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The Golden Code: A 2 2 Full-Rate Space–Time
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Abstract—In this paper, the Golden code for a 2 2 multiple-
input multiple-output (MIMO) system is presented. This is a full-
rate 2 2 linear dispersion algebraic space–time code with un-
precedented performance based on the Golden number 1+ 5

2
.

Index Terms—Cyclic division algebras, number fields, space–
time lattices.

I. INTRODUCTION

FULL rate and full diversity codes for the coherent
multiple-input multiple-output (MIMO) systems, were first

constructed in [1], using number-theoretical methods. This ap-
proach was later generalized for any number of transmit an-
tennas [2]–[4]. The above constructions satisfy the rank cri-
terion and attempt to maximize, for a fixed signal set , the
coding advantage, [5]. A general family of full-rank and
full-rate linear dispersion space–time block codes (LD-STBC)
is given in [6], [7], based on cyclic division algebras.

Let be a quadratic extension of , we define
the infinite code as the set of matrices of the form

where is a number carefully chosen [6], [7]. is
clearly a linear code, i.e., for all

. The finite code is obtained by limiting the information
symbols to , where we assume the signal
constellation to be a -QAM, with in-phase and quadrature
components equal to and bits per symbol.

The code is a discrete subset of a cyclic division algebra
over , obtained by selecting and
for any [6], [7]. A division algebra naturally yields a
structured set of invertible matrices that can be used to construct
square LD-STBC, since for any codeword , the rank
criterion is satisfied as .

We define the minimum determinant of as

(1)
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and the minimum determinant of the finite code as

(2)

Minimum determinants of in all previous constructions
[1]–[4], [7] are nonzero, but vanish as the spectral efficiency
of the signal constellation is increased. This problem appears
because transcendental elements or algebraic elements with a
too high degree are used to construct the division algebras. Non-
vanishing determinants may be of interest, whenever we want to
apply some outer block coded modulation scheme, which usu-
ally entails a signal set expansion, if the spectral efficiency has
to be preserved.

As explained in the following, in order to obtain energy-effi-
cient codes we need to construct a lattice , a rotated ver-
sion of the complex lattice , where is a complex unitary
matrix, so that there is no shaping loss in the signal constellation
emitted by the transmit antennas. This additional property was
never considered before and is the key to the improved perfor-
mance of our code.

Here we find the Golden Code, a code with nonvanishing
outperforming all previous constructions. It is interesting to no-
tice that, for this code, does not depend on the size of the
signal constellation.

After paper submission, the authors became aware that a code
isomorphic to the Golden Code was independently found by [8]
and [9] by analytical optimization. In [8], it is shown that this
code achieves the diversity–multiplexing gain tradeoff [10]. The
algebraic approach given here sheds a totally new light over such
a code and opens the way to extension to MIMO systems with
a higher number of antennas [11].

II. THE GOLDEN CODE

We first illustrate the construction of the Golden Code, which
is related to the Golden number and yields the best
performance. We assume the reader is familiar with the basic
definitions in algebraic number theory, for which we suggest
[12]–[14].

Consider

as a relative quadratic extension of , with minimal polyno-
mial . Denote by and ,
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the two roots of the minimal polynomial. Let de-
note the ring of integers of , with integral basis .
We recall that for any algebraic integer , with

(Gaussian integers), the relative norm is

(3)

Let be the corresponding
absolute extension of over , with signature ,
ring of integers , and integral basis .1 The
relative discriminant of is , while the absolute dis-
criminant of is .

In order to obtain energy-efficient codes we need to construct
a complex lattice , where is a complex unitary matrix,
so that there is no shaping loss in the signal constellation. This
lattice will derive as an algebraic lattice from an appropriate
relative ideal of the ring of integers . The complex lattice

can equivalently be seen as a rotated -lattice: ,
being an orthogonal matrix, obtained from an ideal of [13].

A necessary condition to obtain is that there exists an
ideal of norm . In fact, the lattice has fun-
damental volume equal to and the sublattice

has fundamental volume equal to
, where the norm of the ideal is equal to the sublat-

tice index. This suggests that the fundamental parallelotope of
could be a hypercube of edge length equal to , but this

needs to be checked explicitly.
An ideal of norm can be found from the following ideal

factorization:

(4)

Let us take the principal ideal , where
.

Following [12], let the canonical embedding of be defined
by

(5)

where

(6)

are the four field homomorphisms. The bi-quadratic nature of
is reflected by its Galois group

(7)

The real lattice generator matrix of is obtained by
applying the canonical embedding to the integral basis ,
while the real lattice generator matrix of the sublattice

is obtained by applying the canonical embedding to the

1The fields and coincide abstractly, it is only for convenience of exposi-
tion that we use distinct notation

integral basis of the principal ideal , which is given
by . Hence,

By straightforward calculations we may verify that ,
which corresponds to the -lattice.

The corresponding complex lattice can be obtained by
applying the complex canonical embedding

(8)

to the relative basis of

If we consider the cyclic division algebra

over , we can represent all its elements by matrices

(9)

where and is not an algebraic norm
of any element of (see [6], [7]).

In our case, we define as an order of , ob-
tained by restricting . Codewords of are
given by

(10)

where , , and the factor is
necessary to normalize in order to obtain a unitary matrix.

Division algebras guarantee that for all code-
words. But how can we choose to avoid vanishing determi-
nants and preserve energy efficiency?

The numerically optimized codes in [1] take ,
such that it is transcendental over . The fact that is transcen-
dental guarantees nonzero determinants. From (10), we have

(11)

The idea is to choose a (hence, not transcendental)
which is not a norm of elements of as proposed in [6] and
also such that , which guarantees that the same average
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Fig. 1. Some determinants for the codewords of C (see (13)).

energy is transmitted from each antenna at each channel use.
This limits the choice to .

In order to satisfy the nonvanishing determinant condition in
(11), we choose and verify that it is never a norm of
an element of (see the Appendix). Hence, by choosing
, we ensure that the determinants in (11) only take values in

the discrete set . In Fig. 1, we plot the first few terms of
the determinant spectrum in the complex plane. In this plot, we
can see an empty disk around the origin whose square radius is
exactly . Let us relate this to the algebraic structure of
the code. From (11) we have

(12)

As the second term in (12) only takes values in and its min-
imum modulus is equal to (take and ),
we conclude that

(13)

III. SIMULATION RESULTS

The numerically optimized full-rate codes in [1] have
vanishing determinants and are equivalent to

with .
The first code proposed in [1] falls in the general

scheme of (10), where we take the cyclotomic field

with , and . We will denote
this code by .

Further optimization of yields different codes with a
similar structure to with transcendental or algebraic.
In the case is transcendental, as explained in [7, Proposition
12], is not necessarily a finite extension [15].

We will denote these codes for the 4-QAM by , where
, and for the 16-QAM by , where .

TABLE I
COMPARISON OF

p
�

Fig. 2. Transmitted constellation for 4-QAM (Golden Code).

Fig. 3. Transmitted constellation for 4-QAM (best previously known code).

The Golden Code has , for any size of the
constellation and is always larger than the previous ones (see
Table I).

The symbols per transmit antenna (i.e., the elements of the
matrix codewords) are drawn from a “coded” constellation
plotted in Figs. 2 and 3 and for the Golden Code and the best
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Fig. 4. Performance comparison of the new codes versus those of [1] and [15].

previously known one [1], respectively. We can observe that,
for the Golden Code, is almost a rotated regularly spaced
quadrature amplitude modulation (QAM) constellation with
distinct points with same average energy as , whereas it is the
union of three phase-shift keying (PSK) constellations for the
other code. We conjecture that this property of the constel-
lation along with the minimum value of are the key fac-
tors to explain the good performance of the Golden Code in the
medium signal-to-noise (SNR) range.

In Fig. 4, we show the bit-error rates for the codes , ,
and the Golden Code as a function of for the standard
block-fading MIMO channel. The maximum-likelihood
sphere decoder [16], [17] is used at the receiver. We can observe
that the Golden Code gains 0.9 dB in the 16-QAM case and 1.2
dB in the 4-QAM case with respect to the best previously known
codes.

IV. CONCLUSION

We presented a new LD-STBC with full rate and full
diversity, energy efficient, and with nonvanishing determinants.
This outperforms all previously known codes. Moreover, it is
possible to show that a family of codes similar to the Golden
Code can be generated using for all primes

[18]. For these codes, . Hence, the
Golden code gives the largest within this family.

APPENDIX

We show, in this appendix, that the cyclic algebra defined
in (9) is a division algebra.

Proposition 1: Let , then the element is
not a relative norm of any , i.e., , .

Proof: Let denote the field of -adic numbers, and
its valuation ring [19]. The com-

plex rationals can be embedded in by

Let with , then we must show that

has no solution for . We can lift this equation in the
-adic field

(14)

and show that it has no solution there. We take the valuations of
both sides of (14)

to show that and must be in . In fact, since

and we have equality as both valuations are distinct. Now

must be , hence, which implies and conse-
quently .

We conclude by showing that

has no solution. Reducing modulo we find that should be
a square in GF , which is a contradiction.
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