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Abstract—In this paper we show how the capacity of the uplink of
a multiuser system can be increased by a scheduling strategy, which
pairs the transmission of users in different time/frequency/code slots
according to the channel quality. The optimal scheduling strategy is
equivalent to a combinatorial optimization problem. We show how
this problem can be solved efficiently by using the Hungarian method.
We then show that, by using the proposed scheduling scheme, the
performance of Minimum Mean Square Error detection approaches
the one of Maximum Likelihood detection, as the number of users
increases.

Index terms— Capacity, Scheduling, multiuser uplink, MIMO, as-
signment problem, Hungarian method.

I. INTRODUCTION

A multiuser multiple-input-multiple output (MU-MIMO)
system consists of K user with nt antennas each commu-
nicating to a base station with nr receive antennas. Since
each user faces a different channel condition, in different
time/frequency/code (TFC) slots it is possible to improve the
overall system capacity by multiuser scheduling. Multiuser
scheduling has been applied previously in allocating different
MIMO users mutually orthogonal sum-rate-optimized sub-
channels, see e.g. [4]. Here, we consider a system where
different users access the channel in the same slot, and thus
cause interference to each other. This method is supported
by IEEE 802.16e specification under the name Collaborative
Spatial Multiplexing. However, optimal user scheduling is not
addressed in this specification.

Multiuser scheduling, as considered here, attempts to in-
crease the system capacity by smartly allocating the channel
to different subgroups of users. A general introduction to
this topic can be found in [1] and some related scheduling
algorithms for uplink and downlink can be found in [2], [5].
The most popular multiuser scheduling schemes include op-
portunistic scheduling and best subset selection. All schedul-
ing schemes are confronted with the fairness issue. Fairness
requirement, however defined, typically enforces a tradeoff
between network optimality and user optimality.

In this paper we will focus on a fair scheduling scheme
based on user pairing in uplink and assume as objective
function the total instantaneous mutual information between
users and the base station when both ML and MMSE re-
ceivers are considered. We first show that the combinatorial
optimization problem, which yields an optimal scheduling, can
be solved efficiently by using the Hungarian method [10], [11],

[12]. This scheduling scheme enforces fairness by letting each
user transmit with the same total energy within a predefined
multiuser scheduling window. We then show that, by using the
proposed scheduling scheme, the performance of Minimum
Mean Square Error (MMSE) detection approaches the one of
Maximum Likelihood (ML) detection, as the number of users
increases.

II. SYSTEM MODEL

In this section, we describe the multiuser system model and
we state the scheduling problem based on user pairing as a
combinatorial optimization problem.

Considering the uplink channel, we assume that the users
are multiplexed in the code domain, i.e., all user’s signals
overlap both in time and in frequency within a channel use.
For K users we have

y =
K∑

k=1

H(k)x(k) + z (1)

where x(k) ∈ C
nt is the transmitted column vector from user

k, H(k) ∈ C
nr×nt the channel coefficient matrix, z ∈ C

nr

the white Gaussian noise vector distributed as Nc(0, Inr
).

Let P be the total transmitted power by each user (i.e.,
P = E[‖x(k)‖2]), then we define SNR = P .

We assume the transmitter does not know the channel (open
loop) and the receiver has knowledge of each user channel
matrix. Furthermore, we assume that a power control scheme
is used to compensate the path-loss, so that the average
received power from each user is balanced and equal to P .

Let us rewrite (1) in equivalent matrix form

y =
[
H(1)| · · · |H(K)

]
⎡
⎢⎣

x(1)

...
x(K)

⎤
⎥⎦ + z = HX + z (2)

where we assume that the joint channel nr × Knt matrix H
is constant during the channel use and X is the joint input
vector of length Knt.

Assuming the receiver performs ML detection the mutual
information per user (conditioned by the channel realization)
for channel (2) is given by

IML(X;y|H) =
1
K

log2

(
det

(
Inr

+
P

Knt
HH†

))
(3)
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Due to the high complexity of ML detection, the simpler
MMSE receiver is generally adopted, and in this case we have

IMMSE(X;y|H) =
1
K

Knt∑
j=1

log2

(
1 + h†

jA
−1
j hj

)
(4)

where hj are the column vectors of H and

Aj =
Knt

P
Inr

+
Knt∑

i=1,i �=j

h†
ihi .

The above expressions represent a measure of the per-user
throughput, given that the system is occupying a total band-
width B.

The above scheme requires a K user multiuser detection
which can be still rather complex for large numbers of users
and transmit antennas. For this reason it is common to consider
joint TDMA/FDMA/CDMA/SDMA schemes to reduce the
number of simultaneous users by allocating them in different
TFC slots within a frame. Since the channel matrices for the
users are different and determine how the users signals inter-
fere at the receiver, scheduling the users that simultaneously
transmit in the same TFC slot, can improve the total system
throughput.

A. Pairing users

Let us first consider the case where K is even and users are
paired to transmit simultaneously in the same TFC slot. The
total number of TFC slots (or channel orthogonal resources) is
then N = K/2 and we assume the total occupied bandwidth is
still B. Fairness is provided by the fact that all users access the
channel exactly once, within a frame of N TFC slots. We let
H(k) denote the channel for user k and assume it is constant
over the entire frame.

In this case we have that the received signal in the n-th TFC
slot is

y(n) =
(N)∑

(k1,k2)

H(k1)x(k1)+H(k2)x(k2)+z(n) n = 1, . . . , N

(5)
where the sum runs over N distinct pairs (k1, k2) of users,
with k1 �= k2. Note that the multiuser detection now handles
only two overlapping users per TFC slot and thus even
multiuser ML detection could become viable.

We denote by π a particular pairing configuration, within
the set of all configurations Π. The number of ways to choose
N disjoint pairs of items from 2N items is ([7])

|Π| = (2N − 1)!! = (2N − 1)(2N − 3) · · · 3 1 .

For example, with K = 4 users we have three configurations

Π = {{(12), (34)}, {(13)(24)}, {(14)(23)}}

Given (5), the per-user mutual information between X and
Y = (y(1)T , . . . ,y(N)T )T , given a pairing configuration π,

is

IML(X;Y|H, π) = (6)

1
N

(N)∑
(k1,k2)∈π

log2

(
det(Inr

+
P

2nt
H(k1,k2)H(k1,k2)†)

)

where H(k1,k2) = [H(k1)|H(k2)]. Similarly

IMMSE(X;Y|H, π) = (7)

1
N

(N)∑
(k1,k2)∈π

2nt∑
j=1

log2

(
1 + h(k1,k2)

j

†
A(k1,k2)

j

−1
h(k1,k2)

j

)

where h(k1,k2)
j are the 2nt columns of H(k1,k2) and

A(k1,k2)
j =

2nt

P
Inr

+
2nt∑

i=1,i �=j

h(k1,k2)
i

†
h(k1,k2)

i .

Both (6) and (7) can be written as additive objective
functions to be maximized over the choice of π ∈ Π

max
π∈Π

(N)∑
(k1,k2)∈π

fk1,k2(π) (8)

Selecting the pairing configuration that maximizes the
above mutual information can become a formidable task
even for a small number of users due to the exponen-
tial complexity of an exhaustive search. For example, for
K = 2, 4, 6, 8, 10, 16 we have a number of configurations
|Π| = 1, 3, 15, 105, 945, 2027025. We will show in Sec. II-D
how this problem can be solved in polynomial time using a
technique known as Hungarian method.

B. Both single users and paired users

We now consider the case where we allow some users to
transmit alone and some others to be paired in the TFC slots.
The total number of users is K = 2Npair+Nsing , where Npair

is the number of pairs of users that transmit simultaneously
in a TFC slot and Nsing is the number of users that transmit
alone. In this case the total number of TFC slots used in one
transmission frame would be N = Npair + Nsing and the
total number of configurations Π is much larger than before,
namely:

|Π| =
�K/2�∑
k=0

K!
(K − 2k)! 2k k!

This number corresponds to the number of partitions of a set
of K distinguishable elements into sets of size 1 and 2 or
equivalently to the number of K ×K symmetric permutation
matrices [8]. For example, for K = 2, 4, 6, 8, 16 we have
|Π| = 2, 10, 76, 764, 46206736 and with K = 4 users we
have the following 10 configurations

Π = {{(12)(34)}, {(13)(24)}, {(14)(23)},
{(1)(2)(34)}, {(1)(3)(24)}, {(1)(4)(23)},
{(12)(3)(4)}, {(13)(2)(4)}, {(14)(2)(3)},
{(1)(2)(3)(4)}}



In this case the optimization problem becomes

max
π∈Π

⎧⎨
⎩

1
Npair(π)

(Npair(π))∑
(k1,k2)∈π

f
(pair)
k1,k2

(π) +

1
Nsing(π)

(Nsing(π))∑
(k3)∈π

f
(sing)
k3

(π)

⎫⎬
⎭ (9)

We can think of the single users (k3) as paired with them-
selves, i.e., (k3, k3). Unfortunately, this problem cannot be
solved by the Hungarian method, since the objective function
is not a sum of terms only depending on one pair due to the
factors 1

Npair(π) and 1
Nsing(π) (see Section II-D for details).

Due to the exponential complexity required to solve 9 we
are motivated to consider the new scheduling scheme of the
following section.

C. New scheduling scheme

In order to have the same total bandwidth for all con-
figurations with different Npair and Nsing , we assume that
the Npair paired users access two TFC slots, essentially
doubling their rate. As a compensation, the Nsing unpaired
users, that only use one TFC slot, are allowed to double
their transmit power. This will produce comparable out-of-
cell interfering power during all TFC slots. Now the total
number of TFC slots used in one transmission frame would
be N = 2Npair + Nsing = K. By transmitting with double
power, unpaired users can employ a higher order modulation
in order to double their spectral efficiency and compensate for
their use of only one TFC slot.

Let us now show how a pairing configuration π =
{πpair, πsing} can be mapped to a permutation σ of K
elements of the form

σ :
(

1 2 · · · K
σ(1) σ(2) · · · σ(K)

)
. (10)

Let the pairs (k1, k2) ∈ πpair correspond to the two columns
of (10) (k1, k2 = σ(k1))T and (k2, k1 = σ(k2))T , while the
unpaired users (k3) ∈ πsing correspond to the fixed elements
of the permutation, i.e., columns of (10) of the type (k3, k3)T .
For example

π = {(1, 5)(2, 4)(3)} ⇒ σ :
(

1 2 3 4 5
5 4 3 2 1

)

Clearly, under the assumptions of the Sections II-A and II-B
this will limit the permutations σ to have at most cycles of
length 2 of the type (k1, k2), [9].

In this new scenario we can further expand the possible
pairing configurations to include any user permutation σ, i.e.,
we will consider K pairs of users (k, σ(k)). For example we
can have

π = {(1, 5)(2, 4)(3, 3)(4, 5)(5, 2)}
⇒ σ :

(
1 2 3 4 5
5 4 3 1 2

)

which is a permutation with a cycle (1, 5, 2, 4) of length 4.

The optimization problem can now be written as

max
σ∈SK

(K)∑
(k,σ(k))

f(k,σ(k)) (11)

where SK denotes the group of all permutations (symmetric
group).

D. Solving the combinatorial optimization problem

Here, we show how the above combinatorial optimization
problems (8) and (11) can be solved in polynomial time O(n3)
using a technique known as the Hungarian method commonly
used to solve the so called assignment problem [10], [11], [12].

Assignment problem: Given a weighted complete bipartite
graph G = (X∪Y ;X×Y ), where edge xy has weight w(xy),
find a matching M from X to Y with maximum weight.

In a common application, X could be a set of workers, Y
could be a set of jobs, and w(xy) could be the profit made by
assigning worker x to job y. By adding virtual jobs or workers
with 0 profitability, we may assume that X and Y have the
same size, n, and can be written as X = {x1;x2; . . . , xn} and
Y = {y1, y2, . . . , yn}.

Mathematically, the problem can be stated as follows: given
an n × n matrix W = [wk,�] = [w(xky�)], find a permutation
σ ∈ Sn of n elements for which

n∑
k=1

w(xkyσ(k))

is a maximum. This form coincides with (11) when
w(xkyσ(k)) = f(k,σ(k)).

In order to solve the problem (8) in the case of even K,
where no users are allowed to be unpaired it is enough to
initialize the matrix W with zero entries on the diagonal
and symmetric entries wk1,k2 = wk2,k1 = f(k1,k2). The
final solution is found by taking only the pairs (k, σ(k)), for
k = 1, . . . ,K/2.

III. PERFORMANCE

In this section we demonstrate the gains provided by the
proposed scheduling schemes in Sec. II-A and Sec. II-C. We
quantify the average mutual information per user in a case
where each of the K users has an i.i.d. Rayleigh fading channel
to the destination node. We assume nt = nr = 2 and therefore
at most two users may transmit concurrently.

The optimal user subsets for each slot are determined
by solving the associated matching problem (via Hungarian
algorithm) to maximize the sum capacity for K users, where
K ∈ {2, 4, 8, 12, 16} in the considered examples. These opti-
mal subsets are shown in figures with legend ’Optimal’. For
comparison, we also depict the performance with random user
pairing - these results are associated with legend ’Random’.
With random pairing, we do not allow any single users.
The case where only single users are allowed to access the
channel sequentially is shown in figures with legend ’SU’.
This corresponds to the case where the k = σ(k),∀k.



2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

Users

C
a
p
a
c
it
y
 [
b
p
c
u
]

MMSE:Optimal
MMSE:SU
MMSE:Random
ML: Optimal
ML: SU
ML: Random

Fig. 1. Paired users only at SNR = 16dB. Note that ML and MMSE single
user curves (two bottom curves) fully overlap.

In what follows, performance is evaluated for two receivers,
for minimum mean square error receiver (legend ’MMSE’)
and for maximum likelihood receiver (legend ’ML’). For both
receivers, we consider the scheduling schemes in Sec. II-A
and Sec. II-C, and the reference cases stated above. We set
SNR = 16dB when optimizing user pairing (no single users)
and then K/2 slots are scheduled. For comparison, we let
SNR = 13dB, when optimizing jointly over single users and
pairs, since in this K slots are scheduled. The difference in
SNR ensures that for both schemes the total transmit energy
over available slots is the same.

Figure 1 shows capacity expressed in bits per channel use
(bpcu) as a function of the number of users K, when all the
users are paired as for (8). The single user (SU) case, plotted
for reference, coincides for MMSE and ML detection. Similar
results are shown in Fig. 2 for the case (11).

The following observations are in order in both cases.

• There is a substantial capacity gain over the single user
case, thanks to the spatial multiplexing and optimal
pairing of the users.

• The gain of optimal scheduling increases for increasing
number of users (for K = 2 there is obviously no
difference).

• The gain of optimal scheduling is larger for MMSE
receiver since ML can handle better ill-conditioned situ-
ations.

• For large K the MMSE seems to approach the ML
capacity, provided that optimal users subsets are used.
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Fig. 2. Both pairs and single users at SNR = 13dB. Note that ML and
MMSE single user curves (two bottom curves) fully overlap.

IV. CONCLUSIONS

In this paper we have proposed a new computationally effi-
cient and fair channel-aware multiuser scheduling scheme for
uplink. In the considered scheduling scheme user subsets are
optimized jointly, with polynomial complexity, over multiple
transmission slots. In each slot at most two users are trans-
mitting simultaneously. The proposed approach improves the
performance of the multiuser system by efficiently exploiting
channel and interference diversity and joint optimization over
a given scheduling interval. It is shown via simulations that
with the proposed scheduling method the MMSE receiver
approaches, for large number of users, the performance of the
ML receiver which has a higher complexity.
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