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Abstract—In this paper, we consider a wireless multiuser
multiple–input multiple–output orthogonal frequency division
multiplexing (MIMO–OFDM) uplink scenario, where the infor-
mation sequences of all users are encoded by individual space–
frequency block codes (SFBC). At the receiver, joint maximum
likelihood detection is applied using the sphere decoding al-
gorithm. Using a truncated union–bound approximation, we
propose the design criteria of multiuser SFBCs for frequency
selective fading MIMO multiple access channels (MAC). Next,
we show how, by combining the structure of algebraic perfect
space–time block codes in [4], a family of multiuser SFBCs can
be constructed to fulfill the design criteria. Finally, we show that
the proposed SFBC outperforms previously known codes.

Index Terms—space–frequency codes, multiuser, MIMO,
OFDM.

I. INTRODUCTION

Space-frequency codes (SFCs) have been intensively stud-
ied in [1, 2] for single-user multiple–input multiple–output
(MIMO) orthogonal frequency division multiplexing (OFDM)
systems over frequency selective fading channels. Recently,
Gärtner and Bölcskei extended the idea of single user SFC
to multiuser MIMO-OFDM over frequency selective fading
MIMO multiple access channels (MACs) in [3]. With the aim
of increasing information rate, in [3], the design criteria of
multiuser space–frequency block codes (SFBCs) were pro-
posed using a concept of dominant error regions. A 2 × 2
MIMO multiuser SFBC was proposed based on Alamouti
structure.

In [6], authors generalized the multiuser SFBC design
criteria for more than two users over a frequency selective
fading MIMO MAC, based on minimizing an upper bound of
pairwise error probability (PEP). The SFBCs were designed
using a constellation rotation followed by a phase rotation, in
order to enhance the multiuser diversity order [6]. However,
these codes incur in large peak-to-average penalties, since
some elements in the codeword matrices are zero.

In [10], an algebraic construction of multiuser SFBCs
was recently proposed to achieve the diversity-multiplexing
tradeoff [8] for users using a single transmit antenna (nt = 1)
and any number of receive antennas (nr).

In our paper, we consider the two transmit antenna case,
i.e., nt = 2, which was also discussed in [3, 6]. Unlike
the multiuser codes in [3, 6], we propose the code design
criterion over frequency selective fading MIMO MACs based

on a truncated union-bound (UB) approximation. Motivated by
algebraic perfect space–time block codes in [4], we show how
to construct a family of multiuser SFBCs in order to minimize
the error probability of the truncated UB, without the peak-to-
average penalty of [6]. Within this family, we present a code
design example for a two–user 2 × 2 MIMO. Note that with
QAM signalling, the MLD can be obtained using the sphere
decoding (SD) algorithm. Next, we show that the proposed
codes outperform the previously known SFBCs [3, 6].

Notations: Boldface letters are used for column vectors,
and capital boldface letters for matrices. Superscripts T and †

denote transposition and Hermitian transposition, respectively.
Let C denote the field of complex numbers.

The operator diag(·, . . . , ·) generates a block diagonal ma-
trix with its arguments on diagonal. The vec(·) operator stacks
the m column vectors of a n×m complex matrix into a mn
complex column vector. Let ‖ · ‖ denote the Frobenius norm
and let E[·] denote mean of a random variable.

Given a complex number x we define the (̃·) operator from
C to R2 as

x̃ � [�(x),�(x)]T

where �(·) and �(·) denote real and imaginary parts. The
(̃·) operator can be extended to complex vectors x =
[x1, . . . xn]T ∈ Cn as

x̃ � [�(x1),�(x1), . . . ,�(xn),�(xn)]T

Given a complex number x, the (̌·) operator from C to R2×2

is defined by

x̌ �
[ �(x) −�(x)

�(x) �(x)

]
The (̌·) operator can be similarly extended to n × n matrices
by applying it to all the entries, yielding 2n×2n real matrices.
The following relation holds:

Ãx = Ǎx̃

II. SYSTEM MODEL

We consider an uplink scenario, where K uncoordinated
users simultaneously communicate with a base station over
a frequency selective fading MIMO MAC. We assume that
each user employs an identical MIMO-OFDM system with nt

transmit antennas. We consider that the information sequences
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of all users are encoded by their individual SFBCs. At the BS,
the receiver is assumed to have nr = nt receive antennas.

A. Transmitter

Let NFFT be the number of total subcarriers in OFDM of
each user. We assume that NFFT and N are dividable and
N < NFFT . Therefore at the transmitter of each user, every
N information symbols can be fed into an SFBC encoder. The
detailed encoding procedure is given as follows.

For each user k, an information vector of length N is
defined as

s(k) � [s(k)
1 , . . . , s

(k)
i , . . . , s

(k)
N ]T ∈ CN (1)

where {s(k)
i }, i = 1, . . . , N , are independent information

symbols drawn from a complex Q−QAM constellation. The
joint symbol vector of all K users can be written as

sjoint �
[(

s(1)
)T

, . . . ,
(
s(k)
)T

, . . . ,
(
s(K)

)T
]T

∈ CKN

The symbol vector of each user s(k) is encoded by its
individual SFBC yielding a SFBC-OFDM codeword matrix
Ck ∈ Cnt×N from the codebook Ck, given by

Ck �
[(

c(k)
1

)T

, . . . ,
(
c(k)

j

)T

, . . . ,
(
c(k)

nt

)T
]T

∈ Ck

with k = 1, . . . ,K. The vectors c(k)
j � {c(k)

j,n} ∈ C1×N for
j = 1, . . . , nt, denote the SFBC-OFDM symbol vector from
the j-th transmit antenna of user k.

We also assume that all K users simultaneously transmit
their individual SFBC-OFDM symbol matrices over N sub-
carriers, yielding the following joint codeword matrix:

X � [CT
1 , . . . ,CT

k , . . . ,CT
K ]T ∈ C (2)

where C is the joint codebook.
In this paper, we assume that each user employs a linear

SFBC [5, Definition 5], so that the elements c
(k)
j,n, for all j and

n, are linear combinations of N complex Q–QAM symbols
and are transmitted from the j-th transmit antenna over the
n-th subcarrier. Then we have the following relation:

ṽec(X) = Gs̃joint

where G ∈ R2ntKN×2KN is called the (real) generator matrix
of the linear code [5, Definition 5]. This relation is particularly
useful in the following to describe the sphere decoding of the
multiuser MIMO-OFDM.

B. Receiver

At the receiver, after matched filtering, sampling and fast
Fourier transform (FFT), the received signal vector y ∈
CKNnr in frequency domain can be written as

y = H vec(X) + n, (3)

where
1) y � [y(1)T , . . . ,y(n)T , . . . ,y(N)T ]T , the vector

y(n) = [y1(n), . . . , ynr
(n)]T represents the received

signal vector from all K users over the n-th subcarrier;
in particular, the element yi(n), i = 1, . . . , nr, denotes
the superposition of the received signals from all K
users at the i-th receive antenna on the n-th subcarrier.

2) n ∈ CNnr is the complex white Gaussian noise with
i.i.d. samples ∼ NC(0, N0).

3) H ∈ CNnr×KNnt is defined as

H � diag{H(1), . . . ,H(n), . . . ,H(N)}
with

H(n) =
[
H(1)(n), . . . ,H(k)(n), . . . ,H(K)(n)

]
where H(k)(n) � {H(k)

i,j (n)} ∈ Cnr×nt , k = 1, . . ., K,
i = 1, . . ., nr, j = 1, . . ., nt, n = 1, . . ., N , denotes
the channel matrix in frequency domain associated with
the k-th user over the n-th subcarrier. The elements
H

(k)
i,j (n) are the channel frequency response from the j-

th transmit antenna to the i-th receive antenna over the
n-th subcarrier for user k. Also, we assume that each
element H

(k)
i,j (n) is i.i.d. circularly symmetric Gaussian

random variable ∼ NC(0, 1).
In this paper, we consider a frequency selective fading MIMO
MAC, i.e., the channel coefficients H

(k)
i,j (n) are assumed to

be constant for N subcarriers, and vary independently from
one codeword to the next. Note that this could model the case
of a OFDM system with NFFT > N subcarriers, where N
adjacent subcarriers span the channel coherence bandwidth.

C. Sphere Decoding

Separating real and imaginary parts in (3), we obtain

ỹ = Ȟ ṽec(X) + ñ

= Ȟ Gs̃joint + ñ (4)

In order to simplify the notation let

Θ = Ȟ × G

r = [r1, . . . , r2KNnr
]T � ỹ

u = [u1, . . . , u2KN ]T � s̃joint

w = [w1, . . . , w2KNnr
]T � ñ (5)

so that we rewrite (4) as

r = Θu + w (6)

Thanks to the linearity of the code we can apply SD to
perform the MLD. Assuming ui ∈ X , where X is a |X |–PAM
constellation, such that X 2 =Q−QAM. Lattice decoding finds

û = arg min
u∈X 2KN

‖r − Θu‖2 (7)

where û = {ûi} with i = 1, . . . , 2KN , ûi ∈ X , and X 2KN

is the finite constellation carved from a 2KN–dimensional
lattice with generator matrix Θ.



III. NEW MULTIUSER SPACE-FREQUENCY BLOCK CODES

In this Section, we present 1) the design criteria of multiuser
SFBC over a frequency selective fading MIMO MAC; and 2)
a design example of a two-user 2 × 2 MIMO-OFDMs with
N = 4. Finally, we compare the performance of the proposed
code and previously known codes [3, 6].

A. Multiuser SFBC Design Criteria (Full-Rank Design)

For all K users, assuming that a joint codeword matrix
X ∈ C is transmitted, it may occur that ‖Y −Hvec(X)‖2 >
‖Y −Hvec(X̂)‖2, with X �= X̂, resulting in a pairwise error.
Let X − X̂, with X �= X̂, be the joint codeword-difference
matrix and let A � (X− X̂)(X− X̂)† be the joint codeword-
distance matrix.

Similarly, for the k-th user, assuming that codeword matrix
Ck ∈ Ck is transmitted and Ĉk is detected erroneously at
the receiver, we call Ck − Ĉk the user codeword difference
matrix. The corresponding user codeword distance matrix is
defined as E(k) � (Ck − Ĉk)(Ck − Ĉk)†. Let rk denote the
minimum rank of E(k) for all user codeword pairs in Ck. We
will assume rk = min(nt, N) for all k, i.e., all user codes
have the same full–rank rk = r.

If this full–rank condition holds for all K users, it is not
guaranteed that the joint codebook is also full rank. We will
show in the following how to design the user codes in order
to get a “full–rank” joint multiuser SFBC, defined such that
if all E(k) �= 0 then rank(A) = min(Knt, N) = Kr.

Here, we assume that there are K users each with nt = 2
antennas, a receiver with nr = 2 antennas and N = 2K
subcarriers. Given the k-th user transmitted QAM information
symbol vector s(k), defined in (1), we use an algebraic unitary
matrix M with full diversity ([9], [7]) to generate the coded
symbol vector

v(k) = Ms(k) = [v(k)
1 , . . . , v

(k)
N ]T k = 1, . . . , N (8)

The matrix M is obtained from the canonical embedding of an
integral basis {ωj}, j = 1, . . . , N of an ideal of an algebraic
number field L of degree N over Q(i) [8]. The full diversity
property implies that all the elements of v(k) are non-zero for
any non-zero information vector s(k) [8]. The user codewords
are then generated as

C1 =

[
v
(1)
1 v

(1)
2 . . . v

(1)
N

γv
(1)
N v

(1)
1 . . . v

(1)
N−1

]

C2 =

[
γv

(2)
N−1 γv

(2)
N . . . v

(2)
N−2

γv
(2)
N−2 γv

(2)
N−1 γv

(2)
N . . . v

(k)
N−3

]
C3 = · · ·

where γ �= 1 is a complex number on the unit circle in order
to preserve a uniform transmitted power from each antenna.
In such a manner, the code will not incur in extra peak–to–
average penalty, since all entries are non-zero with the same
average power.

Lemma 1: For γ �= 1, the above user codes Ck are full
rank r = 2 for all k = 1, . . . ,K users.

Proof. It is enough to show that the two rows of Ck are linearly
independent, which is equivalent to saying they can not be
scalar multiples for any non zero information vector s(k). This
is clearly the case thanks to the term γ �= 1 which multiplies
a different number of elements in each row. �

Lemma 2: If N = ntK the joint codeword matrices X
defined in (2) are square and the joint multiuser code C is
“full–rank” if γ is transcendental.
Proof. Looking at the structure of the N×N square codeword
matrix X we note that the elements of the lower triangular
part are multiplied by γ. It can be easily verified that the
determinant of X is a polynomial p(γ) in the variable γ by
using the well known expression

det(X) =
∑

π∈SN

N∏
i=1

xi,π(i)

where the sum runs over all the permutations π in the
symmetric group SN . This polynomial has degree N − 1
since the coefficient of the term γN−1 is given by x1,N ·
x2,1 · x3,2 · · ·xN,N−1 �= 0, which is not zero thanks to the
full diversity rotation in (8), that yields vectors v(k) with all
non-zero entries. The coefficients of p(γ) are in the algebraic
number field L defined after equation (8). The roots of the
polynomial equation p(γ) = 0 are in some algebraic extension
L′ of L [8]. By choosing γ to be transcendental (i.e. in no finite
extension of L) we can guarantee that the p(γ) = det(X) �= 0.

�
Note that the above Lemma gives only a necessary condition

and some specific not transcendental γs not belonging to L′

can also yield a “full–rank” joint multiuser code.

B. Multiuser SFBC Design Criteria

To simplify analysis, we assume that the full–rank joint
multiuser SFBC is linear [5]. Then, the error probability of the
multiuser MIMO-OFDM is upper bounded by the following
union bound [6]:

P (e) ≤
∑
X�=0

K∑
k=1

Ak∑
(i1,...,ik)

P (ei1 ∩ · · · ∩ eik
|X) (9)

where ek represents the k-th user error event, the sum∑Ak

(i1,...,ik) is over all Ak �
(

K
k

)
possible k-tuples of users in

error. The k-tuple (i1, . . . , ik) denotes the indices of k distinct
users. Using the Chernoff bound, we then upper bound each
term in (9) with:

P (ei1 ∩ · · · ∩ eik
|X) ≤

(
Es

N0

)−nrkr

[δ(i1,...,ik)(X)]−nr

(10)
where Es is the average energy per QAM information symbol
and the determinants:

δ(i1,...,ik)(X) � det

(
k∑

�=1

Ci�
Ci�

†
)

(11)



Codes δ
(min)
1 A1B1 δ

(min)
2 A2B2 SNR@10−3

New 13.2 16 52 16 13.8

GB 16 64 32 256 14

ZL 4 64 8 256 13.8

TABLE I
COMPARISON OF MINIMUM DETERMINANTS WHEN ONE OR TWO USERS

ARE IN ERROR, ASSOCIATED MULTIPLICITIES.

We can further define the corresponding minimum determi-
nants among all the k-tuples

δ
(min)
k = min

(i1,...,ik)

X�=0

δ(i1,...,ik)(X)

Finally, we consider a truncated union bound based only on
the terms corresponding to minimum determinants δ

(min)
k

P (e) ≈
K∑

k=1

AkBkP (δ(min)
k )

where the AkBk is the multiplicity of the term

P (δ(min)
k ) =

(
Es

N0

)−nrkr (
δ
(min)
k

)−nr

(12)

which represents the dominant error probability of a k-tuple
of users. In particular, Bk denotes the associate multiplicity
of (12) for a given Ak.

The codes design in the previous section satisfy
Lemma 3: The determinants in (11) are all non-zero

Proof. Since the terms Ci�
Ci�

† in (11) are positive definite
we use the determinant inequality

det

(
k∑

�=1

Ci�
Ci�

†
)

≥
k∑

�=1

det
(
Ci�

Ci�

†
)

where the determinats on the rhs are all greater than zero due
to Lemma 1. �

Hence, under the full–rank and linearity assumption, in
order to minimize the error probability P (e), we should design
the multiuser SFBCs to

1) maximize the minimum determinants δ
(min)
k , ∀k;

2) minimize the associated multiplicity AkBk.

C. Example of new multiuser SFBC for frequency selective
fading MIMO MACs

As an example, we consider K = 2 users each employing
a 2 × 2 MIMO-OFDM with N = 4 subcarriers. The unitary
matrix M in [4] is chosen and γ = i. Note that this γ is not
transcendental but also guarantees the non-zero determinant.
We also note that the proposed code and the known codes in
[3, 6] are “full–rank” joint multiuser SFBCs, i.e., rk = 2 and
rank(A) = 4. We recall that the error probability P (e) takes
into account the total number of errors of both users. Let us de-
fine the peak-signal-to-noise ratio as Peak-SNR � ntEp/N0

where Ep = maxi,j E[|xi,j |2] denotes the peak average energy

4 6 8 10 12 14 16
10

−4

10
−3

10
−2

10
−1

10
0

Peak−SNR

C
E

R

New Code
GB
ZL

Fig. 1. Comparison of the CER performance of the new code, known codes
in [3] and [6], 4-QAM signalling, frequency selective fading channel.

of a transmitted QAM symbol from one antenna. We have
Ep = Es for the proposed code and the one in [3], while
Ep = 2Es for the code in [6] which has some zero entries in
the codeword.

We compare the proposed code with the multiuser SFBCs
given in [3] and [6], for frequency selective fading MIMO
MACs. In Table I we show the minimum determinant δ

(min)
k

when k users are simultaneously in error, the associated
multiplicities AkBk and the SNR (dB) at codeword error rate
(CER) of 10−3. In the table and in the following, we use the
standard convention of denoting the codes by the initials of
the authors who proposed them.

From Table I we see that: 1) when one user is in error,
the minimum determinant of the code of [3] is slightly larger
than that of the proposed code; 2) when both users are in
error, the minimum determinants of our code is the largest
among all multiuser SFBCs. In both conditions, the associated
multiplicities of the proposed code are significantly smaller
than those of [3, 6]. With 4-QAM signalling, at CER= 10−3,
the performance of the proposed code is only slightly better
than that of the code in [3], while is 3dB better than that of
the code in [6] (see Fig. 1).

IV. CONCLUSION

In this paper, we propose new algebraic multiuser 2 × 2
SFBCs for frequency selective MIMO MACs. Using a UB
approximation, we first present the code design criteria. Com-
bining algebraic perfect STBC structures, we show how to de-
sign a family of multiuser SFBCs to satisfy the design criteria,
yet without peak–to–average penalty. Within this family, we
present a code design example for a two-user case. It is shown
that the proposed multiuser SFBC for frequency selective
fading MIMO MACs outperforms all previously known codes.
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