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Abstract—1In this paper, the Golden code for a 2 X 2 multiple-
input multiple-output (MIMO) system is presented. This is a full-
rate 2 X 2 linear dispersion algebraic space-time code with un-
precedented performance based on the Golden number 1"'2—‘/5_'

Index Terms—Cyclic division algebras, number fields, space-
time lattices.

1. INTRODUCTION

ULL rate and full diversity codes for the 2 x 2 coherent
multiple-input multiple-output (MIMO) systems, were first
constructed in [1], using number-theoretical methods. This ap-
proach was later generalized for any number of transmit an-
tennas M [2]-[4]. The above constructions satisfy the rank cri-
terion and attempt to maximize, for a fixed signal set .S, the
coding advantage, [5]. A general family of 2 x 2 full-rank and
full-rate linear dispersion space—time block codes (LD-STBC)
is given in [6], [7], based on cyclic division algebras.
Let K = @(f) be a quadratic extension of Q(), we define
the infinite code C, as the set of matrices of the form

_ _ a~|—b0_
Coo = {X - [’y(c-l-dﬁ)

where v € Z[i] is a number carefully chosen [6], [7]. Cs is
clearly a linear code, i.e., X1 + X5 € C, forall X1,X, €
Cwo. The finite code C is obtained by limiting the information
symbols to a,b,c,d € S C Z[i], where we assume the signal
constellation S to be a 2°-QAM, with in-phase and quadrature
components equal to £1, 3, ... and b bits per symbol.

The code C, is a discrete subset of a cyclic division algebra
over Q(i), obtained by selecting v € Z[:] and v # Ni;q)(x)
for any x € K [6], [7]. A division algebra naturally yields a
structured set of invertible matrices that can be used to construct
square LD-STBC, since for any codeword X € C.., the rank
criterion is satisfied as det(X) # 0.

We define the minimum determinant of C, as

c+df

o+ b8 :a,b,c,del[i]}

| det(X)|? (1)

min

5min Coo =
( ) XeCoo ,X#0
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and the minimum determinant of the finite code C as

(1>

|det(X1 — X2)|2

min
X1,X2€C,X1#X2

6min (C)

Minimum determinants of C., in all previous constructions
[1]-[4], [7] are nonzero, but vanish as the spectral efficiency b
of the signal constellation S'is increased. This problem appears
because transcendental elements or algebraic elements with a
too high degree are used to construct the division algebras. Non-
vanishing determinants may be of interest, whenever we want to
apply some outer block coded modulation scheme, which usu-
ally entails a signal set expansion, if the spectral efficiency has
to be preserved.

As explained in the following, in order to obtain energy-effi-
cient codes we need to construct a lattice M Z[i]?, a rotated ver-
sion of the complex lattice Z[i]%, where M is a complex unitary
matrix, so that there is no shaping loss in the signal constellation
emitted by the transmit antennas. This additional property was
never considered before and is the key to the improved perfor-
mance of our code.

Here we find the Golden Code, a code with nonvanishing 6y,;,,
outperforming all previous constructions. It is interesting to no-
tice that, for this code, 0,nin does not depend on the size of the
signal constellation.

After paper submission, the authors became aware that a code
isomorphic to the Golden Code was independently found by [8]
and [9] by analytical optimization. In [8], it is shown that this
code achieves the diversity—multiplexing gain tradeoff [10]. The
algebraic approach given here sheds a totally new light over such
a code and opens the way to extension to MIMO systems with
a higher number of antennas [11].

II. THE GOLDEN CODE

We first illustrate the construction of the Golden Code, which
is related to the Golden number 6 = # and yields the best
performance. We assume the reader is familiar with the basic
definitions in algebraic number theory, for which we suggest
[12]-[14].

Consider

K = Q(i,V5) = {a+ bfla,b € Q(i)}

as a relative quadratic extension of Q(4), with minimal polyno-

mial ;14(X) = X?—X —1.Denotebyfandf = 1—60 = 1_2\/5,
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the two roots of the minimal polynomial. Let Ok = Z[:][f] de-
note the ring of integers of I, with integral basis Bk = {1, 0}.
We recall that for any algebraic integer z = a + bf € Ok, with
a,b € Z[i] (Gaussian integers), the relative norm is

Nijgei)(2) = (a+b9)(a+ bb) = a® + ab— b € Z[i]. (3)

Letl = {a+bi+cH+dif|a,b,c,d € Q} be the corresponding
absolute extension of IK over @, with signature (71, 72) = (0, 2),
ring of integers O, and integral basis By = {1,4,6,i6}.! The
relative discriminant of KK is dix = 5, while the absolute dis-
criminant of L is di = 2% - 52.

In order to obtain energy-efficient codes we need to construct
acomplex lattice MZ[i]?, where M is a complex unitary matrix,
so that there is no shaping loss in the signal constellation. This
lattice will derive as an algebraic lattice from an appropriate
relative ideal of the ring of integers Ok. The complex lattice
MZ[i)? can equivalently be seen as a rotated Z*-lattice: RZ*, R
being an orthogonal matrix, obtained from an ideal of Oy [13].

A necessary condition to obtain RZ* is that there exists an
ideal Zy C O of norm 5. In fact, the lattice A(Op ) has fun-
damental volume equal to 27"2/|dp_| = 5 and the sublattice
A(Zy) has fundamental volume equal to 272 /|dy_|N(Z) =
25, where the norm of the ideal N(Z, ) is equal to the sublat-
tice index. This suggests that the fundamental parallelotope of
A(Z1) could be a hypercube of edge length equal to /5, but this
needs to be checked explicitly.

Anideal Z; of norm 5 can be found from the following ideal
factorization:

500 =TT =(1+i—i0)% (1—i+i0)% (@

Let us take the principal ideal Z; = Z = («), where a =
1+4+¢—16.

Following [12], let the canonical embedding of L be defined
by

o:L— R*
o(z) = [R(o1(x)), S(o1(x)), R(o2(2)), S(02(2))]  (5)

Jl(ie) =16
o3(i0) = — i0 = 77(if)

o2(if) = if

04(i6) = —if = 73(i0)  (6)

are the four field homomorphisms. The bi-quadratic nature of L
is reflected by its Galois group

Gal(ﬂ—/Q) = {017 02,03, 04}
— Gal(Q(i)/Q) x Gal(Q()/Q) = Cs X Cr. (7)

The real lattice generator matrix of A(Oy ) is obtained by
applying the canonical embedding to the integral basis By,
while the real lattice generator matrix R of the sublattice
A(Zy) is obtained by applying the canonical embedding to the

IThe fields K and L coincide abstractly, it is only for convenience of exposi-
tion that we use distinct notation
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integral basis of the principal ideal 7 =
by {«,ia, ab,iaf}. Hence,

(), which is given

1 —1+6 0 1
1-6 1 -1 4
= L —1+6 6 1
1-6 1 -1 4

By straightforward calculations we may verify that R” R = 51,
which corresponds to the /5 Z*-lattice.

The corresponding complex lattice A(Zi ) can be obtained by
applying the complex canonical embedding

o:K— C?
o(z) = [o1(z), o2(2)] ®)

to the relative basis {«, af} of I

M= [Ul(a) al(aa)} B [1-1—2'(1—0)

0'2(05) UQ(CMH) 1+L(1—9_) 7

If we consider the cyclic division algebra

A= (K/Q(i),0,7)

over I, we can represent all its elements by 2 X 2 matrices

|z O z3 0 0 1
x=[5 o)+ [8 A0 ]

= [”“"1 x:”] ©)

YTg T2

where z1, x2,z3, 24 € Kandy € Q(4) is not an algebraic norm
of any element of K (see [6], [7]).

In our case, we define Co, = (A, Zk) as an order of A, ob-
tained by restricting x1, 2, 3, £4 € Zc. Codewords of C.., are
given by

g (e [2]) et (L [2]) [0 ]

_ 1 [ a(a+b0) oafc+dd) (10)
V5 | yalc+do)  ala+0b0)
where a,b,c,d € Z[i], @ = 1 4+ i(1 — ), and the factor % is

necessary to normalize M in order to obtain a unitary matrix.
Division algebras guarantee that det(X) # 0 for all code-
words. But how can we choose v to avoid vanishing determi-
nants and preserve energy efficiency?
The numerically optimized codes in [1] take v = ¢’ € C,
such that it is transcendental over K. The fact that  is transcen-
dental guarantees nonzero determinants. From (10), we have

det(X) = é (Mic/ae (1) = YNie/qiy(22)) # 0

Vzi=ala+b0) € Ix, 20 =alc+df) € Ix. (11)

The idea is to choose a v € Z(i) (hence, not transcendental)
which is not a norm of elements of Zi as proposed in [6] and
also such that |y| = 1, which guarantees that the same average
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Fig. . Some determinants for the codewords of C, (see (13)).

energy is transmitted from each antenna at each channel use.
This limits the choice to v = £1, £3.

In order to satisfy the nonvanishing determinant condition in
(11), we choose v = ¢ and verify that it is never a norm of
an element of K (see the Appendix). Hence, by choosing v =
1, we ensure that the determinants in (11) only take values in
the discrete set £Z[i]. In Fig. 1, we plot the first few terms of
the determinant spectrum in the complex plane. In this plot, we
can see an empty disk around the origin whose square radius is
exactly dmin (Coo ). Let us relate this to the algebraic structure of
the code. From (11) we have

1
det(X) = = Nic/q) (@) (Nic/qqi)(a + bo)
—’yNK/Q(i)(C—i-dQ)), YVa,b,e,d e Z[i]. (12)

As the second term in (12) only takes values in Z[4] and its min-
imum modulus is equal to 1 (take a = l and b = ¢ = d = 0),
we conclude that

13)

at| =

1 1 .
6min(coo) = %|NK/Q(L)(Q)|2 = %|2+ Z|2 =

III. SIMULATION RESULTS

The numerically optimized 2 x 2 full-rate codes in [1] have
vanishing determinants and are equivalent to

1 a+b) c+do .
{X_ﬁ {’y(c—d@) a—bﬂ] a,b,c,dEZ[z]}
withy = 6 = €',

The first 2 x 2 code proposed in [1] falls in the general
scheme of (10), where we take the cyclotomic field

K= Q(”'v 9) = Q(Q)
with § = e'™/4, o = 1 and y = 0 = /i ¢ Z[i]. We will denote
this code by C,.

Further optimization of 8, yields different codes with a
similar structure to C, with v = 6 transcendental or algebraic.
In the case +y is transcendental, as explained in [7, Proposition
12], K = Q(4,) is not necessarily a finite extension [15].

We will denote these codes for the 4-QAM by Cpy, Where
v = ¢/2 and for the 16-QAM by Cp16, Where v = ein/6,
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TABLE 1
COMPARISON OF v/& i
5 VBmin 4—QAM | dmin 16-QAM | v/min 64-QAM
5y = ein/4 0.0858 0.0272 0.0147
v =¢/2 0.2369 0.0137 0.0137
v = ein/6 0.1895 0.0508 0.0186
Yy =1 1.78%9 1.7889 1.7889
2 T T T T T T T
+
15k o S S o SR o ]
: : + :
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Fig. 3. Transmitted constellation for 4-QAM (best previously known code).

The Golden Code Cy has 6min(C4) = 16/5, for any size of the
constellation S and is always larger than the previous ones (see
Table I).

The symbols per transmit antenna (i.e., the elements of the
matrix codewords) are drawn from a “coded” constellation S,
plotted in Figs. 2 and 3 and for the Golden Code and the best
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Fig. 4. Performance comparison of the new codes versus those of [1] and [15].

previously known one [1], respectively. We can observe that,
for the Golden Code, S. is almost a rotated regularly spaced
quadrature amplitude modulation (QAM) constellation with 22b
distinct points with same average energy as S, whereas it is the
union of three phase-shift keying (PSK) constellations for the
other code. We conjecture that this property of the S. constel-
lation along with the minimum value of §,,;, are the key fac-
tors to explain the good performance of the Golden Code in the
medium signal-to-noise (SNR) range.

In Fig. 4, we show the bit-error rates for the codes Cpq, Cp16,
and the Golden Code C,, as a function of E;, /Ny for the standard
block-fading 2 x 2 MIMO channel. The maximum-likelihood
sphere decoder [16], [17] is used at the receiver. We can observe
that the Golden Code gains 0.9 dB in the 16-QAM case and 1.2
dB in the 4-QAM case with respect to the best previously known
codes.

IV. CONCLUSION

We presented a new 2 x 2 LD-STBC with full rate and full
diversity, energy efficient, and with nonvanishing determinants.
This outperforms all previously known codes. Moreover, it is
possible to show that a family of codes similar to the Golden
Code can be generated using K = Q (z’, \/pT) for all primes
p = 5 mod 8 [18]. For these codes, 6,in = 1/p. Hence, the
Golden code gives the largest d,,;,, within this family.

APPENDIX
We show, in this appendix, that the cyclic algebra A defined
in (9) is a division algebra.

Proposition 1: LetK = Q (z \/5), then the element v = 7 is
notarelative normofany z € IK,i.e., NK/Q(,L')(QJ) #i,Vz e K.

14 16 18 20 22 24 26

Eb/NO (dB)

Proof: Let @5 denote the field of 5-adic numbers, and
Z5 = {z € Q;s|vs(xz) > 0} its valuation ring [19]. The com-
plex rationals Q(¢) can be embedded in Q5 by

Letz = a+byV5 € Kwitha,b € Q(7), then we must show that
NK/Q<1)(:U) = CL2 - 5b2 =1

has no solution for a, b € Q(¢). We can lift this equation in the
5-adic field Q5

a? —5b% =2+ 5z, a,beQ(i), v € Zs (14)

and show that it has no solution there. We take the valuations of
both sides of (14)

vs(a® — 5b) = v5(2 + 57)
to show that ¢ and b must be in Z5. In fact, since x € Z5
v5(2 4 52) > min{v3(2),v5(z) + 1} =0
and we have equality as both valuations are distinct. Now
vs(a® — 5b%) = min{2vs(a), 2v5(b) + 1}

must be 0, hence, v5(a) = 0 which implies a € Z5 and conse-

quently b € Z5.
We conclude by showing that
a® — 5b% = 2 + 5z, a,b,x € Zs

has no solution. Reducing modulo 5Z 5 we find that 2 should be
a square in GF (5), which is a contradiction. O
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