σ2
uEG (W1) +σ2

vW2

∣∣∣∣∣INE
σ2

E+σ2
vW2

∣∣
⎞
⎠

= EQ

⎛
⎜⎜⎜⎜⎝log

∣∣∣∣∣INE
+

σ2
v

σ2
E + NAσ2

u

W2

∣∣∣∣∣∣∣∣∣∣INE
+

σ2
v

σ2
E

W2

∣∣∣∣∣

⎞
⎟⎟⎟⎟⎠ + NE log

σ2
E + NAσ2

u

σ2
E

,

(34)

where (a) holds due to the concavity of log-determinant

function and Jensen’s inequality.

Let

W =

{
QQH

QHQ

if NE ≤ NJ − N · NB

if NE > NJ − N · NB
,

i.e., W ∼ WNmin(Nmax, INmin).

Recalling the definitions of α and β in Sec. II, and based

on Sylvester’s determinant theorem and [15, Th. 1], the first

term of (34) can be rewritten as

EQ

⎛
⎜⎜⎝log

∣∣∣∣INmin +
αβ

1 + αNA
W

∣∣∣∣
|INmin + αβW|

⎞
⎟⎟⎠

= Θ(Nmin, Nmax, αβ/(1 + αNA)) − Θ(Nmin, Nmax, αβ)

(35)

where Θ(x, y, z) is given in (9).

From (34) and (35), we have

I(u;y|G,{HJE,i}N
1 , {HJB,i}N

1 )

= E{HJB,i}N
1

(
I(u;y|G,{HJE,i}N

1 )|{HJB,i}N
1

)
≤ NE log(1 + αNA) − Θ(Nmin, Nmax, αβ)

+ Θ(Nmin, Nmax, αβ/(1 + αNA))

(a)
= (NE − Nmin) log(1 + αNA) + O

(
1

αβ

)
, (36)

where (a) follows from [18, Examples 2.14&2.15].

If Nmin = NE, i.e., NE ≤ NJ − N · NB, as αβ → ∞,

I(u;y|G,{HJE,i}N
1 , {HJB,i}N

1 ) ≤ 0. (37)

Since mutual information is always non-negative, we have

I(u;y|G,{HJE,i}N
1 , {HJB,i}N

1 ) = 0. (38)

Under the same conditions, by substituting (38) into (8), we

have

R̄S = I(u; z|H) = C̄Bob, (39)

where C̄Bob represents Bob’s ergodic channel capacity. The

last equation holds since the input u is a circularly symmetric

complex Gaussian random vector with zero mean and covari-

ance σ2
uINB

[14, Th. 1].

On the other hand, from (7), we have

C̄S ≤ max
p(u)

{I(u; z|H)} = C̄Bob. (40)

Based on (39) and (40), as αβ → ∞, if NE ≤ NJ − N · NB,

C̄S = R̄S = C̄Bob. (41)

�
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