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Abstract— The Golden code is a full rate, full diversity 2× 2
linear dispersion space-time block code (STBC) that was con-
structed using cyclic division algebras. The underlaying algebraic
structure provides the exceptional properties of the Golden code:
cubic shaping and non-vanishing minimum determinant.

In this paper, we first give a basic introduction about the
Golden code. We discuss how to use the Golden code in a practical
concatenated coding scheme for 2× 2 MIMO systems based on
OFDM, such as the ones proposed for high rate indoor wireless
LAN communications (e.g. 802.11n).

The proposed bandwidth efficient concatenated scheme uses
the Golden code as an inner multidimensional modulation
and a trellis code as outer code. Lattice set partitioning is
designed in order to increase the minimum determinant. A
general framework for code construction and optimization is
developed. It is shown that this Golden Space-Time Trellis Coded
Modulation scheme can provide excellent performance for high
rate applications.

I. INTRODUCTION

The Golden code was proposed in [1] as an optimum
2 × 2 linear dispersion space-time block codes for a 2 × 2
MIMO system. In this paper, we analyze the application of
the Golden code to wireless networks for multimedia traffic,
which demand very high spectral efficiency coding schemes
with low packet delay. In order to achieve the performance,
the combination of multiple transmit/receive antennas with
OFDM has attracted most interest for next generation physical
layers. Currently, channel bandwidths allocated in the most
recent standards are about 20MHz. In order to achieve bit
rates of several hundreds Mbit/s, a few multiple antennas
are not sufficient, so that bandwidth efficient coding becomes
necessary.

Wireless channels are commonly modeled as block fading
channels. Let W denote the total channel bandwidth and T`

denote the maximum latency that can be tolerated by the real
time applications. Let Tc be the channel coherence time and Bc

the channel coherence bandwidth. In the block fading model
the channel coefficients are assumed to be constant over a
frame of duration Tc and vary independently from one frame to
another. Similarly, for the frequency domain channel transfer
function is assumed to be constant over a subband of width
Bc and vary independently from one subband to another.

In reality, indoor wireless channels are mostly impaired
by multipath, which results in a relatively small Bc. On the
other hand the reduced mobility within the indoor environment
results in a relatively large Tc. Using the OFDM technique

we discretize the time-frequency plane (T`,W ) into time-
frequency slots of size (∆t, ∆f). Then Nt = T`/∆t denotes
the number of OFDM symbols than can be transmitted and
Nf = W/∆f denotes the number of subcarriers within each
OFDM symbol.

With this scenario it is common practice to design systems
where T` ≤ Tc and ∆f ≈ Bc, which results in a slow
fading in time and a fast fading in frequency (see Fig. 1).
In this case each frame will see a non time-varying transfer
function H(f, t) = H(f). Depending on the application, a
coded system will employ a certain number Ns of time-
frequency slots within a frame to transmit one codeword. We
will assume that Ns divides exactly the total number NtNf

of time-frequency slots within a frame, i.e., NtNf = KNs,
where K is the number of codewords per frame.

In the 2 × 2 MIMO case, when the antenna separation is
sufficiently large, we have ntnr = 4 independent channels that
can be exploited to gain diversity. In order to transmit a 2× 2
Golden codeword X we need Ns = 2 time-frequency slots.
Since the Golden code is a space-time code designed for a
slow fading channel we must choose two slots in consecutive
OFDM symbols that have a non time-varying channel. The
2× 2 received signal matrix can be written as

Y = HX + Z

where Z is the additive white Gaussian noise matrix and H
is the 2 × 2 matrix which is assumed to be constant for the
two channel uses.

Assume we want to transmit codewords X =
[X1, . . . , XL] ∈ C2×2L which are obtained by concatenating
the Golden code with some outer code. Given that the first
row of X contains the time-frequency samples of the signal
X1(f, t) sent over the first antenna and the second row the
ones of the signal X2(f, t) sent over the second antenna, we
have different options for positioning the components of X
in the time-frequency frame.

Figure 1 shows the case where K = Nf codewords are
sent over 2L consecutive time slots within the same OFDM
frequency subband. If 2L∆t ≈ Tc we have the slow fading
channel given by

Y = HX + Z (1)

where Z ∈ C2×2L is the complex white Gaussian noise with
i.i.d. samples ∼ NC(0, N0), H ∈ C2×2 is the channel matrix,
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Fig. 1. Space-Time-Frequency codeword allocation in a 2×2 MIMO system:
the codeword is transmitted through a slow fading channel.
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Fig. 2. Space-Time-Frequency codeword allocation in a 2×2 MIMO system:
the codeword is transmitted through a fast fading channel.

which is constant during a frame and varies independently
from one frame to another. The elements of H are assumed
to be i.i.d. circularly symmetric Gaussian random variables
∼ NC(0, 1).

Figure 2 shows the case where each codeword is sent within
two consecutive OFDM symbols. A total of K = Nt/2
codewords are sent over L frequency slots. If ∆f ≈ Bc we
have the fast fading channel given by

Yk = HkXk + Zk k = 1, . . . , L (2)

In practice, a frequency interleaver is often inserted in order to
provide better independence between the channel coefficient
matrices Hk in different subbands. For convenience we will
assume that L = Nf but other codeword lengths can be easily
adapted to the frame if L is an integer fraction or multiple of
Nf .

The channel is assumed to be known at the receiver. This
can be obtained by sending some pilot symbols to estimate the
channel at the receiver. Note that at least one OFDM symbol
per coherence time is needed in order to track the channel

variations.
The careful concatenation of the Golden code with an

outer trellis code provides a robust solution for high rate
transmission over such channel. We will discuss different
solutions for the application of Golden space-time trellis coded
modulation (GST-TCM).

As an inner code, the Golden code guarantees full diversity
for any spectral efficiency, and the outer trellis code is used to
improve the coding gain. We note how the NVD property for
the inner code is essential when using a TCM scheme: such
schemes usually require a constellation expansion, which will
not suffer from a reduction of the minimum determinant.

We therefore develop a systematic design approach for
GST-TCM schemes. Lattice set partitioning, combined with
a trellis code, is used to increase the minimum determinant.
The Viterbi algorithm is used for trellis decoding, where the
branch metrics are computed by using a lattice sphere decoder
[6] for the inner code. It is shown that the proposed TCMs
achieve significant performance gains.

The rest of the paper is organized as follows. Section 2 in-
troduces the system model. Section 4 reviews the Golden code.
Section 3 presents code design criteria. Section 4 presents the
GST-TCM scheme. Conclusions are drawn in Section 5.

The following notations are used in the paper. Let T denote
transpose and † denote Hermitian transpose. Let Z, Q, C
and Z[i] denote the ring of rational integers, the field of
rational numbers, the field of complex numbers, and the ring of
Gaussian integers, where i2 = −1. Let GF (2) = {0, 1} denote
the binary Galois field. Let L/K denote a field extension. Let
A denote the cyclic algebra. Let Q(θ) denote an algebraic
number field generated by the primitive element θ. The real
and imaginary parts of a complex number are denoted by <(·)
and =(·). The m×m dimensional identity matrix is denoted by
Im. The m×n dimensional zero matrix is denoted by 0m×n.
The Frobenius norm of a matrix is denoted by ‖·‖F . Let Z8 be
the 8-dimensional integer lattice and E8 be the Gosset lattice,
the densest sphere packing in 8 dimensions [13].

In this paper, we use Q-QAM constellations with Q = 2η .
We assume the constellation is scaled to match Z[i] + (1 +
i)/2, i.e., the minimum Euclidean distance is set to 1 and it
is centered at the origin. For example, the average energy is
Es = 0.5, 1.5, 2.5, 5, 10.5 for Q = 4, 8, 16, 32, 64.

Signal to noise ratio is defined as SNR = ntEb/N0, where
Eb = Es/q is the energy per bit and q denotes the number of
information bits per symbol. We have N0 = 2σ2, where σ2 is
the noise variance per real dimension, which can be adjusted
as σ2 = (ntEb/2)10(-SNR/10).

II. THE GOLDEN CODE

The Golden code was proposed in [1] as an optimum
2 × 2 linear dispersion space-time block codes for a 2 × 2
MIMO system. The code is constructed using a particular
family of division algebras, named cyclic division algebras.
It is built over a quadratic extension of the base field Q(i),
where i2 = −1, thereby enabling to use arbitrary Q-QAM
constellations. The inherent integer lattice structure provides



efficient constellation shaping, leading to the information
lossless property [5]. The base field Q(i) also provides the
non-vanishing determinant (NVD) property for the Golden
code, i.e., the minimum determinant remains constant for any
QAM size. It was shown in [3] that the NVD guarantees to
achieve the fundamental performance limit of the multiple-
input multiple-output (MIMO) systems, given by the diversity-
multiplexing tradeoff (DMT) [4].

Following [1] and [2], we review the algebraic properties
of the Golden code, which is built using the cyclic algebra

A = (L/K = Q(i,
√

5)/Q(i), σ, i),

with σ :
√

5 7→ −√5. We have that the ring of integers of the
field L is

OL = {a + bθ | a, b ∈ Z[i]},
where θ = 1+

√
5

2 . Before shaping, a codeword from this
algebra is of the form

[
a + bθ c + dθ

i(c + dσ(θ)) a + bσ(θ)

]
,

with four information symbols a, b, c, d ∈ Z[i].
Since i is not a norm of any element of L, A is a cyclic

division algebra [2]. By definition, the codebook obtained is
linear, full rate (since it contains four information symbols
a, b, c, d), and fully diverse.

A. The cubic shaping

Let us see now how to add the cubic shaping on the
codebook built on A, which provides the information lossless
property. We look at the Z[i]-lattice that is generated on each
layer of the codeword by the matrix

(
1 θ
1 σ(θ)

)

This matrix is not unitary, hence we have an energy shaping
loss. We now show how to fix this problem without loosing
all the other algebraic properties. This can be obtained by a
lattice Λ with a generator matrix of the form

M =
(

α 0
0 σ(α)

)(
1 θ
1 σ(θ)

)
=

(
α αθ

σ(α) σ(α)σ(θ)

)
.

where α ∈ OL has to be selected in order to make M unitary.
The determinant of the lattice Λ can be written as

det(Λ) = |NL/K(α)|2|dQ(
√

5)|
= 5|NL/K(α)|2.

A necessary condition to have the lattice Z[i]2 is that det(Λ)
is a square integer. We thus look for an element α such that
|NL/K(α)|2 = 5. In order to find such element, we look at
the factorization of 5 in OL:

5 = (1 + i− iθ)2(1− i + iθ)2.

We thus choose α = 1 + i− iθ. Let us now check we indeed
get the right lattice. Using its generator matrix M a direct
computation shows that M† = 5I2. Thus 1√

5
M is a unitary

matrix, yielding the shaping property within the first layer.
The other layer also has the cubic shaping so that the entire
codeword has the

A codeword X belonging to the Golden code has thus,
adding the shaping property, the form

X =
1√
5

[
α(a + bθ) α(c + dθ)

iσ(α)(c + dσ(θ)) σ(α)(a + bσ(θ))

]

where a, b, c, d are QAM symbols.
Recall that when a, b, c, d can take any value in Z[i], we say

that we have an infinite code C∞. This terminology recalls the
case where finite signal constellations are carved from infinite
lattices.

B. The Minimum Determinant

Let us now compute the minimum determinant of the
infinite code. Since

X =
1√
5

[
α 0
0 σ(α)

] [
a + bθ c + dθ

i(c + dσ(θ)) a + bσ(θ)

]
,

and since ασ(α) = 2 + i, we have

det(X) =
2 + i

5
[(a + bθ)(a + bσ(θ))− i(c + dθ)(c + dσ(θ))]

=
1

2− i
[(a2 + ab− b2 − i(c2 + cd− d2)].

By definition of a, b, c, d, we have that the non trivial minimum
of |a2 + ab− b2 − i(c2 + cd− d2)|2 is 1, thus

δmin(C∞) = min
X 6=0

| det(X)|2 =
1
5
.

Thus the minimum determinant of the infinite code is bounded
away from zero, as required by the NVD property.

Finally, we note that in the second row of the codeword X
the factor i guarantees a uniform average transmitted energy
from both antennas in both channel uses, since |i|2 = 1.

III. CODE DESIGN CRITERIA

Let us first consider the slow fading channel in (1). Assum-
ing that a codeword X is transmitted, the maximum-likelihood
receiver might decide erroneously in favor of another code-
word X̂. Let r denote the rank of the codeword difference
matrix X− X̂. Since the Golden code is a full rank code, we
have r = nt = 2.

Let λj , j = 1, . . . , r, be the eigenvalues of the codeword

distance matrix A = (X − X̂)(X− X̂)†. Let ∆ =
nt∏

j=1

λj be

the determinant of the codeword distance matrix A and ∆min

be the corresponding minimum determinant, which is defined
as

∆(s)
min = min

X 6=X̂
det (A) . (3)

The pairwise error probability (PWEP) is upper bounded by

P
(
X → X̂

)
≤

(
∆(s)

min

)−nr
(

Es

N0

)−ntnr

(4)

where ntnr is the diversity gain and (∆min)1/nt is the coding
gain [7]. In the case of linear codes analyzed in this paper,



we can simply consider the all-zero codeword matrix and we
have

∆(s)
min = min

X 6=02×2L

∣∣det
(
XX†)∣∣2 . (5)

Let us now consider the fast fading channel in (2). In this
case the PWEP is upper bounded by

P
(
X → X̂

)
≤

(
∆(f)

min

)−nrL′
(

Es

N0

)−ntnrL′

(6)

where L′ is minimum number of non-zero determinants

det
(
(Xk − X̂k)(Xk − X̂k)†

)
(7)

and the minimum determinant in the case of linear codes is
given by

∆(f)
min = min

X 6=02×2L

(L′)∏

det(XkX†
k)6=0

det
(
XkX†

k

)
(8)

Note how L′ mimics the role of the Hamming distance which
was used in the design of STTC for fast fading proposed by
Tarokh et al. in [7]. The diversity order of the code over the
fast fading channel is thus increased by a factor L′.

In order to compare two coding schemes for the same
type of channel in a 2 × 2 MIMO system, supporting the
same information bit rate, but different minimum determinants
(
√

∆min,1 and
√

∆min,2) and different constellation energies
(Es,1 and Es,2), we define the asymptotic coding gain as

γas =

√
∆min,1/Es,1√
∆min,2/Es,2

(9)

Performance of an uncoded Golden code scheme, where
the all Xk in X are independently selected from the Golden
code, can be simply analyzed for L = 1 on both slow and fast
fading. Since the Golden code G has minimum determinant is
δmin = 1

5 we have ∆(s)
min = ∆(f)

min = δmin.
In general, we consider L > 1 and the minimum determi-

nant for slow fading can be written as

∆(s)
min = min

X 6=02×2L

det(XX†) = min
X 6=02×2L

det

(
L∑

k=1

(
XkX†

k

))
.

(10)
A code design criterion attempting to maximize ∆(s)

min is hard
to exploit, due to the non-additive nature of the determinant
metric in (10). Since XtX

†
t are positive definite matrices, we

use the following determinant inequality [14]:

∆(s)
min ≥ min

X 6=02×2L

L∑

k=1

det
(
XkX†

k

)
= ∆′(s)

min. (11)

Note that only L′ terms will be non zero in the above sum.
Similarly, we have L′ terms in the product giving the ∆(f)

min

for the fast fading case.
In order to optimize the performance of the coding scheme

we focus on the lower bound ∆′(s)
min for slow fading and

∆(f)
min for fast fading. In particular we will design trellis codes

that attempt to maximize these two quantities, by using set
partitioning to increase the number L′ and the magnitude of
the non zero terms det

(
XkX†

k

)
. This will yield codes that

are robust to both types of channels.

IV. GOLDEN SPACE-TIME TRELLIS CODED MODULATION

In this section, we propose a systematic design approach for
Golden Space-Time Trellis coded (GST-TCM). We analyze the
design problem of this scheme by using Ungerboeck style set
partitioning rules for coset codes [9–11]. The design criterion
for the trellis code is developed in order to maximize the
quantity ∆′

min denoting either ∆′(s)
min or ∆(f)

min. This results in
the maximum lower bound on the asymptotic coding gain of
the GST-TCM over the uncoded Golden code scheme

γas ≥
√

∆′
min/Es,2√

δmin/Es,1

. (12)

Before we design the coding scheme, we briefly recall the set
partition chain of the Golden code given in [12].

The Golden subcodes – Let us consider a subcode Gk ⊆ G
for k = 1, . . . , 4, obtained by

Gk = {XBk, X ∈ G}, (13)

where

B =
[

i(1− θ) 1− θ
iθ iθ

]
. (14)

This provides the minimum square determinant 2kδmin (see
Table I). It can be shown that the codewords of Gk, when
vectorized, correspond to different sublattices of Z8 that form
the lattice partition chain

Z8 ⊃ D2
4 ⊃ E8 ⊃ L8 ⊃ 2Z8 (15)

where D2
4 is the direct sum of two four-dimensional Shäfli

lattices, E8 is the Gosset lattice and L8 is a lattice of index 64
in Z8. Any two consecutive lattices Λk ⊃ Λk+1 in this chain
form a four way partition, i.e., the quotient group Λk/Λk+1

has order 4. Let [Λk/Λk+1] denote the set of coset leaders of
the quotient group Λk/Λk+1.

The lattices in the partition chain can be obtained by
Construction A [13], using the nested sequence of linear binary
codes Ck listed in Table I. Let Gk denote the generator matrix
of the code Ck for k = 1, 2, 3. We have

G1 =




1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1




G2 =




0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1




G3 =
[

0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

]
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Fig. 3. General encoder structure of the concatenated scheme.
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Following the track of [9–11], we consider a partition tree
of the Golden code of depth ` (see Fig. 4). From a nested
subcode sequence G ⊇ G`0 ⊃ G`0+1 ⊃ · · · ⊃ G`0+`, we have
the corresponding lattice partition chain Z8 ⊇ Λ`0 ⊃ Λ`0+1 ⊃
· · · ⊃ Λ`0+` where

Λ`0 = Λ`0+1 + [Λ`0/Λ`0+1] = · · ·
= Λ`0+` + [Λ`0/Λ`0+1] + · · ·+ [Λ`0+`−1/Λ`0+`]
= Λ`0+` + [C`0/C`0+1] + · · ·+ [C`0+`−1/C`0+`]

The coset leaders in [Ck/Ck+1] form the group of order four
Z/2Z × Z/2Z, which is generated by two binary generating
vectors h1 and h2

[Ck/Ck+1] = {b1h1 + b2h2 | b1, b2 ∈ GF (2)}

If we consider all the lattices in (15), and the corresponding

Level Subcode Lattice Binary code ∆min

0 G Z8 C0 = (8, 8, 1) δmin

1 G1 D2
4 C1 = (8, 6, 2) 2δmin

2 G2 E8 C2 = (8, 4, 4) 4δmin

3 G3 L8 C3 = (8, 2, 4) 8δmin

4 G4 = 2G 2Z8 C4 = (8, 0,∞) 16δmin

TABLE I
THE GOLDEN CODE PARTITION CHAIN WITH CORRESPONDING LATTICES,

BINARY CODES, AND MINIMUM SQUARED DETERMINANTS.

nested sequence of linear binary codes Ck, we have:

[C0/C1] :

{
h(1)

1 = (0, 0, 0, 0, 0, 0, 0, 1)
h(1)

2 = (0, 0, 0, 1, 0, 0, 0, 0)
(16)

[C1/C2] :

{
h(2)

1 = (0, 0, 0, 0, 0, 0, 1, 1)
h(2)

2 = (0, 0, 0, 0, 0, 1, 0, 1)

[C2/C3] :

{
h(3)

1 = (0, 1, 0, 1, 0, 1, 0, 1)
h(3)

2 = (0, 0, 1, 1, 0, 0, 1, 1)

[C3/C4] :

{
h(4)

1 = (0, 0, 0, 0, 1, 1, 1, 1)
h(4)

2 = (1, 1, 1, 1, 1, 1, 1, 1)

Encoder structure – Fig. 3 shows the encoder structure of
the proposed concatenated scheme. The input bits feed two
encoders, an upper trellis encoder and a lower lattice encoder.

For two lattices Λ`0 and Λ`0+`, we have the quotient group
Λ`0/Λ`0+` with order Nc = |Λ`0/Λ`0+`| = 4`, which corre-
sponds to the total number of cosets of the sublattice Λ`0+` in
the lattice Λ`0 . We assume that we have 4q input bits. The up-



per encoder is a trellis encoder that operates on q1 information
bits. Given the relative partition depth `, we select a trellis code
rate Rc = 1/`. The trellis encoder outputs nc = q1/Rc bits,
which are used by the coset mapper to label a coset leader
c1 ∈ [Λ`0/Λ`0+`]. The mapping is obtained by the product
of the nc bit vector with a binary coset leader generator
matrix H1 with rows h(`0+1)

1 ,h(`0+1)
2 , · · · ,h(`0+`)

1 ,h(`0+`)
2 ,

taken from (16). This implies the choice of q1 = 2.
The lower encoder is a sublattice encoder for Λ`0+` and

operates on q2+q3 information bits, where q2 = 2×(4−`−`0)
and q3 = 4q − q1 − q2. The q2 bits label the cosets of
2Z8 in Λ`0+`, i.e., a coset leader c2 ∈ [Λ`0+`/2Z8]. The
mapping is obtained by the product of the q2 bit vector
with a binary coset leader generator matrix H2 with rows
h(`0+`+1)

1 ,h(`0+`+1)
2 , · · · ,h(4)

1 ,h(4)
2 , taken from (16). We fi-

nally add both coset leaders of c1 and c2 modulo 2 to get c′.
The q3 bits go through the 2Z8 encoder and generate vector
2u, u ∈ Z8, which is added to c′ (lifted to have integer
components) and then mapped to the Golden codeword Xk.

We now focus on the structure of the trellis code to be used.
We consider linear convolutional encoders over the quaternary
alphabet Z4 = {0, 1, 2, 3}, in order to match the four way
partitions. We assume the natural mapping between pairs of
bits and quaternary symbols, i.e., 0 → 00, 1 → 01, 2 →
10, 3 → 11. Let β ∈ Z4 denote the input symbol and
α1, . . . , α` ∈ Z4 denote the ` output symbols generated by
the generator polynomials g1(D), . . . g`(D) over Z4.

Trellis labeling– In order to increase the potential coding
gain, the lower bound ∆′

min should be maximized. Let ∆par =
2`0+`δmin denote the minimum determinant of the trellis
parallel transitions corresponding to the Golden codewords in
the partition Λ`0+` + c1. Let

∆sim =





min
X 6=02×2L

ko+L′−1∑

k=ko

det(XkX†
k) (slow)

min
X 6=02×2L

ko+L′−1∏

k=ko

det(XkX†
k) (fast)

denote the minimum determinant on the shortest simple error
event, where L′ is the length of the shortest simple error event
diverging from the zero state at ko and merging to the zero
state at ki = ko + L′ − 1.

The lower bound ∆′
min in (11) is determined either by the

parallel transition error events or by the shortest simple error
events in the trellis, i.e.,

∆′
min = min {∆par,∆sim} ≥

≥ min
{

∆par, min
Xko

det(XkoX
†
ko

)
+
× min

Xki

det(XkiX
†
ki

)
}

.

where the + sign is for slow fading and the × sign is for fast
fading.

Therefore, we focus on maximizing ∆sim in ∆′
min when

selecting the trellis code labeling. We have the following:
Design criterion – The incoming and outgoing branches

for each state should belong to different cosets that have the

common father node as deep as possible in the partition tree.
This guarantees that simple error events in the trellis give the
largest contribution to ∆′

min.
In order to fully satisfy the above criterion for a given

relative partition level `, the minimum number of trellis states
should be Nc = 4`. In order to reduce complexity we will
also consider trellis codes with fewer states. We will see in
the following that the performance loss of these suboptimal
codes (in terms of the above design rule) is marginal since
∆par is dominating the code performance. Nevertheless, the
optimization of ∆sim yields a performance enhancement. In
fact, maximizing ∆sim has the effect of minimizing some other
relevant term in the determinant spectrum.

Decoding – The decoder is structured as a typical TCM
decoder, i.e., a Viterbi algorithm using a branch metric com-
puter. The branch metric computer should output the distance
of the received symbol from all the cosets of Λ`0+` in Λ`0 .

Example – We use a three level partition Z8/L8 (`0 =
0 and ` = 3). The 16 and 64 state trellis codes using 16–
QAM (Es,1 = 2.5) gain 4.2 and 4.3 dB, respectively, over an
uncoded Golden code (Es,2 = 1.5) on the slow fading channel
at the rate of 6 bpcu.

We consider a three level partition with quotient group
Λ`0/Λ`0+` = Z8/L8 of order Nc = 64. The quaternary trellis
encoders for 16 and 64 states with rate Rc = 1/3 have q1 = 2
input information bits and nc = 6 output bits, which label the
coset leaders. The sublattice encoder has q2 = 2 and q3 = 8
input bits, giving a total of q = (q1 + q2 + q3)/4 = 12/4 = 3
information bits per 16–QAM information symbol.

The 16 state GST-TCM has the following generator polyno-
mials: g1(D) = D, g2(D) = D2, g3(D) = 1 + D2, where D
is a delay operator. For the 16 state GST-TCM, at each trellis
state, four outgoing branches are labeled with α1, α2, α3,
corresponding to input β ∈ Z4. In this case, since α1 and
α2 are fixed, α3 varies. This guarantees an increased ∆′

min.
The four trellis branches arriving in each state are in cosets of
E8. This does not give the highest possible increase to ∆′

min

since α2 varies.
We can verify that the shortest simple error event has a

length of L′ = 3 corresponding to the state sequence 0 →
1 → 4 → 0 and labels 001, 100, 011. This yields the lower
bound of the corresponding asymptotic coding gain

γ′as =

√
min(8δmin, 4δmin + δmin + 2δmin)/Es,1√

δmin/Es,2

→ 2.0 dB.

(17)
The above problem suggests the use of a 64 state en-

coder with the generator polynomials: g1(D) = D, g2(D) =
D2, g3(D) = 1 + D3. In such a case, the output labels
α1(D2

4), α2(E8) are fixed for all outgoing and incoming states.
Only α3(L8) varies to choose different subgroups from the
deepest partition level in this example. This fully satisfies our
design rule.

We can see that the shortest simple error event has length
L′ = 4 corresponding to the state sequence 0 → 1 → 4 →
16 → 0 and labels 001, 100, 010, 001. Note that now the output
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Fig. 5. Performance comparison of a 4-state trellis code using 16-QAM
constellation and an uncoded transmission at the rate 6bpcu, Λ`0 = Z8,
Λ`0+` = L8, ` = 3, slow fading.

labels α1, α2 are fixed for all outgoing and incoming states.
This guarantees both incoming and outgoing trellis branches
from each state belong to the cosets that are deepest in the
partition tree. This yields the lower bound of the corresponding
asymptotic coding gain

γ′as =

√
min(8δmin, 4δmin + δmin + 2δmin + 4δmin)/Es,1√

δmin/Es,2

→ 2.3 dB.

Performance of the proposed codes and the uncoded scheme
with 6 bpcu is compared in Fig. 5. We can observe that a 16
state GST-TCM outperforms the uncoded scheme by 4.2 dB
and at the FER of 10−3. The 64 state GST-TCM outperforms
the uncoded case by 4.3 dB at FER of 10−3.

In the case os fast fading the same codes as above are
compared in Fig. 6. It is shown that the 16 and 64 state
codes have the same performance and outperform the uncoded
Golden code by about 4.5 dB at the FER of 10−3.

By comparing the two figures we see that the performance
over the slow fading channel is about 1.5dB better than
the one over fast fading. Even if the diversity order in fast
fading is larger this will only appear at a much lower error
probability. We can conclude that concentrating on the coding
gain, independently of the diversity order has a positive effect
on the performance in the mid-range SNRs.

V. CONCLUSIONS

In this paper, we presented a simple review of the Golden
code, showing how the cyclic division algebra guarantees some
optimal properties of the Golden code. We then developed a
concatenated coding scheme for both slow and fast fading 2×2
MIMO systems based on OFDM. The inner code is the Golden
code and the outer code is a trellis code. Lattice set partitioning
is designed specifically to increase the minimum determinant
of the Golden codewords, which label the branches of the outer
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Fig. 6. Performance comparison of 16- and 64-state trellis codes using 16-
QAM constellation and an uncoded transmission at the rate 6bpcu, Λ`0 = Z8,
Λ`0+` = L8, ` = 3, fast fading.

trellis code. Viterbi algorithm is applied in trellis decoding,
where branch metrics are computed by using a lattice decoder.
The general framework for GST-TCM design and optimization
is based on Ungerboeck TCM design rules. Finally, it was
shown that the design criteria are robust to various channel
conditions ranging from slow to fast fading.
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